• Sonuç bulunamadı

SCHUR COMPLEMENTS OF BLOCK KRONECKER PRODUCTS

N/A
N/A
Protected

Academic year: 2021

Share "SCHUR COMPLEMENTS OF BLOCK KRONECKER PRODUCTS"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

845

Journal of Science and Engineering Volume 19, Issue 57, September 2017 Fen ve Mühendislik Dergisi

Cilt 19, Sayı 57, Eylül 2017

DOI: 10.21205/deufmd.2017195774

Schur Complements of Block Kronecker Products

Mustafa ÖZEL*1

1Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Jeofizik Bölümü, 35160, İzmir

(Alınış / Received: 23.12.2017, Kabul / Accepted: 18.05.2017, Online Yayınlanma / Published Online: 20.09.2017) Keywords Schur Complements, Block Kronecker Product, Positive Semidefinite Matrices, Moore-Penrose Inverse

Abstract: The paper is established on Schur complements and block Kronecker product of positive semidefinite matrices. In particular, a formulation for the block Kronecker product of Schur complements of block matrices is improved. Additionally, an new following inequality for block Kronecker product of Schur complements of two matrices and their conjugate transpose is proved

��𝑨𝑨 𝜶𝜶� � ⊠ �𝑩𝑩 𝜷𝜷� �� ��𝑨𝑨 𝜶𝜶� � ⊠ �𝑩𝑩 𝜷𝜷� ��∗≥ [(𝑨𝑨 ⊠ 𝑩𝑩)(𝑨𝑨 ⊠ 𝑩𝑩)∗]� . 𝜸𝜸

Blok Kronecker Çarpımların Schur Tamamlayıcıları

Anahtar Kelimeler Schur Tamamlayıcılar, Blok Kronecker Çarpım, Yarı Pozitif Tanımlı Matrices , Moore-Penrose Tersler

Özet: Bu çalışma, yarı pozitif tanımlı blok matrislerin blok kronecker çarpımları ve Schur tamamlayıcıları üzerine kurulmuştur. Özellikle blok matrislerin Schur tamamlayıcılarının blok kronecker çarpımı için bir formülasyon geliştirilmiştir. Bundan başka, iki matris ve eşlenik transpozlarının schur tamamlayıcılarının blok kronecker çarpımları için aşağıdaki yeni eşitsizlik kanıtlanmıştır.

��𝑨𝑨 𝜶𝜶� � ⊠ �𝑩𝑩 𝜷𝜷� �� ��𝑨𝑨 𝜶𝜶� � ⊠ �𝑩𝑩 𝜷𝜷� ��∗≥ [(𝑨𝑨 ⊠ 𝑩𝑩)(𝑨𝑨 ⊠ 𝑩𝑩)∗]� . 𝜸𝜸

(2)

846

1. Introduction

The Kronecker product has many practical applications in system theory including the analysis of stochastic steady state, matrix equations, matrix calculus, signal and image processing, and statistical mechanics[1]. Furthermore the spectral theorem for finite dimensional Hermitian matrices can be formulated using the Kronecker product.

In this paper, we derive an inequality relating the Schur complements of the block Kronecker product for the block matrices. The inequality had been known for usual Kronecker product, so the main contribution here is the extension to the block Kronecker product which was defined by Horn, Mathias, and Nakamura[2]. Then, some of its properties were improved by Günther and Klotz [3].

Let 𝑀𝑀𝑚𝑚,𝑛𝑛 denote the space of 𝑚𝑚 × 𝑛𝑛 complex matrices and 𝑴𝑴𝑝𝑝,𝑞𝑞�𝑀𝑀𝑚𝑚,𝑛𝑛� denote the space of 𝑝𝑝 × 𝑞𝑞 block matrices 𝑨𝑨 = �𝐴𝐴𝑖𝑖𝑖𝑖�𝑖𝑖=1,…,𝑝𝑝𝑖𝑖=1,…,𝑞𝑞 whose 𝑖𝑖, 𝑗𝑗 entry belongs to 𝑀𝑀𝑚𝑚,𝑛𝑛 for the positive integers 𝑝𝑝, 𝑞𝑞, 𝑚𝑚, 𝑎𝑎𝑛𝑛𝑎𝑎 𝑛𝑛. We write 𝑀𝑀𝑛𝑛≡ 𝑀𝑀𝑛𝑛,𝑛𝑛 and 𝑴𝑴𝒑𝒑≡ 𝑴𝑴𝑝𝑝,𝑝𝑝. Also The identity matrix in is 𝑀𝑀𝑝𝑝(𝑀𝑀𝑛𝑛) is denoted 𝐼𝐼𝑛𝑛. If 𝑨𝑨 > 0 (≥ 0), we say 𝑨𝑨 is positive(positive semi) definite and if 𝑨𝑨 > 𝐵𝐵 (≥ 0), we say 𝑨𝑨 − 𝑩𝑩 > 0 (≥ 0) for positive(positive semi) definite matrices 𝑨𝑨 and 𝑩𝑩.

Let 𝜶𝜶 ⊆ {1,2, … , 𝑝𝑝}, 𝜷𝜷 ⊆ {1,2, … , 𝑞𝑞} be the index sets and 𝜶𝜶𝑐𝑐= {1,2, … , 𝑝𝑝}\𝜶𝜶, 𝜷𝜷𝑐𝑐 = {1,2, … , 𝑞𝑞}\𝜷𝜷 be the complements of 𝜶𝜶 and 𝜷𝜷, and their cardinalities are |𝜶𝜶| and |𝜷𝜷|. Also we denote by 𝑨𝑨(𝜶𝜶, 𝜷𝜷) that block submatrix of 𝑨𝑨 with the block rows indexed by 𝜶𝜶 and the block columns

indexed by 𝜷𝜷.

We usually write 𝑨𝑨(𝜶𝜶) for 𝑨𝑨(𝜶𝜶, 𝜶𝜶).

For a matrix we denote by 𝑨𝑨∗, 𝑨𝑨−1 and 𝑨𝑨+ its conjugate transpose, inverse and Moore-Penrose inverse, respectively. 2. Preliminaries

We introduce in this section the main definition of the paper, that is, the block Kronecker product of two matrices and also give some properties of its.

Definition 2.1. Let 𝐴𝐴 ∈ 𝑀𝑀𝑚𝑚,𝑙𝑙 and 𝑩𝑩 =

�𝐵𝐵𝑖𝑖𝑖𝑖� ∈ 𝑀𝑀𝑠𝑠,𝑡𝑡�𝑀𝑀𝑙𝑙,𝑛𝑛�. Then the block

Kronecker product 𝐴𝐴 and 𝑩𝑩 is defined by 𝐴𝐴 ⊠ 𝑩𝑩 = �𝐴𝐴𝐵𝐵𝑖𝑖𝑖𝑖�𝑖𝑖=1,…,𝑠𝑠𝑖𝑖=1,…,𝑡𝑡

where 𝐴𝐴𝐵𝐵𝑖𝑖𝑖𝑖 is the usual matrix product of 𝐴𝐴 and 𝐵𝐵𝑖𝑖𝑖𝑖 . For 𝑨𝑨 = �𝐴𝐴𝑖𝑖𝑖𝑖� ∈ 𝑀𝑀𝑝𝑝,𝑞𝑞�𝑀𝑀𝑚𝑚,𝑙𝑙�, the block Kronecker product is given by

𝑨𝑨 ⊠ 𝑩𝑩 = �𝐴𝐴𝑖𝑖𝑖𝑖⊠ 𝑩𝑩�𝑖𝑖=1,…,𝑝𝑝𝑖𝑖=1,…,𝑞𝑞

[2,3].

Definition 2.2. If every 𝑛𝑛 × 𝑛𝑛 block of 𝑨𝑨 commutes with every 𝑛𝑛 × 𝑛𝑛 block of 𝑩𝑩 then the block matrices 𝑨𝑨 ∈ 𝑀𝑀𝑝𝑝,𝑞𝑞 and 𝑩𝑩 ∈ 𝑀𝑀𝑠𝑠,𝑡𝑡 are called as block commuting and denoted by 𝑨𝑨𝑏𝑏𝑐𝑐𝑩𝑩. [3]

Definition 2.3. If |𝜶𝜶| = |𝜷𝜷| and 𝑨𝑨(𝜶𝜶, 𝜷𝜷) is nonsingular then the block of the Schur complement of 𝑨𝑨(𝜶𝜶, 𝜷𝜷) in 𝑨𝑨 is

𝑨𝑨/𝑨𝑨(𝜶𝜶, 𝜷𝜷)

= 𝑨𝑨(𝜶𝜶𝑐𝑐, 𝜷𝜷𝑐𝑐) − 𝑨𝑨(𝜶𝜶𝑐𝑐, 𝜷𝜷)�𝑨𝑨(𝜶𝜶, 𝜷𝜷)�−1𝑨𝑨(𝜶𝜶, 𝜷𝜷𝑐𝑐)

It is useful to denote 𝑨𝑨/𝜶𝜶 for 𝑨𝑨/𝑨𝑨(𝜶𝜶). [4-6] Lemma 2.4. (a) (𝑨𝑨 ⊠ 𝑩𝑩)∗= 𝑨𝑨⊠ 𝑩𝑩 if and only if 𝑨𝑨𝑏𝑏𝑐𝑐𝑩𝑩. (b) If 𝑩𝑩𝑏𝑏𝑐𝑐𝑪𝑪 then (𝑨𝑨 ⊠ 𝑩𝑩)(𝑪𝑪 ⊠ 𝑫𝑫) = 𝑨𝑨𝑪𝑪 ⊠ 𝑩𝑩𝑫𝑫. (c) If 𝑨𝑨𝑏𝑏𝑐𝑐𝑩𝑩∗ then (𝑨𝑨 ⊠ 𝑩𝑩)+= 𝑨𝑨+⊠ 𝑩𝑩+.

(3)

847

(d) If 𝑨𝑨𝑏𝑏𝑐𝑐𝑩𝑩 and 𝑨𝑨𝑏𝑏𝑐𝑐𝑩𝑩∗, then 𝑨𝑨𝑏𝑏𝑐𝑐𝑩𝑩+. [3]

3. On Inequalities for Block Kronecker Products

In this section, we present some inequalities involving the block Kronecker product of positive definite block matrices and its Schur complements.

Lemma 3.1. Let 𝑨𝑨 ≥ 𝑪𝑪 ≥ 𝟎𝟎, 𝑩𝑩 ≥ 𝑫𝑫 ≥ 𝟎𝟎, 𝑨𝑨𝑏𝑏𝑐𝑐𝑩𝑩 and 𝑨𝑨𝑏𝑏𝑐𝑐𝑩𝑩∗, and 𝑨𝑨, 𝑩𝑩, 𝑪𝑪, and 𝑫𝑫 be compatibly block matrices, then

𝑨𝑨 ⊠ 𝑩𝑩 ≥ 𝑪𝑪 ⊠ 𝑫𝑫. (1) Proof. To constitute Eq(1) we first take

𝑨𝑨 ⊠ 𝑩𝑩 with 𝐴𝐴11⊠ 𝑩𝑩;

𝑨𝑨 ⊠ 𝑩𝑩 = �𝐴𝐴𝐴𝐴11⊠ 𝑩𝑩 𝐴𝐴12⊠ 𝑩𝑩

12∗ ⊠ 𝑩𝑩 𝐴𝐴22⊠ 𝑩𝑩�,

𝐴𝐴11⊠ 𝑩𝑩 = �𝐴𝐴𝐴𝐴11𝐵𝐵11 𝐴𝐴11𝐵𝐵12 11𝐵𝐵12∗ 𝐴𝐴11𝐵𝐵22�.

We will prove the following three statements by taking into consideration the above factorization.

(i) 𝐴𝐴11⊠ 𝑩𝑩 ≥ 𝟎𝟎. Since 𝑩𝑩 ≥ 𝟎𝟎, by using the Albert’s theorem [7] we write

𝐵𝐵11≥ 0, 𝐵𝐵22− 𝐵𝐵12∗ 𝐵𝐵22+𝐵𝐵12≥ 0

and

𝐵𝐵12= 𝐵𝐵11𝐵𝐵11+𝐵𝐵12.

From the hypothesis 𝑨𝑨 and 𝑩𝑩 are positive semidefinite and block commute, 𝐴𝐴11𝐵𝐵11≥ 0. By using Lemma 2.4

𝐴𝐴11𝐵𝐵22− 𝐴𝐴11𝐵𝐵12∗(𝐴𝐴11𝐵𝐵11)+(𝐴𝐴11𝐵𝐵12)

= 𝐴𝐴11𝐵𝐵22− 𝐴𝐴11𝐵𝐵12∗𝐵𝐵11+𝐴𝐴11+𝐴𝐴11𝐵𝐵12

= 𝐴𝐴11𝐵𝐵22− 𝐴𝐴11𝐴𝐴11+𝐴𝐴11𝐵𝐵12∗ 𝐵𝐵11+𝐵𝐵12

= 𝐴𝐴11(𝐵𝐵22− 𝐵𝐵12∗𝐵𝐵11+𝐵𝐵12) ≥ 0

is obtained. Then, by second condition of Albert’s theorem and Lemma 2.4,

𝐴𝐴11𝐵𝐵12∗ = (𝐴𝐴11𝐵𝐵11)(𝐴𝐴11𝐵𝐵11)+(𝐴𝐴11𝐵𝐵12)

= 𝐴𝐴11𝐵𝐵11𝐵𝐵11+𝐴𝐴11+𝐴𝐴11𝐵𝐵12

= 𝐴𝐴11𝐴𝐴11+𝐴𝐴11𝐵𝐵11𝐵𝐵11+𝐵𝐵12

= 𝐴𝐴11𝐵𝐵11𝐵𝐵11+𝐵𝐵12.

(ii) Now we consider the second statement for 𝑨𝑨 ⊠ 𝑩𝑩

𝐴𝐴22⊠ 𝑩𝑩 − (𝐴𝐴12∗ ⊠ 𝑩𝑩)(𝐴𝐴11⊠ 𝑩𝑩)+(𝐴𝐴12⊠ 𝑩𝑩) ≥ 0. To prove this inequality we also use Lemma 2.4

𝐴𝐴22⊠ 𝑩𝑩 − (𝐴𝐴12∗ ⊠ 𝑩𝑩)(𝐴𝐴11⊠ 𝑩𝑩)+(𝐴𝐴12⊠ 𝑩𝑩)

= 𝐴𝐴22⊠ 𝑩𝑩 − 𝐴𝐴12∗ 𝐴𝐴11+𝐴𝐴12⊠ 𝑩𝑩𝑩𝑩+𝑩𝑩

= (𝐴𝐴22− 𝐴𝐴12∗ 𝐴𝐴11+𝐴𝐴12) ⊠ 𝑩𝑩

and the matrix 𝑨𝑨 ensures the Albert’s theorem [7], so the second statement is proved. (iii) For 𝐴𝐴12⊠ 𝑩𝑩 = (𝐴𝐴11⊠ 𝑩𝑩)(𝐴𝐴11⊠ 𝑩𝑩)+(𝐴𝐴12⊠ 𝑩𝑩), by Lemma 2.4 𝐴𝐴12⊠ 𝑩𝑩 = (𝐴𝐴11⊠ 𝑩𝑩)(𝐴𝐴11+ ⊠ 𝑩𝑩+)(𝐴𝐴12⊠ 𝑩𝑩) = 𝐴𝐴11𝐴𝐴11+𝐴𝐴12⊠ 𝑩𝑩𝑩𝑩+𝑩𝑩 = 𝐴𝐴11𝐴𝐴11+𝐴𝐴12⊠ 𝑩𝑩.

By taking into consideration Albert’s theorem[7] based on (i), (ii), and (iii) we get

𝑨𝑨 ⊠ 𝑩𝑩 ≥ 𝟎𝟎 for 𝑨𝑨 ≥ 0 and 𝑩𝑩 ≥ 0. Furthermore, this results implies that 𝑪𝑪 ⊠ 𝑫𝑫 ≥ 𝟎𝟎,

(4)

848

𝑨𝑨 ⊠ 𝑩𝑩 − 𝑪𝑪 ⊠ 𝑫𝑫 = 𝑨𝑨 ⊠ 𝑩𝑩 − 𝑨𝑨 ⊠ 𝑫𝑫 + 𝑨𝑨 ⊠ 𝑫𝑫

− 𝑪𝑪 ⊠ 𝑫𝑫

= 𝑨𝑨 ⊠ (𝑩𝑩 − 𝑫𝑫) + (𝑨𝑨 − 𝑪𝑪) ⊠ 𝑫𝑫 ≥ 𝟎𝟎 Hence, 𝑨𝑨 ≥ 𝑪𝑪 and 𝑩𝑩 ≥ 𝑫𝑫. □

Theorem 3.2. Let 𝑨𝑨 ∈ 𝑀𝑀𝑝𝑝(𝑀𝑀𝑛𝑛), and

𝑩𝑩 ∈ 𝑀𝑀𝑞𝑞(𝑀𝑀𝑛𝑛) and 𝑨𝑨𝑏𝑏𝑐𝑐𝑩𝑩, 𝜶𝜶 ⊆ {1,2, … , 𝑝𝑝}, 𝜷𝜷 ⊆ {1,2, … , 𝑞𝑞}, 𝜶𝜶𝑐𝑐= {1,2, … , 𝑝𝑝}\𝜶𝜶, 𝜷𝜷𝑐𝑐 = {1,2, … , 𝑞𝑞}\𝜷𝜷 and 𝜸𝜸 = {1,2, … , 𝑝𝑝}\ 𝜸𝜸𝑐𝑐 where 𝜸𝜸𝑐𝑐 = {𝑞𝑞(𝑖𝑖 − 1) + 𝑗𝑗, 𝑖𝑖 ∈ 𝜶𝜶𝑐𝑐, 𝑗𝑗 ∈ 𝜷𝜷𝑐𝑐}. Then �𝑨𝑨 𝜶𝜶� � ⊠ �𝑩𝑩 𝜷𝜷� � = (𝑨𝑨 ⊠ 𝑩𝑩) 𝜸𝜸� . (2)

Proof. If 𝐴𝐴(𝛼𝛼) is nonsingular then 𝑨𝑨 𝜶𝜶� is nonsingular since 𝐴𝐴 is nonsingular by Schur’s determinant formula. Therefore

�𝑨𝑨 𝛼𝛼� �−1= 𝑨𝑨−1(𝜶𝜶𝑐𝑐).

Hence,

�𝐴𝐴 𝛼𝛼� �−1⊠ �𝑩𝑩 𝜷𝜷� �−1= [𝑨𝑨−1(𝜶𝜶𝑐𝑐) ⊠ 𝑩𝑩−1(𝜷𝜷𝑐𝑐)]

= (𝑨𝑨−1⊠ 𝑩𝑩−1)(𝛾𝛾𝑐𝑐) (3)

by using Lemma2.4 (c) and Eq(3) �𝑨𝑨 𝜶𝜶� � ⊠ (𝑩𝑩) = ��𝑨𝑨 𝜶𝜶� �−1⊠ �𝑩𝑩 𝜷𝜷� �−1�−1

= [(𝑨𝑨−1⊠ 𝑩𝑩−1)(𝜸𝜸𝑐𝑐)]−1

= [(𝑨𝑨 ⊠ 𝑩𝑩)−1(𝜸𝜸𝑐𝑐)]−1

= ��(𝑨𝑨 ⊠ 𝑩𝑩) 𝜸𝜸� �−1�−1 = (𝑨𝑨 ⊠ 𝑩𝑩) 𝜸𝜸� . □

Theorem 3.3. Let 𝑨𝑨 ∈ 𝑀𝑀𝑝𝑝(𝑀𝑀𝑛𝑛), and

𝑩𝑩 ∈ 𝑀𝑀𝑞𝑞(𝑀𝑀𝑛𝑛) and 𝑨𝑨𝑏𝑏𝑐𝑐𝑩𝑩, 𝜶𝜶 ⊆ {1,2, … , 𝑝𝑝}, 𝜷𝜷 ⊆ {1,2, … , 𝑞𝑞}, 𝜶𝜶𝑐𝑐 = {1,2, … , 𝑝𝑝}\𝜶𝜶, 𝜷𝜷𝑐𝑐= {1,2, … , 𝑞𝑞}\𝜷𝜷 and 𝜸𝜸 = {1,2, … , 𝑝𝑝}\ 𝜸𝜸𝑐𝑐 where 𝜸𝜸𝑐𝑐 = {𝑞𝑞(𝑖𝑖 − 1) + 𝑗𝑗, 𝑖𝑖 ∈ 𝜶𝜶𝑐𝑐, 𝑗𝑗 ∈ 𝜷𝜷𝑐𝑐}. Then ��𝑨𝑨 𝜶𝜶� � ⊠ �𝑩𝑩 𝜷𝜷� �� ��𝑨𝑨 𝜶𝜶� � ⊠ �𝑩𝑩 𝜷𝜷� ��∗ ≥ [(𝑨𝑨 ⊠ 𝑩𝑩)(𝑨𝑨 ⊠ 𝑩𝑩)∗]�𝜸𝜸 (4) Proof. For the convenient to think of the Schur complement of 𝑨𝑨 as being in the upper left corner of 𝑨𝑨 we use the permuation matrices 𝑷𝑷 and 𝑸𝑸 for this placement, such that

𝑷𝑷𝑨𝑨𝑸𝑸∗= � 𝑨𝑨(𝜶𝜶) 𝑨𝑨(𝜶𝜶, 𝜶𝜶𝒄𝒄) 𝑨𝑨(𝜶𝜶𝒄𝒄, 𝜶𝜶) 𝑨𝑨(𝜶𝜶𝒄𝒄, 𝜶𝜶𝒄𝒄)� 𝑷𝑷𝑨𝑨𝑨𝑨∗𝑷𝑷= � (𝑨𝑨𝑨𝑨∗)(𝜶𝜶) (𝑨𝑨𝑨𝑨∗)(𝜶𝜶, 𝜶𝜶𝒄𝒄) (𝑨𝑨𝑨𝑨∗)(𝜶𝜶𝒄𝒄, 𝜶𝜶) (𝑨𝑨𝑨𝑨)(𝜶𝜶𝒄𝒄) �. Let 𝛼𝛼� = {1,2, ⋯ , |𝜶𝜶|} then 𝑷𝑷𝑨𝑨𝑸𝑸∗ 𝛼𝛼� � = 𝐴𝐴 𝜶𝜶� and 𝑷𝑷𝑨𝑨𝑨𝑨∗𝑷𝑷∗� = (𝑨𝑨𝑨𝑨𝛼𝛼� ∗)�𝜶𝜶. Thus, assuming that 𝛼𝛼 = {1,2, ⋯ , |𝛼𝛼|} and choosing 𝑿𝑿 = −𝑨𝑨(𝜶𝜶𝑐𝑐, 𝜶𝜶)[𝑨𝑨(𝜶𝜶)]−1 and 𝒀𝒀 = −[(𝑨𝑨𝑨𝑨∗)(𝜶𝜶𝑐𝑐, 𝜶𝜶)][(𝑨𝑨𝑨𝑨)(𝜶𝜶)]−1 (5) then (𝑿𝑿, 𝑰𝑰)𝑨𝑨 = �0, 𝑨𝑨 𝜶𝜶� �. We have �𝑨𝑨 𝜶𝜶� ��𝑨𝑨 𝜶𝜶� �∗= �0, 𝑨𝑨 𝜶𝜶� ��0, 𝑨𝑨 𝜶𝜶� �∗ = (𝑿𝑿, 𝑰𝑰)(𝑨𝑨𝑨𝑨∗)(𝑿𝑿, 𝑰𝑰)∗ = (𝑿𝑿, 𝑰𝑰) �(𝑨𝑨𝑨𝑨(𝑨𝑨𝑨𝑨∗)(𝜶𝜶∗)(𝜶𝜶)𝒄𝒄, 𝜶𝜶) (𝑨𝑨𝑨𝑨(𝑨𝑨𝑨𝑨∗)(𝜶𝜶, 𝜶𝜶∗)(𝜶𝜶𝒄𝒄) � �𝒄𝒄) 𝑿𝑿 ∗ 𝑰𝑰 �

(5)

849

= (𝑿𝑿[(𝑨𝑨𝑨𝑨∗)(𝜶𝜶)] + (𝑨𝑨𝑨𝑨)(𝜶𝜶𝒄𝒄, 𝜶𝜶), 𝑿𝑿[(𝑨𝑨𝑨𝑨)(𝜶𝜶, 𝜶𝜶𝒄𝒄)] + (𝑨𝑨𝑨𝑨)(𝜶𝜶𝒄𝒄) ) �𝑿𝑿∗ 𝑰𝑰 � = (𝑨𝑨𝑨𝑨∗)(𝜶𝜶𝒄𝒄) + 𝑿𝑿[(𝑨𝑨𝑨𝑨)(𝜶𝜶, 𝜶𝜶𝒄𝒄)] + [(𝑨𝑨𝑨𝑨)(𝜶𝜶𝒄𝒄, 𝜶𝜶)]𝑿𝑿+ 𝑿𝑿[(𝑨𝑨𝑨𝑨)(𝜶𝜶)]𝑿𝑿 . Since (𝑨𝑨𝑨𝑨∗) 𝜶𝜶 � = (𝑨𝑨𝑨𝑨∗)(𝜶𝜶𝒄𝒄) − (𝑨𝑨𝑨𝑨)(𝜶𝜶𝒄𝒄, 𝜶𝜶)[(𝑨𝑨𝑨𝑨)(𝜶𝜶)]−𝟏𝟏[(𝑨𝑨𝑨𝑨)(𝜶𝜶, 𝜶𝜶𝒄𝒄)] we have �𝑨𝑨 𝜶𝜶� ��𝑨𝑨 𝜶𝜶� �∗= (𝑨𝑨𝑨𝑨∗)� + (𝑨𝑨𝑨𝑨𝛼𝛼)(𝜶𝜶𝒄𝒄, 𝜶𝜶)[(𝑨𝑨𝑨𝑨)(𝜶𝜶)]−𝟏𝟏[(𝑨𝑨𝑨𝑨)(𝜶𝜶, 𝜶𝜶𝒄𝒄)] + 𝑿𝑿[(𝑨𝑨𝑨𝑨∗)(𝜶𝜶, 𝜶𝜶𝒄𝒄)] + [(𝑨𝑨𝑨𝑨)(𝜶𝜶𝒄𝒄, 𝜶𝜶)]𝑿𝑿+ 𝑿𝑿[(𝑨𝑨𝑨𝑨)(𝜶𝜶)]𝑿𝑿∗ = (𝑨𝑨𝑨𝑨∗)� + (𝑿𝑿 − 𝒀𝒀)[(𝑨𝑨𝑨𝑨𝛼𝛼)(𝜶𝜶, 𝜶𝜶𝒄𝒄)] + [(𝑨𝑨𝑨𝑨)(𝜶𝜶𝒄𝒄, 𝜶𝜶)]𝑿𝑿+ 𝑿𝑿[(𝑨𝑨𝑨𝑨)(𝜶𝜶)]𝑿𝑿∗ = (𝑨𝑨𝑨𝑨∗)� + (𝑿𝑿 − 𝒀𝒀)[(𝑨𝑨𝑨𝑨𝛼𝛼)(𝜶𝜶)][(𝑨𝑨𝑨𝑨)(𝜶𝜶)]−𝟏𝟏[(𝑨𝑨𝑨𝑨)(𝜶𝜶, 𝜶𝜶𝒄𝒄)] + [(𝑨𝑨𝑨𝑨∗)(𝜶𝜶𝒄𝒄, 𝜶𝜶)][(𝑨𝑨𝑨𝑨)(𝜶𝜶)]−𝟏𝟏[(𝑨𝑨𝑨𝑨)(𝜶𝜶)]𝑿𝑿+ 𝑿𝑿[(𝑨𝑨𝑨𝑨)(𝜶𝜶)]𝑿𝑿∗ using Eq(5) = (𝑨𝑨𝑨𝑨∗)� + (𝑿𝑿 − 𝒀𝒀)[(𝑨𝑨𝑨𝑨𝜶𝜶)(𝜶𝜶)]𝒀𝒀− 𝒀𝒀[(𝑨𝑨𝑨𝑨)(𝜶𝜶)]𝑿𝑿+ 𝑿𝑿[(𝑨𝑨𝑨𝑨)(𝜶𝜶)]𝑿𝑿∗ = (𝑨𝑨𝑨𝑨∗)� + (𝑿𝑿 − 𝒀𝒀)[(𝑨𝑨𝑨𝑨𝜶𝜶)(𝜶𝜶)]𝒀𝒀− (𝑿𝑿 − 𝒀𝒀)[(𝑨𝑨𝑨𝑨)(𝜶𝜶)]𝑿𝑿∗ = (𝑨𝑨𝑨𝑨∗)� + (𝑿𝑿 − 𝒀𝒀)[(𝑨𝑨𝑨𝑨𝜶𝜶)(𝜶𝜶)](𝑿𝑿 − 𝒀𝒀)∗ ≥ (𝑨𝑨𝑨𝑨∗)� 𝜶𝜶

is written. Similarly, the inequality

�𝑩𝑩 𝜷𝜷� � �𝑩𝑩 𝜷𝜷� �∗≥ (𝑩𝑩𝑩𝑩∗)� 𝜷𝜷 can be shown. Then

��𝑨𝑨 𝜶𝜶� � ⊠ �𝑩𝑩 𝜷𝜷� �� ��𝑨𝑨 𝜶𝜶� � ⊠ �𝑩𝑩 𝜷𝜷� ��∗= ��𝑨𝑨 𝜶𝜶� � ⊠ �𝑩𝑩 𝜷𝜷� �� ��𝑨𝑨 𝜶𝜶� �∗⊠ �𝑩𝑩 𝜷𝜷� �∗� = ��𝑨𝑨 𝜶𝜶� ��𝑨𝑨 𝜶𝜶� �∗� ⊠ ��𝑩𝑩 𝜷𝜷� � �𝑩𝑩 𝜷𝜷� �∗� ≥ �(𝑨𝑨𝑨𝑨∗)� � ⊠ �(𝑩𝑩𝑩𝑩𝜶𝜶 ∗)� � 𝑏𝑏𝑏𝑏 𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑎𝑎 2.5 𝜷𝜷 ≥ [(𝑨𝑨𝑨𝑨∗) ⊠ (𝑩𝑩𝑩𝑩∗)]� . 𝜸𝜸

(6)

850

4. Conclusion

We have obtained some new inequalities related to the block Kronecker products and Schur complements by using Albert’s theorem. Using the above results similar studies can be improved for the singular values, eigenvalues, traces and determinants of Schur complements of block Kronecker products. Further, the upper or lower bounds of the spectral radius of matrices having an important place in matrix analysis, numerical analysis, and its applications can be investigated for the block Kronecker product of matrices.

References

[1] Brewer, J.W. 1978 Kronecker products and matrix calculus in system theory, IEEE Transactions on Circuits and Systems, Vol. Cas-25, No.9.

[2] Horn, R.A., Mathias, R., and Nakamura, Y. 1991. Inequalities for unitarily invariant norms and bilinear matrix products, Linear and Multilinear Algebra, 30, 303-314.

[3] Günther, M. & Klotz, L. 2012. Schur’s theorem for a block Hadamard product, Linear Algebra and its Applications, 437, 948-956. [4] Horn, R. A. & Johnson, C.R. 2013.

Matrix Analysis, Cambridge University Press, New York.

[5] Liu, J. 1999. Some Löwner partial orders of Schur complements and Kronecker products of matrices, Linear Algebra and its Applications, 291, 143-149.

[6] Zhang, F. 2005. The Schur complement and its applications, Vol. 4, Springer Science & Business Media.

[7] Albert, A. 1969. Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM J. Appl. Math. 17, 434-440.

Referanslar

Benzer Belgeler

Chia (1995), örgütsel çalışmalarda postmodern yöntemlerin kullanılmasına yönelik görüşlerini açıklarken, modern çalışmaların süreçleri izole edilmiş

Analiz sonuçlarına göre; seçmenlerin güven algılarını oluşturan üç faktörden biri olan güven değişkeninin yaş gruplarına göre, eğitim düzeylerine göre,

Siyasiler tarafından tüm bu örtmece ve kamuflaj stratejileri uygulamaya sokulurken, tutucu gruplar gibi kitle medyası da önemli olarak kabul edilen siyasal, ekonomik, askeri,

Bu kurumsal önerilere ek olarak MYO’lardaki e¤itim ve ö¤retimin iyilefltirilmesine yönelik ne- ler yap›lmas› gerekti¤ine dair MYO’lar›n e¤itim süresinin ö¤-

Her ne kadar özel sektör, kamu kurumlar› ile di¤er kurum ve kurulufllar Ar-Ge yat›r›m› ve çal›flmalar› yap›yor olsa da, üni- versitelerin, sahip oldu¤u akademik

A vrupa Üniversiteler Birli¤i (EUA) taraf›ndan haz›rla- nan Global University Rankings and Their Impact (Küresel Üniversite S›ralamalar› ve Etkileri) bafll›kl›

Elde edilen taşkın yayılım haritaları üzerinde yapılan değerlendirmeye göre; özellikle 100 yıl ve daha büyük tekerrür süreli taşkınlarda Bingöl İl merkezindeki

These six variables from Canada, France, Germany, Italy, Japan, the UK and the US enter the speci®cation in the following order: a short term interest rate (di€ ers with respect to