• Sonuç bulunamadı

Explicit spectrum of a circulant-tridiagonal matrix with applications

N/A
N/A
Protected

Academic year: 2021

Share "Explicit spectrum of a circulant-tridiagonal matrix with applications"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

MATRIX WITH APPLICATIONS

EMRAH KILIÇ AND AYNUR YALÇINER

Abstract. We consider a circulant-tridiagonal matrix and compute its deter-minant by using generating function method. Then we explicitly determine its spectrum. Finally we present applications of our results for trigonometric factorizations of the generalized Lucas sequences.

1. Introduction

Tridiagonal matrices have been used in many di¤erent …elds, especially in ap-plicative …elds such as numerical analysis (e.g., orthogonal polynomials), engineer-ing, telecommunication system analysis, system identi…cation, signal processing (e.g., speech decoding, deconvolution), special functions, partial di¤erential equa-tions and naturally linear algebra (see [1, 3, 4, 12, 16, 17]). Some authors consider a general tridiagonal matrix of …nite order and then compute its LU factorizations, determinant and inverse (see [2, 5, 8, 13]).

A tridiagonal Toeplitz matrix of order n has the form:

An= 2 6 6 6 6 6 4 a b 0 c a b c a . .. ... b 0 c a 3 7 7 7 7 7 5 ;

where a; b and c’s are nonzero complex numbers. A tridiagonal 2-Toeplitz matrix has the form:

Tn= 2 6 6 6 6 6 6 6 4 a1 b1 0 0 0 c1 a2 b2 0 0 0 c2 a1 b1 0 0 0 c1 a2 b2 0 0 0 c2 a1 .. . ... ... ... ... . .. 3 7 7 7 7 7 7 7 5 ;

where a; b and c’s are nonzero complex numbers.

Let a1; a2; b1 and b2 be real numbers. The period two second order linear

recur-rence system is de…ned to be the sequence f0= 1; f1= a1; and

f2n= a2f2n 1+ b1f2n 2 and f2n+1 = a1f2n+ b2f2n 1 2000 Mathematics Subject Classi…cation. 15A15, 15B36, 65Q05.

Key words and phrases. Circulant and tridiagonal matrices, spectrum, determinant, generating function.

(2)

for n 1: Let D = a1a2+ b1+ b2 and D2 4b1b26= 0:

Gover [6] and Marcellán and Petronilho [15] showed that the eigenvalues of ma-trix T2n+1 are a1 and

a1+ a2 2 s a1 a2 2 2 + b1c1+ b2c2+ 2 p b1b2c1c2cos k n + 1 for 1 k n:

They also gave a closed equation for the eigenvalues of T2n: They are the

solu-tions of the following quadratic equasolu-tions ( a1) ( a2) h b1c1+ b2c2+ p b1b2c1c2znk i = 0; k = 1; 2; : : : ; n; where znk; k = 1; 2; : : : ; n; are the zeros of the polynomial Rn(z) de…ned by

Rn+1(x) = xRn(x) Rn 1(x) ; n 1

with initials R0(x) = 1; R1(x) = x + where 2= b2c2=b1c1:

Meanwhile, a matrix Cn is called a circulant matrix if it has the form

Cn= 2 6 6 6 6 6 6 4 a1 a2 a3 an 1 an an a1 a2 an 2 an 1 an 1 an a1 an 3 an 2 a3 a4 a5 a1 a2 a2 a3 a4 an a1 3 7 7 7 7 7 7 5 :

Circulant matrices are a special type of Toeplitz matrix and have many interest-ing properties. Circulant matrices have been used in many areas such as physics, di¤erential equations and digital image processing. Also circulant and skew circu-lant matrices have become an important tool in networks engineering.

De…ne generalized Fibonacci and Lucas sequences by the recursion for n > 1 Un= P Un 1 QUn 2 and Vn= P Vn 1 QVn 2;

with the initials U0 = 0; U1 = 1; and, V0 = 2; V1 = P; resp. When P = 1 and

Q = 1; Un= Fn (nth Fibonacci number) and Vn= Ln (nth Lucas number) :

Recently some authors have studied various interesting combinatorial matrices de…ned by terms of certain sequences. We could refer to the works [10, 14, 11, 18] for details about combinatorial matrix examples: In [9], the authors consider skew circulant type matrices with any continuous Fibonacci numbers. Then they discuss the invertibility of the skew circulant type matrices and present explicit determinants and inverse matrices of them.

In this paper, we consider a circulant-tridiagonal matrix and then compute its determinant by using generating function method. Then we explicitly determine its all eigenvalues. We show that determinant of the matrix satis…es a period second order recurrence system. We give applications for trigonometric factorizations of the Lucas sequences.

2. The main results

We de…ne a tridiagonal matrix Hn = [hij] of order n with h11 = a, hi+1;i =

hi;i+1 = b for odd i; hi;i+1 = hi+1;i = a for even i and hnn = a if n is even and

(3)

Then the matrix H2n takes the form H2n= 2 6 6 6 6 6 6 6 6 4 a b b 0 a a 0 b b . .. ... . .. 0 b b a 3 7 7 7 7 7 7 7 7 5 :

We de…ne a period two second order linear recurrence system fhng given by

h0= 0; h1= a + b; and the recursions

h2n = (a b) h2n 1 abh2n 2,

h2n+1 = ( a + b) h2n abh2n 1

for n 1:

We give relationships between the period two second order linear recurrence system fhng and the determinant of Hn: Then we determine the eigenvalues of

matrix Hn.

By expanding the determinant of Hn with respect to the …rst row, we have the

following result without proof. Lemma 1. For n > 1;

det H2n= ( 1)n+1 a2n b2n and det H2n+1= ( 1)n a2n+1+ b2n+1 :

Let H (x) =X n 0 hnxn: Also let H1(x) = X n 0 h2n+1x2n+1 and H2(x) = X n 0 h2nx2n:

By these equations, we get the equation system

H2(x) = (a b) xH1(x) abx2H2(x) ;

H1(x) (a + b) x = ( a + b) xH2(x) abx2H1(x) :

By Cramer solution of the system, we obtain H1(x) = (a + b) abx3+ (a + b) x 1 + (a2+ b2) x2+ a2b2x4 and H2(x) = a2 b2 x2 1 + (a2+ b2) x2+ a2b2x4: Thus we get H (x) = H1(x) + H2(x) = (b + a) x + a2 b2 x2+ a2b + ab2 x3 1 + (a2+ b2) x2+ a2b2x4 :

Here note that

1 + a2+ b2 x2+ a2b2x4 = 1 2x2 1 2x2

= (1 x) (1 + x) (1 x) (1 + x) ; where = ia, = ib and i =p 1.

(4)

By partial fraction decomposition, we …nd A1; A2; B1and B2such that H (x) =X n 0 hnxn= A1 (1 x)+ A2 (1 + x)+ B1 (1 x) + B2 (1 + x): Solving the equation above, we get the coe¢ cients have the forms:

A1= (1 + i) 2 ; A2= 1 i 2 ; B1= 1 i 2 and B2= 1 + i 2 : Therefore hn= 1 2( (1 + i) n (1 i) ( )n + (1 i) n+ (1 + i) ( )n) : Especially we have that

h2n+1 = ( 1)n a2n+1+ b2n+1 and h2n= ( 1)n+1 a2n b2n :

By the results above, we have the following result: Corollary 1. For n > 1;

det Hn = hn:

If we choose a and b as the roots of the characteristic equation of the general Lucas sequences, x2 P x + Q = 0; then we have

h2n+1 = ( 1)nV2n+1 and h2n = ( 1)n+1U2n

p ; where = P2 4Q:

Lemma 2. For n > 1; det Hn= 0 if and only if

a = b or a2+ b2= 2ab cos2k

n for 1 k n 2

2 if n is even,

a + b = 2pab cos(2k 1)2n for 1 k n if n is odd.

Proof. Since hn= det Hn and by our result mentioned before; hn = det Hn= 0 if

and only if 1 2( (1 + i) n (1 i) ( )n + (1 i) n+ (1 + i) ( )n) = 0: Thus (1 + i) n+ (1 i) ( 1)n n = (1 i) n+ (1 + i) ( 1)n n or n n = (1 i) + (1 + i) ( 1)n (1 + i) + (1 i) ( 1)n:

For even n such that n = 2m; we …nd the all solution of the equation

2m 2m =

(1 i) + (1 + i) (1 + i) + (1 i) = 1; which, by = ia and = ib; satis…es

a2m= b2m or

a2m b2m= 0:

From (pp. 34, formula 1.396.2, [7]), we recall the known result

m 1Y k=1 x2+ 1 2x cosk m = x2m 1 x2 1 :

(5)

By taking x = a=b; we get a2 b2 m 1Y k=1 a2+ b2 2ab cosk m = a 2m b2m:

Thus a2m b2m= 0 if and only if

a = b or a2+ b2= 2ab cosk m for some 1 k m 1 where n = 2m:

For odd n such that n = 2m + 1; det Hn = 0 if and only if 2m+1

2m+1 = 1

or

2m+1+ 2m+1

= 0; which, by = ia and = ib; is equivalent to

a2m+1+ b2m+1= 0:

By the product form of Chebyshev polynomials of the …rst kind, we have that am+ bm= m Y k=1 (a + b) 2pab cos(2k 1) 2m and so a2m+1+ b2m+1= 2m+1Y k=1 (a + b) 2pab cos (2k 1) 2 (2m + 1) : Finally a2m+1+b2m+1= 0 if and only if a+b = 2pab cos(2k 1)

2(2m+1)for 1 k 2m+1:

Thus the claim is proven.

Now we can determine eigenvalues of the matrix Hn: For this, we de…ne a new

period second order recurrence system fgng by the recursion

g2n = (a b x) g2n 1 (ab) g2n 2;

g2n+1 = ( a + b x) g2n (ab) g2n 1

with g0= 0 and g1= a + b x for n > 0:

On the other hand, by straightforward computations gives us the characteristic equation of matrix Hn as

det (H2n xI2n) = g2n

and

det (H2n+1 xI2n+1) = g2n+1;

where In is the identity matrix of order n:

Combining them, we determine the eigenvalues of matrix Hn:

Theorem 1. The eigenvalues of H2n are

a b and r

a2+ b2 2ab cosk

(6)

and the eigenvalues of H2n+1 are a + b and r (a2+ b2) 2ab cos(2k 1) 2n + 1 ; 1 k n: 3. Two Applications

Now we will give two applications of our results on trigonometric factorizations of the second order recurrences fUng and fVng : If we choose the entries of the

matrix Hnas a = P +

p

P2 4Q =2 and b = P pP2 4Q =2; then we will

obtain the following results : V2n+1 = V1 n Y k=1 V2 2Q cos 2k 1 2n + 1 and U2n= U2 n 1Y k=1 V2 2Q cos k n : Especially when P = 1 and Q = 1; then we get

L2n+1 = n Y k=1 3 + 2 cos2k 1 2n + 1 and F2n= n 1Y k=1 3 + 2 cosk n : References

[1] A. Bunse-Gerstner, R. Byers and V. Mehrmann, A chart of numerical methods for struc-tured eigenvalue problems, SIAM J. Matrix Anal. Appl. 13(2) (1992), 419–453, doi: 10.1137/0613028.

[2] R.L. Burden, J.D. Fairs and A.C. Reynolds, Numerical Analysis, 2nd Ed., Prindle, Weber & Schmidt, Boston, MA, 1981.

[3] W. Chu, Fibonacci polynomials and Sylvester determinant of tridiagonal matrix. Applied Math. Comput. 216(3) (2010), 1018–1023, doi: 10.1016/j.amc.2010.01.089.

[4] C.F. Fischer and R.A. Usmani, Properties of some tridiagonal matrices and their appli-cation to boundary value problems, SIAM J. Numer. Anal. 6(1) (1969), 127–142, doi: 10.1137/0706014.

[5] C. M. Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput.Appl. Math. 200(1) (2007), 283–286, doi: 10.1016/j.cam.2005.08.047.

[6] M.J.C. Gover, The eigenproblem of a tridiagonal 2-Toeplitz Matrix, Linear Algebra Appl. 197-198 (1994), 63–78, doi: 10.1016/0024-3795(94)90481-2.

[7] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, San Diego, 1980.

[8] W.W. Hager, Applied Numerical Linear Algebra, Prentice-Hall Inter. Editions, Englewood Cli¤s, NJ, 1988.

[9] Z. Jiang, Y. Jinjiang and F. Lu, On skew circulant type matrices involving any continuous Fibonacci numbers, Abstract and Applied Analysis, Article ID 483021, 10 pp., 2014, doi: 10.1155/2014/483021.

[10] Z. Jiang and D. Li, The invertibility, explicit determinants, and inverses of circulant and left circulant and g-circulant matrices involving any continuous Fibonacci and Lucas numbers, Abstr. Appl. Anal. Article ID 931451, 14 pp., 2014, doi: 10.1155/2014/931451.

[11] Z. Jiang, H. Xin and F. Lu, Gaussian Fibonacci circulant type matrices, Abstr. Appl. Anal. Article ID 592782, 10 pp., 2014, doi: 10.1155/2014/592782.

[12] E. K¬l¬ç and D. Tasc¬, Factorizations and representations of the backward second-order linear recurrences, J. Comput. Appl. Math. 201(1) (2007), 182–197, doi: 10.1016/j.cam.2006.02.012. [13] D.H. Lehmer, Fibonacci and related sequences in periodic tridiagonal matrices, The Fibonacci

(7)

[14] T. Mansour, A formula for the generating functions of powers of Horadam’s sequence, Aus-tralasian Journal of Combinatorics 30 (2004), 207–212.

[15] F. Marcellán and J. Petronilho, Eigenproblems for tridiagonal 2-Toeplitz matrices and qua-dratic polynomial mappings, Linear Algebra Appl. 260 (1997), 169–208, doi: 10.1016/S0024-3795(97)80009-2.

[16] M. El-Mikkawy and E-D. Rahmo, A new recursive algorithm for inverting general tridi-agonal and anti-triditridi-agonal matrices. Appl. Math. Comput. 204(1) (2008), 368–372, doi: 10.1016/j.amc.2008.06.053.

[17] M. El-Mikkawy and F. Atlan, A new recursive algorithm for inverting general k-tridiagonal matrices. Appl. Math. Lett. 44 (2015), 34–39, doi: 10.1016/j.aml.2014.12.018.

[18] J. Zhou and Z. Jiang, Spectral norms of circulant-type matrices with binomial co-e¢ cients and harmonic numbers, Int. J. Comput. Methods 11(5) (2014), 1-14, doi: 10.1142/S021987621350076X.

TOBB University of Economics and Technology Mathematics Department 06560 Ankara Turkey

E-mail address : ekilic@etu.edu.tr

Selçuk University Science Faculty Mathematics Department 42075 Konya Turkey E-mail address : ayalciner@selcuk.edu.tr

Referanslar

Benzer Belgeler

As the names of the chapters suggest, the thesis aims at rethinking the international as not just inter-state relations or as a space ‘outside’ the state, but as embedded

3 shows the operation of the lateral force microscope: the lever is vibrated with sub-Angstrom oscillation amplitudes parallel to the sample surface at a frequency well below

Sera koşullarında bitki büyümesini artırıcı rizobakter uygulamalarının marulda kök yaş ağırlığına etkisi.. Çizelge 4.1 ve Şekil 4.1.’den de görülebileceği

Yapılan bu araştırma sonucunda genel olarak okulöncesi öğretmenliğinde okuyan öğretmen adaylarının büyük bir çoğunluğunun okulöncesi eğitimde bilgisayar

Türkiye Büyük Millet Meclisi 14 Mayıs 1950 seçimlerinden sonra yeni bir döneme girmiştir. Bu dönem ülkedeki insanların yeni oluşan meclisten çok şey beklediği bir dönme

Gelişim kavramı insanın bütün yönlerini ilgilendiren bir kavramdır. Dolayısıyla bireyin dînî algısıyla da ilişki içindedir. Bireyin dînî gelişimi hakkında bilgi

Alliance okulları, getirdiği modern eğitim sistemi ile geleneksel eğitim sistemini değiştirmiş ve Yahudi cemaati içerisinde yeni bir toplumsal sınıf

ve yabancı sözcüklerden oluşan, sözcük türleri bakımından isimlerle ve kalıplaşmış ifadelerle, yapı ve kuruluş bakımından yalın ve bazı ekler almış