• Sonuç bulunamadı

Template Assisted Synthesis of Photocatalytic Titanium Dioxide Nanotubes by Hot Filament Chemical Vapor Deposition Method

N/A
N/A
Protected

Academic year: 2021

Share "Template Assisted Synthesis of Photocatalytic Titanium Dioxide Nanotubes by Hot Filament Chemical Vapor Deposition Method"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Template

assisted

synthesis

of

photocatalytic

titanium

dioxide

nanotubes

by

hot

filament

chemical

vapor

deposition

method

Mustafa

Karaman

a,b,∗

,

Fatma

Sarıipek

a,b

,

Özcan

Köysüren

a

,

H.

Bekir

Yıldız

c

aDepartmentofChemicalEngineering,SelcukUniversity,Turkey

bAdvancedTechnologyResearchandApplicationCenter,SelcukUniversity,Turkey

cDepartmentofChemistry,Karamano˘gluMehmetBeyUniversity,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22April2013

Receivedinrevisedform4July2013

Accepted12July2013

Available online 20 July 2013 Keywords:

Chemicalvapordeposition

Titaniumdioxide

Photocatalysis

a

b

s

t

r

a

c

t

Titaniumdioxidethinfilmsweredepositedconformallyoverelectrospunpolymethylmethacrylate (PMMA)fibersbyhotfilamentchemicalvapordepositionmethod.Depositionrateswereobservedto beveryhightoallowforrapidcoatings.Thermalannealingofasdepositedmaterialsleadstheclean decompositionofthepolymericinnerlayerandformationofrandomlydistributedanataseTiO2

nano-tubes.NanotubularTiO2 structurewasclearlyidentifiedbySEMandthatstructureisidealforgood

photocatalyticactivitybecauseofitshighsurfaceareaperunitvolumeratio.FTIRandXPSresultsshow theformationofstoichiometricTiO2,andthecrystallineformofthefinalnanotubeswasfoundtobe

anatase(101)afterXRDanalysis.HighphotocatalyticactivityofTiO2nanotubesunderUVirradiation

wasobservedwithanapparentrateconstantof0.74h−1formethylorangedecomposition.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Titaniumdioxide(TiO2)presentsanumberofattractive

proper-tiessuchashighrefractiveindex,highdielectricconstant,chemical stabilityandsemiconductorproperties.Ithasfoundapplications inmanyareasincludingcatalysisandphotocatalysis,asgas sen-sors,inelectricalandopticalapplications[1].Itisawell-known photocatalyticmaterialwhichcaneffectivelyconvertsolarenergy intousefulchemicalenergy,whichcanbeutilizedtodecompose harmfulmaterialsinairorinwater[2–4].Beingchemicallyinert and stable,TiO2 hasfoundmany applicationsasphocatalyst in

antibacterialandself-cleaningcoatings[5–7].Dependingonthe productionmethodandconditions,TiO2 canbeamorphous,orit

mayacceptoneofthethreecrystallineformsofanatase,rutileor brookite.Thenanostructureandcrystallinestatesarevery impor-tantregardingtospecificapplications.WhileamorphousTiO2 is

usedforopticalcoatings,anataseisusedfordye-sensitizedsolar cellsmainlyduetoitshigherbandgap[8,9].Inliterature,solution basedmethodstosynthesizethinfilmsoftitaniumdioxidefrom metallo-organicprecursorsincludesol–gelprocessingand layer-by-layerdepositiontechniques[3,10–12].TiO2nanotubearraysof

variousporesizes,lengths,andwallthicknessescanbegrownby anodizationoftitaniuminfluoride-basedbaths[1,13].Apartfrom

∗ Correspondingauthorat:DepartmentofChemicalEngineering,Selcuk

Univer-sity,42031Konya,Turkey.Tel.:+903322231972;fax:+903322410635.

E-mailaddress:karamanm@selcuk.edu.tr(M.Karaman).

thesewettechniques,chemicalvapordepositionprocessallows titaniumdioxidecoatingsinadryatmosphere.IntheCVDprocess oftitaniumdioxide,titaniumalkoxidesandtitaniumtetrachloride arethemostwidelyusedprecursors,inwhichtitaniumalkoxides havebeenpreferredmorebecauseoftheirlowvaporpressuresand highreactivitiesatlowtemperatures[14–16].Itisalsonot conve-nienttousetitaniumtetrachloridewhenchlorinecontaminationis notdesires,especiallyforelectronicapplications.Deposition tem-peraturegreatlydeterminesthecrystalstructureofTiO2thinfilms,

whicharegenerallyamorphousfordepositiontemperaturesbelow 350◦C,abovewhichanataseisformed.Themoststablecrystalline phaserutileisformedabove800◦C.ThehotfilamentCVDtechnique fallswithinthebroaderclassofthermal(orclassical)CVD tech-nique.UnliketheclassicalthermalCVDmethod,wherethewhole reactorbodyandhencethesubstratesareheatedinafurnace, resis-tivelyheatedfilamentsabovethesubstrateprovidetheenergyfor reactioninHFCVD[16,17].Thereforethesubstratetobecoated remainsfreefromthehightemperatures,plasmaorlightsources, whichcanalterthechemicaland/orphysicalnatureofthe frag-ilesubstrates,suchaspolymers.Also,theconformalnatureofthe HFCVDprocessallowsuniformcoatingsaroundsubstrateshaving complicatedgeometriessuchasfibers[18].

For best photocatalyticactivity, a highsurface area, anatase crystallinestructureofTiO2 isthemostdesiredstructure[7,19].

Electrospunfibermatswhich havehighsurfaceareatovolume ratioswereconsideredtobesuitablesubstratematerialstodeposit photocatalytic TiO2 thin films. Electrospinningis a unique

pro-cessthatcreatesfiberswithmicrometerandnanometerdiameters

0169-4332/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

believedtoproduceTiO2 crystalswithhighersurfaceareathan

classicalmethods,andthereforeresultantmaterialsareexpected toshow improvedcatalytic activities. Thephotocatalytic activ-ities ofthe final TiO2 nanotubes have alsobeen evaluated and

reported.

2. Experimental

2.1. Electrospinningofpolymethylmethacrylatenanofibers

Laboratoryscaleelectrospinningunit(NE-100,Inovenso)was usedtopreparePMMA nanofibersonaluminum foilsubstrates. PMMA(MW=1,20,000,AlfaAesar)wasdissolvedinacetonetogive a2wt.%solution,whichwasthenfedintoasyringe.Thepolymer blendsolutionwasfedthroughthesyringetipwithaflowrateof 0.1ml/husingafeedpump.Anelectricpotentialdifferenceof30kV wasappliedbetweenthesyringetipandcollector,onwhichsilicon substratewasplaced.Thedistancebetweenthecollectorandthe tipwas10cm.

2.2. DepositionofTiO2thinfilmsonPMMAnanofibersbyhot

filamentchemicalvapordeposition

TiO2thinfilmsweredepositedonelectrospunPMMAfibermats

byhotfilament chemicalvapordepositionmethodina custom buildvacuumreactor.Inthisreactor,thereactantgaseswere ther-mallyactivatedbyheatingatungstenfilamentarrayresistively.The filamentarray,whichconsistsof15paralleltungstenfilamentsof 15cmlength,ismountedabovethewatercirculatedcoolingplate onwhichthesubstrateswereplaced.Theclearancebetweenthe wirearrayandthecoolingplatewas30mm.Alldepositionswere carriedoutatasubstratetemperatureof30◦C.Titanium(IV)tetra isopropoxide(TTIP)(99.999%,Aldrich)wasfedtothereactoras 0.5sccmthroughatemperaturecontrolledbubblerat50◦C,using 50sccmO2(99.999%)asthecarriergasintoa20Pareactorpressure

andafilamenttemperatureof500◦C.Thereactorwasequippedby alaserinterferometrysystemforrealtimemonitoringofthe depo-sitionthickness.Theinterferometrysystemconsistsofa633nm He–Nelasersourceand a laser powermeter.Reactor was cov-eredbyaquartzplateatthetop,allowingvisualinspectionand laserinterferometry.Duringthedepositions,siliconwaferswere alsoplacednexttothePMMAmatsubstrates,forcharacterization purposes,andforinterferometricthicknessdeterminations. Depo-sitiontimewasvariedbetween1and10mintoobtaincoatings withdesiredthicknesses.

After HFCVD deposition of TiO2 on PMMA nanofibers, TiO2

nanotubesweredevelopedfromthePMMA–TiO2nanocomposite

fibersbythermal degradationofthepolymericcores.The ther-maltreatments were carried out at 600◦C for 4h in a tubular furnace.

Fig.1. FTIRspectraofTTIPprecursor,as-depositedTiO2film,andpost-annealed

TiO2film.

2.3. Characterization

Real timethickness controlsofthe depositionsonreference siliconwafersweremadeusingthelaserinterferometrysystem. Thethicknessandrefractiveindicesofthefilmswerealso deter-minedbyusinganellipsometer(Woollam M-2000)atanangle of70◦ andwithinaspectralrangeof315–720nm.Fourier Trans-formInfrared(FTIR)measurementsweredoneonaNicolet380 spectrometerintransmissionmode.Thechemicalbondingstates wereanalyzedusingX-rayphotoelectronspectrometer(XPS)on aCratosAxisUltraspectrometerusingamonochromatizedAlK␣ source.Morphologyofthefilmswasstudiedbyscanningelectron microscopy(Jeol).ThecrystalstructuresofTiO2nanotubesbefore

andaftertheheattreatmentwereanalyzedbyusingX-ray diffrac-tion(XRD)method(Rigaku).Toobservethephotocatalyticactivity ofthepreparedTiO2nanotubes,20mgTiO2samplewasplacedina

quartzcellcontaining50mlaqueousmethylorangesolutionwith aconcentrationof10mg/l.TheconcentrationofTiO2 nanotubes

inthecellwasirradiatedby4×6W,365nmUVlampsin aUV curer(ChematKW-4AC).Duringirradiation,thesolutionwas bub-bledwithair.Thechangeinthemethylorangeconcentrationwas observedbyaUV–visiblespectrophotometer(ShimadzuUV-1800).

3. Resultsanddiscussions

3.1. HFCVDofTiO2thinfilms

Theinsitumeasurementofthedepositionthicknessbylaser interferometryindicatesadepositionrateof120nm/minonthe referencesiliconwafer.Thechemicalstructureofthedeposited TiO2 thin filmswasanalyzedbyFTIRin thewavenumberrange

between 400and 4000cm−1. Fig. 1 shows theFTIR spectra of as-deposited and post annealed films together with the spec-trumoftheTTIPprecursor, which wasdrop castontoa silicon waferforcharacterizationpurpose.Allofthepeaksrelatedwith TTIPprecursor were observedtodisappear in theas deposited films.TheresultedFTIRspectrumoftheasdepositedfilmshows abroadabsorbancepeakbetweenthewavenumbersof400and 800cm−1,whichisrelatedwiththeTi Obond.Thecauseofthe peak broadening is attributed tothe amorphous nature of the filmduetothecarbonincorporationintotheTi Onetwork.The

(3)

Fig.2. HighresolutionC1s,Ti2pand01sXPSscansoftheTiO2filmdepositedfromHFCVD.

featuresobservedbetween1400and1600cm−1wererelatedwith carbonaceousmaterials.Thepresenceofcarbonrelatedgroupsin TiO2 films,especiallytheonesdepositedatlowtemperaturesby

variousmeansiscommonespecially whenthestartingmaterial isTTIP[20].Tobetterunderstandthechemicalnatureoftheas depositedfilms,XPSanalysiswascarriedout.XPSsurveyscan indi-catesC1s,O1s,andTi2ppeakswithatomicpercentagesof40.92,42.5,

and14.18,respectively.InFig.2,theTi2p,and01shighresolution

spectraobtainedfromtheXPSscanarepresented.The deconvo-lutionofTi2pspectrumshowshighintensitypeakscenteredatthe

bindingenergyvalues of 459.2and464.9eV,whichcorrespond

toTi2p3/2 andTi2p1/2states.TheO1sspectrumhasamajorpeak

centeredat530.8eV,indicatingTi Obond,andashoulderonthe lefthandsidecenteredat532.3eVcorrespondingtothehydroxyl species.Hydroxylbondsareattributedtowater, whichisa by-productoftheTTIPaccordingtothefollowingreaction:TTIP+O2

→ TiO2+4C3H6+2H2O

During the deposition by HFCVD, water and carbon related productsaretrappedandadsorbedonlowtemperaturesubstrates togetherwithTiO2.Waterrelatedpeaksaround3000–3600cm−1

were diminished in the FTIR spectrum after high temperature annealingoftheas-depositedfilms.TheFTIRandXPSresultsshow thatstoichiometricTiO2films(withrespecttoTi/Oatomicratio)

canbedepositedbyHFCVDonsubstratesatroomtemperature, withtrappedwaterandcarbonrelatedmaterialsinthefilms.Post heattreatmentofthefilmscanbedonetoremoveordecreasethe amountofsuchimpurities.

Theopticalconstantsandthicknessesofthefilmsonsilicon sub-stratesweremeasuredbyspectrophotometricellipsometry.Fig.3

showstheresultsfortheHFCVDgrownTiO2filmsbeforeandafter

heattreatment.Asdepositedfilmhasathicknessof125nmwith refractiveindexof1.81at500nm.Thislowrefractiveindexvalue canbeattributedtothecarbonrelatedimpuritiesandwaterinthe as-depositedfilms.Afterannealingat600◦Cfor4h,thefilmshowed

ahigherrefractiveindexvalueof2.11,accompaniedbyadecrease ofthicknessto74nm.Thedecreaseinthethicknessmaybearesult ofwaterremovalfromthefilmstructureandreorganizationoffilm structureinamoredenselypackedcrystalformofanatase,which isverifiedafterXRDstudies(asdiscussedlater).

3.2. DepositionofTiO2thinfilmsaroundelectrospunPMMAfiber

mats

SEMimageoftheelectrodepositedPMMAmatontungstenfoil isgiveninFig.4a.Thisimageillustratesthepresenceofpolymer nanofibersonthesubstrate.Thediametervaluesofindividualfibers rangefrom230nmto250nm.Rarebeadstructures,characteristic oflowsolutionviscosity,appearontheSEMimageofthe electro-spinnedpolymersample.Concentrationofthesolutionprepared forelectrospinningisquitedilute,resultinglowsolution viscos-ity.Atalowviscosity,itiscommontofindbeadsalongthefibers depositedonthecollectionplate.

After electrospinning process, the substrate was placed in HFCVDsystemandTiO2wascoatedonthenano-fibrousstructures.

Fig.4bshowstheSEMimagesoftheasdepositedTiO2coatings.Itis

clearfromthefigurethatTiO2wasconformallycoatedaroundthe

individualfibers.Thediametervaluesofthecoatedfibersrange from280nmand 300nm,which indicateacoatingthicknessof approximately25nm,whichislowerthanthatontheflatsubstrate (125nm).Thesurface areaof flatsubstrateismuch lowerthan thatofporouselectrospunfibers.Thisisbelievedtobethemain reasonforthecoatingthicknessdifference.Also,thethermal insu-lationdifferencehaslargeeffectondepositionratesbetweentwo kindsofsubstrates,andthatmaybethesecondreasonforthelarge thicknessdifference.Heattreatmentoftheproducedpolymer-TiO2

nanocompositematerialat600◦Cresultsintheremovalofthe poly-mercorelayer.TheresultingTiO2nanotubestructureisclearlyseen

(4)

Fig.3.RefractiveindexvaluesofHFCVDdepositedTiO2filmsbeforeandafterheattreatmentat600◦C.

Thecrystallinestructureofas-depositedandheattreatedTiO2 nanotubeswerestudiedbyXRD.Fortheas-depositedtitaniafilms onthe electrospunfibers there is no signof diffraction peaks, whichindicatethatas-depositedtitanialayerisamorphous.The diffractogram of the nanotubes treated at 600◦C is shown in

Fig.5.Themostintensediffractionpeakobservedfromthe(101) reflection at 2 position of 25.2 is characteristic peak fort the anatase structure. Other reflections at 2 angular positions of 36.81,37.73, 38.51,48, 53.77,and 54.93are all characteristics ofanatasephase and there isnoindicationof othercrystalline phases.Thus,XRDanalysisshowsthatacalcinationtemperatureof

600◦Cissufficientforconversionofamorphousas-deposited tita-niafilmsintonanotubeshavingpureanatasecrystallinestructure. Thesetubularanatasestructures,coveringwholesurfaceofthe sub-stratematerial,arethoughttobeidealstructuresforphotocatalytic activity.

3.3. PhotocatalyticactivityofTiO2nanotubes

Photodegradation of organic compounds in the presence of UV-illuminatedTiO2 in aqueousenvironments is a well-known

phenomenon.ToprovethephotocatalyticefficiencyoftheTiO2

(5)

Fig.5.XRDpatternofpost-annealedTiO2nanotubes.

nanotubestructures,substratescontainingTiO2 nanotubeswere

suspended in methyl orange, and theywere treated under UV lighttostartthedegradationreactions.AsTiO2isirradiatedbyUV

light(=365nm),rapiddecolorizationofthemethylorange solu-tionwasobservedbyUVvisiblemeasurements.Thehighintensity absorbancebandofmethylorangewasobservedat464nm.The decompositionkineticscanbewellexplainedbypseudofirstorder kineticsaccordingtothefollowingrelations[21]:

C=C0exp(−kt) (1)

ln



C0

C



=kt (2)

Therewasalinearrelationshipbetweentheabsorbance(A)and concentration(C)ofmethylorangeat464nmaccordingtothe cal-ibrationexperiments.HenceconcentrationtermsinEq.(2)canbe replacedbytheabsorbanceterms.

ln



A 0 A



=kt

wheretisthetimeandkistheapparentrateconstantwhich canbedeterminedfromtheslopeoftheln(A0/A)vs.tgraph.Fig.6

presentsthechangeintheabsorbanceofmethylorangesolutionat 460nmduringirradiationbyUVlight.Withoutlightillumination, thecontentofmethylorangedoesnotchangewithtime.Methyl orangesolutioncontainingamorphousTiO2onPMMAfiberscauses

aslowdecolorization withanapparentrateconstantofaround 0.18h−1(R2=0.97).Ontheotherhand,thesolutioncontainingTiO

2

Fig.6.TimechangeofUVabsorbanceofmethylorangesolutionat460nmunder

irradiationof365nmUVlight.

nanotubesshowsarapiddecolorization.Transformationof amor-phousTiO2containingfibersintocrystallineTiO2nanotubescauses

around4-foldincreaseupto0.74h−1(R2=0.98)intheapparentrate

constant.

4. Conclusions

TiO2 thin filmswere successfully deposited by hot filament

chemical vapor deposition method. HFCVD method was capa-bleofdepositingTiO2conformallyaroundveryfragilepolymeric

nanofibers at room temperature. The size and shapes of the nanofibersdoesnotchangeduringthedeposition,duetothelackof thermalorplasmaeffectsonthesubstrates.Postheattreatmentof thefilmsat600◦Ctotallyremovesthepolymericcorelayer, leav-ingananotubularTiO2 havingacrystal formofanatase.Ahigh

photocatalyticactivityofTiO2nanotubeswasobservedunderUV

irradiation.Thehighphotocatalyticactivitywasattributedtothe convenientchemicalstructureandthehighsurfacetovolumeratio oftheasproducedTiO2nanotubes.

Acknowledgements

This research was supported in part by the Scientific and TechnologicalResearchCouncilofTurkey(TUBITAK)(ProjectNo. 110M088) and Scientific Research Project of Selcuk University (BAP-09401061).

References

[1]G.K.Mor,O.K.Varghese,M.Paulose,K.Shankar,C.A.Grimes,Areviewonhighly ordered,verticallyorientedTiO2nanotubearrays:fabrication,material

prop-erties,andsolarenergyapplications,SolarEnergyMaterialsandSolarCells90 (2006)2011–2075.

[2]J.Yu,X.Zhao,Q.Zhao,PhotocatalyticactivityofnanometerTiO2thinfilms

preparedbythesol–gelmethod,MaterialsChemistryandPhysics69(2001) 25–29.

[3]J.A. Lee, K.C. Krogman, M. Ma, R.M. Hill, P.T. Hammond, G.C.Rutledge, Highlyreactivemultilayer-assembledTiO2coatingonelectrospunpolymer

nanofibers,AdvancedMaterials21(2009)1252–1256.

[4]T.Ohno,M.Akiyoshi,T.Umebayashi,K.Asai,T.Mitsui,M.Matsumura, Prepa-rationofS-dopedTiO2photocatalystsandtheirphotocatalyticactivitiesunder

visiblelight,AppliedCatalysisA:General265(2004)115–121.

[5]M.R.Hoffman,S.T.Martin,W.Choi,D.W.Bahnemann,Environmental applica-tionsofsemiconductorphotocatalysis,ChemicalReviews95(1995)69–96.

[6]A.Mills,S.L.Hunte,Anoverviewofsemiconductorphotocatalysis,Journalof PhotochemistryandPhotobiologyA108(1997)1–35.

[7]A.L.Linsebigler, G.Lu, J.T. Yates,PhotocatalysisonTiO2surfaces: princi-ples,mechanisms,andselectedresults,ChemicalReviews95(1995)735– 758.

[8]K.Yu,J.Chen,Enhancingsolarcellefficienciesthrough1-Dnanostructures, NanoscaleResearchLetters4(2009)1–10.

[9]W.T.Sun,Y.Yu,H.Y.Pan,X.F.Gao,Q.Chen,L.M.Peng,CdSquantumdots sensi-tizedTiO2nanotube-arrayphotoelectrodes,JournaloftheAmericanChemical

Society130(2008)1124–1125.

[10]J.Yu,X.Zhao,Effectofsubstratesonthephotocatalyticactivityofnanometer TiO2thinfilms,MaterialsResearchBulletin35(2000)1293–1301.

[11]C.Anderson, A.J. Bard, Animprovedphotocatalyst ofTiO2/SiO2 prepared

by a sol–gel synthesis, Journal of Physical Chemistry 99 (1995) 9882– 9885.

[12]N.Kaliwoh,J.Y.Zhang,I.W.Boyd,Titaniumdioxidefilmspreparedby photo-inducedsol–gelprocessingusing172nmexcimerlamp,SurfaceandCoatings Technology125(2000)424–427.

[13]D.Gong,C.A.Grimes,O.K.Varghese,W.Hu,R.S.Singh,Z.Chen,E.C.Dickey, Tita-niumoxidenanotubearrayspreparedbyanodicoxidation,JournalofMaterials Research16(2001)3331–3336.

[14]M.I.B.Bernardi,E.J.H.Lee,P.N.L.Filho,E.R.Leite,E.Longo,J.A.Varela,TiO2thin

filmgrowthusingtheMOCVDmethod,MaterialsResearch223(2001)223– 227.

[15]E.H.Wagner,F.Wagner,P.Hoffmann,Titaniumdioxidethin-filmdepositionon polymersubstratebylightinducedchemicalvapordeposition,Journalofthe ElectrochemicalSociety151(2004)C571–C576.

[16]M.Karaman,S.Gleason,K.K.Kooi,Vapordepositionofhybridorganic–inorganic dielectricbraggmirrorshavingrapidandreversiblytunableopticalreflectance, ChemistryofMaterials20(2008)2262–2267.

[17]W.G.Lee,S.I.Woo,J.C.Kim,S.H.Choi,K.H.Oh,Preparationandpropertiesof amorphousTiO2thinfilmsbyplasmaenhancedchemicalvapordeposition,

(6)

Şekil

Fig. 1. FTIR spectra of TTIP precursor, as-deposited TiO 2 film, and post-annealed TiO 2 film.
Fig. 2. High resolution C 1s , Ti 2p and 0 1s XPS scans of the TiO 2 film deposited from HFCVD.
Fig. 4. SEM images of (a) Electrospun PMMA fiber, (b) TiO 2 coated PMMA fibers, and (c and d) TiO 2 nanotubes after heat treatment of the PMMA–TiO 2 fibers.
Fig. 6. Time change of UV absorbance of methyl orange solution at 460 nm under irradiation of 365 nm UV light.

Referanslar

Benzer Belgeler

Bu çalışmada, örtüaltı biber üreticileri tarafından hastalık ve zararlı kontrolünde yaygın olarak kullanılan geleneksel (kimyasallara dayalı) mücadele programına

Her bölgede ba˘gımsız ba˘glanım algoritmaları kullanılarak ba˘glam a˘gacı tarafından gösterilebilen tüm do˘grusal olmayan modellerin kestirimleri, hesaplama

Aynı çözücü ortamlarında aynı polimerlerle elde edilen nanokompozitler karşılaştırıldığında, kaolinit ara bileşiklerinin sepiyolite oranla daha fazla çözücü

The purpose of this work was to investigate (1) the time-dependent rheological behavior of kaolinite-silicon oil pastes and (2) the influences of die dimensions, particle

In this model, the triggered rules are either executed as sub­ transactions of the triggering transaction, in case of immediate and deferred coupling modes, or

Chapter 2 discusses the fabrication, design parameters and characterization of surfaces used in this study, Chapter 3 discusses the theory of ratchet tracks and demonstrates the

In this section we derive approximate robust counterparts for linear least squares problems in three cases: (1) (A, b) is subject to unknown but bounded perturbation measured

We define a function which correlates the zeros of two Dirichlet L-functions to the modulus q and we prove an asymptotic estimate for averages of the pair correlation