• Sonuç bulunamadı

Raman and X-ray photoelectron spectroscopic studies of graphene devices for identification of doping

N/A
N/A
Protected

Academic year: 2021

Share "Raman and X-ray photoelectron spectroscopic studies of graphene devices for identification of doping"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

bDepartmentofPhysics,BilkentUniversity,Bilkent,06800,Ankara,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received25April2017

Receivedinrevisedform5July2017 Accepted13July2017

Availableonline18July2017 Keywords:

X-Rayphotoelectronspectroscopy(XPS) Graphene

Polymerinduceddoping Ramanspectroscopy Work-function

a

b

s

t

r

a

c

t

Tunabilityofelectronicpropertiesofgrapheneisoneofthemostpromisingpropertiestointegrateitto highefficiencydevicesinthefieldofelectronics.Herewedemonstratethesubstrateinduceddopingof CVDgraphenedevicesusingpolymerswithdifferentfunctionalgroups.BothX-Raysecondaryelectron cut-offandRamanspectraconfirmp-typedopingofaPVC-Graphenefilmwhencomparedtoa PMMA-Grapheneone.Wealsosystematicallyanalyzedthereversibledopingeffectofacid-baseexposureandUV illuminationtofurtherdope/undopethepolymersupportedgraphenedevices.TheshiftsintheRaman 2Dbandtowardslowerandthentohigherwavenumbers,withsequentialexposuretoammoniaand hydrochloricacidvapors,suggestn-typedoingandrestorationofgraphenetoitsoriginalstate.Finally, then-typedopingwithUVirradiationonhalf-coveredsampleswasutilizedandshownbybothXPS andRamantocreatetworegionswithdifferentelectronicpropertiesandresistances.Thesetypeof con-trolledandreversibledopingroutesoffernewpathsforelectronicdevicesespeciallytowardsfabricating graphenep-njunctions.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Graphene,thetwodimensionalsp2hybridizedhexagonal

hon-eycomb shaped network of pure carbon atoms, has received

tremendousinterestfromresearchersduetoitsunique proper-tiesespeciallyinthefieldofelectronics[1–5].Thiscanmostlybe attributedtothetunabilityofelectronicpropertiesofgraphene. Oneofthemostwidelyusedwayfortuningtheelectronic proper-tiesisdoping[6–12].Graphenedopingcanbemadebyelectrical, chemical, contact or optical means. In our previous study, we showedthatapplyinga gatevoltage,hence creatinganelectric field,inducesfreechargecarriersongrapheneandshiftstheFermi energy,whichcanbemonitoredbygate tunablephotoemission ofXPSpeaks[13].Contactdopingissimilar,butinthiscasethe electricfieldisformedduetodifferencesintheworkfunctionsof grapheneandcontactmaterials[14,15].Manyothersuse chem-icaldoping[6,8,16],whichis generallyreliedonsubstitutionof someof heteroatoms[17–19]tothecarbonnetworkor by sur-facetransferdoping[20,21].Althoughthesubstitutionaldoping resultsindopedandstablegraphene,thesp2 carbonnetworkis

irreversiblydisrupted duetodefectformation,which alsoleads

∗ Correspondingauthor.

E-mailaddress:suzer@fen.bilkent.edu.tr(S.Suzer).

todecrease in conductivityand mobility. Chemicaldoping can alsobeachievedbyexposing thegraphenesamplestogasesor liquidswhich adsorbonthesurfacehencecausechangesinthe FermiEnergy[22].Additionally,ultravioletirradiationmodulated graphenedopingisalsoreportedbymanyothers[9,11,12,23–25]. Opticallydrivenmolecularstructuretransformation ofadsorbed speciesthatcausereversibledopingofgraphenehasrecentlybeen reportedusingpyrene[7],spiropyran[25],and azo-based chro-mophores[9,12].Luoetal.,showedthatareversibleandcontrolled n-typedopingwascausedbyUVilluminationofCVDgraphene[11] whiledeepUVilluminationunderoxygenorozoneenvironment wasreportedtoinducep-typedoping[23,24].

Ramanspectroscopyiscommonandwellestablishedtechnique foranalysisofgrapheneanditsderivatives.Bythismethod,notonly thequalityofthelayercanbeassessed,butalsothenumberof lay-ersofgraphenematerialscanbeidentified[26–28].Forgraphene, Ramanspectrashowtwomainfeatureswhicharetheso-calledG and2Dbands,andthepositionofthesebandsareusedto deter-minethetypeofdoping[29,30].Additionally,presenceofDandD’ bandsintheRamanspectrum,whicharealsocalleddefectactivated bands,indicativeofthechangesinthesp2hybridizedstructureof

graphene,havealsobeenusedtoprobethepresenceofimpurities ordefects[28,31,32].

X-Rayphotoelectronspectroscopyisalsofrequentlyusedfor elementalanalysisandalsoforelucidatingthenatureofthedoped http://dx.doi.org/10.1016/j.apsusc.2017.07.097

(2)

Fig.1. ASurveyXPspectrumofatypicalgrapheneonsiliconwafertogetherwiththeO1s,C1sandSi2plevelsrecordedatahigherresolution.O1sandC1sregionsconsist ofasinglepeakwhereasSi2pconsistsoftwopeaks,assignabletolowerbindingenergySi0andhigherbindingenergySi+4.

heteroatoms[10,17,33].InXPS,thesampleisirradiatedbyaknown energyofX-rayswhichresultsincreationofphotoelectronswhose kineticenergiesaredeterminedandconverted tobinding ener-giesusingtheenergyoftheX-rayphotonsandthespectrometer workfunction.Bindingenergyofaspecificlevelisdifferentforeach atom,whichalsovarieswithitschemicalenvironment.Therefore, XPSgives chemicalaswellaselementalinformation.XPSurvey andhighresolutionSi2p,C1sandO1sspectraforatypicalsample ofgrapheneonSiO2/SisubstrateareshowninFig.1.SinceXPSis

asurfacesensitivetechniqueandgiveinformationonlyaboutthe topfewnanometersdepthofthesample’ssurface,andgrapheneis asingle(orafew)layerofcarbonatoms,siliconsubstrateiswithin theanalysisdepthandisobservablebothinthesurveyandinthe highresolution(intheenergyscale)scans.Forexample,whilethe Si2p1/2peakappearsaround100eVforSi0wealsoobserveasmall

intensitypeakaround104eVcorrespondingtotheSi4+ofthethin

nativeoxide(SiO2)layer.Inconventionalusage,XPSisusedto

har-vestinformationon;(i)aselectedpoint,(ii)alongaline(line-scan), or(iii)ontheentirearea(arealscan)withalateralresolutionof 30–400␮m.However,inallthedatareportedinthiswork,only 100␮mspotand100␮mstepsizesareused.Inlinescanorareal modes,sincethenumberofspectraarelarge,thespectral infor-mationisusuallycondensedanddisplayedasvariationseitherin; (i)theintensityor(ii)thebindingenergypositionsoftheselected regions.

Inone alternativeuseofXPS,applicationof externalbiasto thesampleisusedtocausedevelopmentofadditionalchargeson thesurface,whichallowstheusertoextractadditionalelectrical propertiesaboutthesample,becausethepositionof photoelec-tronpeaksalsoshiftsundertheappliedpotential.Forexample, thebindingenergyofAu4f7/2peakis84.0eV,correspondingtothe

zerooxidationstategoldatomswithinthemetal.Whenweapply anexternal biastothegoldsubstratethepositionof photoelec-tronpeaksshiftswiththesameamplitudeastheappliedbiasdue toitsexcellentconductivity,seeFig.2.However,shiftswith dif-ferentmagnitudesareusuallyobservedforpoorly-conductiveor non-conductivematerials.

Inoneofourpreviouswork,weshowedthatvariationsinthe electricalpotential,derivedfromthepositionsoftheC1sbinding energythroughoutthesampleduetoexternalbiasarelinearly cor-relatedwiththebiasappliedforapristinegraphene[34].However, byanalysisofpeakpositions,itwasalsodemonstratedthatthe

externalbiasreflectsandamplifiestheappearanceof morphologi-caldefectsonthegraphenelayer,seeFig.3b[35].

Aswediscussedearlierinthispaper,XPSisachargesensitive techniquesothatthepeakpositionsarealsoaffectedandshiftdue tochargingonthesurface.ThismakesXPSagoodcandidateto ana-lyzedopingintheory.However,aswehadpreviouslyshownthat theenergydifferencebetweenthep-typeandn-typeSi2ppeaks onHterminatedSiwafersurfacesismuchsmaller(0.18eV)due tobandbending,henceitisdifficulttofullyevaluatetheeffectof doping,asshowninFig.4.

Anotherpossibilitythatphotoelectronspectroscopyoffersisthe determinationoftheworkfunctionofthesamplethroughanalysis ofthelow energycut-off region,dominatedbysecondary elec-trons.Suchdeterminationsarealsousedforassessingthetypeand theextentofdoping.Theonsetofthesecondaryelectroncut-off givesinformationabouttheworkfunctionofthesampleusingthe relation;

sample=h−



EK,max−EK,min



whereEK,maxisthemaximummeasuredkineticenergyofan elec-tron emitted from theFermi level, and EK,min is theminimum measuredkineticenergywhichislocatedintheregionofthe sec-ondaryelectroncut-off[36,37].Eventhough,UPSisgenerallyused for workfunctiondeterminationsdue toitshigher photonflux [38,39],XPShasalsobeenusedintheliterature[37,40,41]. How-ever,experimentallyitischallengingtomeasuretheelectronswith nearlyzerokineticenergyusingaconventionalXPSspectrometer. Thatiswhy,generallyanegativebiasisappliedtodetectand ana-lyzethisregion,becausethenegativebiasaccelaratesthekinetic energyofallelectronstothespectrometer.Inourcase,toanalyze systematicallythesecondarycut-offregiona−30Vexternalbias isappliedfromthebottomofthesiliconwafers.Sincethisapplied biasgivesanoffsettotheentireenergyscaleinthespectrum,the aboveequationisstillvalid.ThehighresolutionSi2pandsecondary electroncut-offregionareshowninFig.4forbothann-typeanda p-typeH-terminatedSiwaferswhichshowsa∼0.30eVdifference inthecut-offedge,asopposedto0.18eVdifferenceintheSi2p peak.

Mainlyfortheelectronicapplicationsofgraphenethebiggest limitationistheabsenceofasemiconductingbandgap.Forthis reason,manyresearchershaveinvestigatedthedopingofgraphene whichisaneffectivemethodtotuneitselectronicproperty.This

(3)

Fig.2. (a)SchematicrepresentationofatypicalgraphenedeviceandbehaviorofAu4fpeaksofthesourceandthedrainelectrodesunderexternalbias.(b)2-Dimensional (areal)contourplotoftheAu4f7/2peakintensity.(c)3-DimensionalplotofthebindingenergypositionofAu4f7/2withinthedesignatedareawherexandyaxisaredistances,

whilethezandcolorbarbothrepresentsthebindingenergyscale.Dataisrecordedwith100␮mofX-raysspotsizeandwith100␮mstepsinbetweentwopoints.

Fig.3. VariationsintheC1sbindingenergypositionsoftheentireareaofthedevicefor;(a)a330Ohmpristinegraphenesample,and(b)the4kOhmoxidizedgraphene, under+6Vexternalbiastooneoftheelectrodes,whiletheotherisgrounded.Theirschematicrepresentationsaregivenatthebottom.

workpresentsa controlleddoping offlexible graphenedevices achievedbyvariousdopingmethodsandbringsanewperspective tocharacterizeit. In this work,byusingXPS andRaman Spec-troscopyascomplementarytechniquesweinvestigatedsubstrate induceddopingoftwopolymerswithdifferentfunctionalgroups onCVDgraphenelayers.Inaddition,weusedacidandbase expo-sureandalsoultraviolet illuminationinorder tocreatefurther doping.Fabrication ofadevicewithtworegions,each havinga differenttypeofdoping,isalsodemonstrated.

2. Experimental

2.1. Devicepreparation

Thegrapheneusedtofromdevicesis producedona copper foilby chemical vapor depositionat 1035◦C and 10Torr pres-sure using flowing methane and hydrogen gases. 2% solutions

of PMMA and PVC were prepared in acetone and THF

respec-tively.Afterthegraphenegrowth,PMMAandPVCsolutionsare depositedonthegraphenesidebydropcasting.Afterthecoating,

(4)

Fig.4.XPspectraof(a)Si2pand(b)Cut-Offregionsrecordedofap-typeandann-typeH-terminatedSisamples.

Fig.5.Schematicillustrationofthedevicefabricationinthesource−draingeometryusingthepolymersupportedgrapheneandAuelectrodes.(a)CVDgrapheneisprepared onCufoil.(b)AlayerofPMMA(orPVC)iscoatedonthegraphenefacethroughdropcasting.(c)CufoilisetchedawayusingFeCl3solutiontoobtainfree-standing

Polymer/Graphenefilms.(d)Polymer-graphenesampleisreversetransferredtotheSiwafer.(e)Goldelectrodesaredepositedoneachsideofthesample.

thepolymerlayerwiththegrapheneoncopperisheatedto80◦C. Afterwards,thepolymer/graphenefilmisisolatedbydissolvingthe CufoilusingFeCl3solution.Remainingpolymer-graphenesample

isreversetransferredtotheSiwafer,withgraphenefacingupward. Finally,goldelectrodesaredepositedoneachsideofthesample. TheprocessissummarizedinFig.5.

2.2. Characterizationmethods

AllXPSmeasurementsarecarriedoutusingaThermoFisher K-Alpha X-Ray Photoelectron Spectrometer with an energy of 1486.6eVmonochromaticsource.Theinstrumentismodifiedfor applicationofexternalbiaswhichiscontrolledbyaKeithley2400 Source-meter.Forsecondaryelectroncut-offmeasurementsboth

(5)

Fig.7. (a)SchematicsoftheprocessshowingtheacidandbasevaporexposurestepsofPVC/Graphenedevice.(b)RamanspectraofPVC/Grapheneasprepared,afterNH3

andthenHClexposure.(c)ShiftofRaman2Dbandand(d)Gbandpositionbetweentreatmentsforasprepared,afterexposuretoHClvapor,andthentoNH3vapor.

electrodesareconnectedtothesampleholderinordertoapplya −30Vbiastotheentireholder.Ontheotherhand,forthe Volt-ageContrastXPSmeasurementsoneoftheelectrodesisgrounded whiletheexternalbiasisappliedtotheotherone,inducingcurrent flowacrossthedevice.RamanspectraareobtainedwithaJobin

YvonLABRAMRamanSpectrometerequippedwith532nmgreen

laser.Thelaserbeamisfocusedbya50xobjectivelens.The scat-teredradiationiscollectedbythesameobjectivelensandsentto aCCDdetector.

3. Resultsanddiscussion

3.1. Substrateinducedeffects

Ramanspectra for PMMA and PVC supported graphene are

showninFig.6a.SincethecharacteristicfingerprintsofPVCand PMMAappearintheregionbelow1500cm−1weonlyfocusedon

theGand2DpeakscomingfromthegraphenelayerwhereGband isduetoRamanactivedoublydegenerateinplanestretchingofsp2 carbonscorrespondingtoE2gmode,and2DisanovertoneofDband

whichisthein-planebreathing-likemodeofcarbonrings[26,28]. Thepositionofthesetwofeaturesgivesinformationaboutdoping. AnupshiftoftheGbandusuallydemonstratestheoccurrenceof doping(holesorelectrons)ingraphenefilms,whiletheshiftin2D indicatesthetypeofdoping.Downshiftin2Dbandindicatesan n-typeandupshiftindicatesap-typedoping[29,42].Itisalso well-knownthat,moleculeswithelectronwithdrawinggroupsadsorbed onthesurfaceofgraphenewillleadtop-typedopingofgraphene, andmoleculeswithelectrondonatinggroupswillleadton-type doping[7,43,44].Inthiscase,sinceboththeGandthe2Dbands shifttohigherwavenumbers,thePVC-Graphenefilmexhibits p-typeshiftingcomparetothePMMA-Graphenefilm.Ascanbeseen ashiftof∼11cm−1isobserved,whichisreproducible.Intherecent workofSrivastavaLuoetal.[49],dopingofmonolayergraphene

(6)

Fig.8.(a)SchematicrepresentationofUVirradiationonhalfofthesampletogetherwiththeRamanspectraof(b)PMMA/Grapheneand(c)PVC/Graphenefromboththe maskedandUV-irradiatedregions.

throughthechargetransferbythetrappingorganicmoleculessuch astoluene,chlorobenzene,acetone,DMF,andPCwasreported.In ordertocheckanyeffectcomingfromthesolventthatweused dur-ingthesamplepreparation,wedipedPMMA/GrsampletotheTHF andPVC/GrsampletotheacetoneandcheckedtheRamanSpectra whichdoesnotshowanypeakshiftingontheGand2Dbands,see

SupportingInformation.

AswasshowninFig.4forn-andp-dopedSiwafers,thework functionissensitivetothedopinglevelandcanbeprobedbythe secondaryelectroncut-offmeasurementsunder−30Vbias.Similar behaviorcanalsobeobservedforthepolymersupportedgraphene samples,whicharenowshowninFig.6b,togetherwiththe cor-respondingshiftsdetectedthroughRamanmeasurementsshown in Fig.6a. Hence,thesecondary electroncut-off measurements alsosupportthemorep-typebehaviorof thegrapheneonPVC, comparedtothegrapheneonPMMA,whichhas∼0.6eVhigher cut-offenergy.Notealsothatmorethanthreedifferentsamples arepreparedandanalyzedforensuringthereproducibilityofthese findings.

3.2. Reversibledopingwithacid/baseexposure

Havingdemonstratedthatthesubstratesdoinducecontrollable andstabledopingontheCVDgraphene,wenowturntoinvestigate theeffectofexposingthegraphene-PVCsampletovaporsofacid andbasesolutions.Inthistypeofdopingtheexposedmoleculesare adsorbedontothesurfaceandactlikeacceptorsordonors.While avarietyofacidsandbaseshavebeenusedinliterature,nitricacid isthecommonlyusedone,whichisknowntoreproduciblycause p-typedoingonthepristinegraphenesamples[45,46].However,to ourknowledge,dopingbyacid/basevaporsasafurther doping/un-dopingofthealreadydopedsampleshasnotbeenreportedbefore. Tochecktheapplicabilityonthegraphenesamplesinthepresence ofapolymerasasubstrate,wesequentiallyexposedthesampleto thevaporsofammoniaandthenhydrochloricacidandrecorded

quicklytheRamanspectraaftereachstep.Ramanspectraofthe graphenesampleonPVC;(i)asprepared,(ii)afterNH3,and(iii)

HClexposureareshowninFig.7b,andtheshiftsintheGandthe 2DbandsaredepictedinFig.7c.

SincethechangesintheGbandpositiondonotreveal informa-tionaboutthetypeoftheinduceddoping,itismoreinformative toevaluatethe2Dshifts. ExposingthegrapheneonPVCtothe ammoniavaporscausesablueshiftinthespectrumhenceindicates inducedn-dopingwhichcanbereversedbackwithfurther expo-suretoHCl.Wealsoobservethatthistypeofdopingisreversible andturnstoitsoriginalstateafterafewhours.Thatisthereason whywedonotshowthesecondaryelectroncut-offspectrausing XPS,whichisperformedunderultra-highvacuumconditions,and afterprolongedpump-times.

3.3. UVirradiationandvoltagecontrastXPS

AlthoughUVirradiationisextensivelyusedtoinducedopingin differentwaysintheliterature,fromourpreviousstudiesweknow thatUValsoaffectsthepolymersubstrate.Forexample,in Refer-ences[47]and[48],wehadshownthatUVirradiationofPVCcauses photo-degradationandreleasesHCl,i.e.acidvapors,whichwealso expecttoeffecttheFermienergyofthegrapheneoverlayer.For thisreason,weirradiatedonlyhalfofbothtypesofpolymer sup-portedgraphenesamplesforadurationof5hwithUVlamp(mostly 254nmHg-Line)bymaskingtheotherhalf.ThistypeofUV irradi-ationreducesopticaltransparencyofthesamplesandblocksthe RamanmeasurementbyinducingasaturationintheRaman sig-nal.Therefore,onlythesecondaryelectroncut-offmeasurements under−30VontheUVirradiatedandmaskedregionareshownin Fig.8band8cforPMMAandPVCsupportedCVDgraphenefilms, respectively.Whilethecut-offedgeclearlyshowsthen-type dop-ingupontheUVirradiationonPMMAsupportedsamplewhichis alsoconsistentwiththepreviousstudyofLuoetal.,whoshowed thereversibleandcontrolledn-typedopingbyUVilluminationof

(7)

Fig.9. XPspectraof(a)Cut-Offand(b)C1sregions,recordedinthelinescanmodefromtheoneelectrodetowardtheotherunder−30Vgateand+6Vsourcebiasrespectively.

CVDgraphene[11],there is nomeasurableshift(hencedoping effect)inducedbytheUVirradiationonthePVCsupportedone. Webelievedthatthemainreasonisthenearcancelationofthe twoopposingeffects;(i)n-typedopingoftheUV,and(ii)p-type dopingoftheHClformationduringtheirradiation.

Foradditionalinformation,werecordedthesecondaryelectron cut-offspectraonalinestartingfromtheUVirradiatedtowardsthe maskedregionofthePMMAsupportedgraphenesample,where theclearindicationoftworegionswithdifferentworkfunctions areobservedasshown in Fig.9a.Furthermore,we fabricateda deviceonthesamesamplebydepositinggoldelectrodesinthe source-draingeometryandappliedanexternalbiasfromoneend whiletheotheroneisgrounded,andacquiredspectraona sim-ilarlineasinFig.9a,whicharedepictedinFig.9b.Thistypeof measurementsiscalledVoltageContrastXPSandhasextensively beenusedbyourgroup[35].Forexample,asweshowedearlier inFig.3athat;(i)forthedefectfreepristinegraphenesamplethe C1sbindingenergydropwaslinearalongtheline(IRdrop),and(ii) inthepresenceofdefectsthisdropdeviatedstronglyfrom linear-ity[22].However,verydifferentfromthepreviousfindingsisthat, forthecaseofhalfUVirradiatedPMMAsupportedgraphene,two differentregionswithtwodifferentslopesareobserved,indicating thatthetworegionshavedifferentresistancesandcarrier concen-trations,probedbyboththecut-offandalsothecharge-contrast measurements.

4. Conclusions

AsimpleandeasymethodfordopingofCVD-growngraphene isperformedusingpolymersubstrateshavingdifferentfunctional groups.Thismethodcanbeappliedtoanypolymerwhichisnot solubleinwater.Thefunctionalgroupsoftheunderlyingpolymer layerinducedopinginthegraphenelayer.Thedoping characteris-ticsanalyzedfortwotypesofpolymer,PMMAandPVC,byRaman SpectroscopyandXPS.Thismethodcausesthepermanentdoping onthegraphenelayerswithoutintroducingfurtherdefects. How-ever,bycontrolledexposuretoacid/basevapors orUVonecan createregionswithdifferentdopingtypesand/orlevelsinthesame film,whichmightevenleadtofabricationofp-njunctions, electri-calpropertiesofwhichcaneasilybeassessedbytheintroduced simplevariantsofXPSmeasurements.

Acknowledgements

ThisworkwaspartiallysupportedbytheScientificand Tech-nological Research Councilof Turkey (TUBITAK)[grant number 215Z534]andC.K.alsoacknowledgesthesupportfromthe Euro-peanResearchCouncil(ERC)Consolidator[GrantNoERC.682723 SmartGraphene].

(8)

two-dimensionalcarbon,Phys.Rev.B73(2006)125411.

[4]S.Wang,P.K.Ang,Z.Wang,A.L.L.Tang,J.T.L.Thong,K.P.Loh,Highmobility, printable,andsolution-Processedgrapheneelectronics,NanoLett.10(2010) 92–98.

[5]Y.Zhang,Y.-W.Tan,H.L.Stormer,P.Kim,Experimentalobservationofthe quantumHalleffectandBerry’sphaseingraphene,Nature438(2005) 201–204.

[6]F.Günes¸,H.-J.Shin,C.Biswas,G.H.Han,E.S.Kim,S.J.Chae,J.-Y.Choi,Y.H.Lee, Layer-by-Layerdopingoffew-Layergraphenefilm,ACSNano4(2010) 4595–4600.

[7]X.Dong,D.Fu,W.Fang,Y.Shi,P.Chen,L.-J.Li,Dopingsingle-Layergraphene witharomaticmolecules,Small5(2009)1422–1426.

[8]D.B.Farmer,Y.-M.Lin,A.Afzali-Ardakani,P.Avouris,Behaviorofachemically dopedgraphenejunction,Appl.Phys.Lett.94(2009)213106.

[9]M.Kim,N.S.Safron,C.Huang,M.S.Arnold,P.Gopalan,Light-Drivenreversible modulationofdopingingraphene,NanoLett.12(2012)182–187.

[10]X.Li,H.Wang,J.T.Robinson,H.Sanchez,G.Diankov,H.Dai,Simultaneous nitrogendopingandreductionofgrapheneoxide,J.Am.Chem.Soc.131 (2009)15939–15944.

[11]Z.Luo,N.J.Pinto,Y.Davila,A.T.C.Johnson,Controlleddopingofgraphene usingultravioletirradiation,Appl.Phys.Lett.100(2012)253108.

[12]N.Peimyoo,J.Li,J.Shang,X.Shen,C.Qiu,L.Xie,W.Huang,T.Yu,

Photocontrolledmolecularstructuraltransitionanddopingingraphene,ACS Nano6(2012)8878–8886.

[13]M.Copuroglu,P.Aydogan,E.O.Polat,C.Kocabas,S.Süzer,Gate-Tunable photoemissionfromgraphenetransistors,NanoLett.14(2014)2837–2842.

[14]G.Giovannetti,P.A.Khomyakov,G.Brocks,V.M.Karpan,J.vandenBrink,P.J. Kelly,Dopinggraphenewithmetalcontacts,Phys.Rev.Lett.101(2008) 026803.

[15]P.A.Khomyakov,G.Giovannetti,P.C.Rusu,G.Brocks,J.vandenBrink,P.J. Kelly,First-principlesstudyoftheinteractionandchargetransferbetween grapheneandmetals,Phys.Rev.B79(2009)195425.

[16]H.Sojoudi,J.Baltazar,L.Tolbert,C.Henderson,S.Graham,Formationofair stablegraphenep?n?pjunctionsusinganamine-Containingpolymercoating, Adv.Mater.Interfaces1(2014)1400378(-n/a).

[17]D.Usachov,O.Vilkov,A.Grüneis,D.Haberer,A.Fedorov,V.K.Adamchuk,A.B. Preobrajenski,P.Dudin,A.Barinov,M.Oehzelt,C.Laubschat,D.V.Vyalikh, Nitrogen-Dopedgraphene:efficientgrowth,structure,andelectronic properties,NanoLett.11(2011)5401–5407.

[18]L.Zhao,R.He,K.T.Rim,T.Schiros,K.S.Kim,H.Zhou,C.Gutiérrez,S.P. Chockalingam,C.J.Arguello,L.Pálová,D.Nordlund,M.S.Hybertsen,D.R. Reichman,T.F.Heinz,P.Kim,A.Pinczuk,G.W.Flynn,A.N.Pasupathy, Visualizingindividualnitrogendopantsinmonolayergraphene,Science333 (2011)999–1003.

[19]E.H.Åhlgren,J.Kotakoski,A.V.Krasheninnikov,Atomisticsimulationsofthe implantationoflow-energyboronandnitrogenionsintographene,Phys.Rev. B83(2011)115424.

[20]Z.Chen,I.Santoso,R.Wang,L.F.Xie,H.Y.Mao,H.Huang,Y.Z.Wang,X.Y.Gao, Z.K.Chen,D.Ma,A.T.S.Wee,W.Chen,Surfacetransferholedopingofepitaxial grapheneusingMoO3thinfilm,Appl.Phys.Lett.96(2010)213104.

[21]J.Meyer,P.R.Kidambi,B.C.Bayer,C.Weijtens,A.Kuhn,A.Centeno,A. Pesquera,A.Zurutuza,J.Robertson,S.Hofmann,Metaloxideinducedcharge transferdopingandbandalignmentofgrapheneelectrodesforefficient organiclightemittingdiodes,Sci.Rep.4(2014)5380.

[22]X.Wang,X.Li,L.Zhang,Y.Yoon,P.K.Weber,H.Wang,J.Guo,H.Dai,N-Doping ofgraphenethroughelectrothermalreactionswithammonia,Science324 (2009)768–771.

[23]S.Huh,J.Park,Y.S.Kim,K.S.Kim,B.H.Hong,J.-M.Nam,UV/Ozone-Oxidized large-Scalegrapheneplatformwithlargechemicalenhancementin surface-Enhancedramanscattering,ACSNano5(2011)9799–9806.

[24]M.Z.Iqbal,S.Siddique,M.W.Iqbal,J.Eom,Formationofp-njunctionwith stablep-dopingingraphenefieldeffecttransistorsusingdeepUVirradiation, J.Mater.Chem.C1(2013)3078–3083.

[30]J.Yan,Y.Zhang,P.Kim,A.Pinczuk,Electricfieldeffecttuningof electron-Phononcouplingingraphene,Phys.Rev.Lett.98(2007)166802.

[31]L.G.Canc¸ado,A.Jorio,E.H.M.Ferreira,F.Stavale,C.A.Achete,R.B.Capaz, M.V.O.Moutinho,A.Lombardo,T.S.Kulmala,A.C.Ferrari,Quantifyingdefects ingrapheneviaramanspectroscopyatdifferentexcitationenergies,Nano Lett.11(2011)3190–3196.

[32]M.M.Lucchese,F.Stavale,E.H.M.Ferreira,C.Vilani,M.V.O.Moutinho,R.B. Capaz,C.A.Achete,A.Jorio,Quantifyingion-induceddefectsandRaman relaxationlengthingraphene,Carbon48(2010)1592–1597.

[33]Y.Shao,S.Zhang,M.H.Engelhard,G.Li,G.Shao,Y.Wang,J.Liu,I.A.Aksay,Y. Lin,Nitrogen-dopedgrapheneanditselectrochemicalapplications,J.Mater. Chem.20(2010)7491–7496.

[34]C.Kocabas,S.Suzer,Probingvoltagedropvariationsingraphenewith photoelectronspectroscopy,Anal.Chem.85(2013)4172–4177.

[35]P.Aydogan,E.O.Polat,C.Kocabas,S.Suzer,X-rayphotoelectronspectroscopy foridentificationofmorphologicaldefectsanddisordersingraphenedevices, J.Vac.Sci.Technol.A:Vac.Surf.Films34(2016)041516.

[36]A.Benayad,H.-J.Shin,H.K.Park,S.-M.Yoon,K.K.Kim,M.H.Jin,H.-K.Jeong,J.C. Lee,J.-Y.Choi,Y.H.Lee,Controllingworkfunctionofreducedgraphiteoxide withAu-ionconcentration,Chem.Phys.Lett.475(2009)91–95.

[37]M.G.Helander,M.T.Greiner,Z.B.Wang,Z.H.Lu,Pitfallsinmeasuringwork functionusingphotoelectronspectroscopy,Appl.Surf.Sci.256(2010) 2602–2605.

[38]J.-K.Chang,W.-H.Lin,J.-I.Taur,T.-H.Chen,G.-K.Liao,T.-W.Pi,M.-H.Chen, C.-I.Wu,Grapheneanodesandcathodestuningtheworkfunctionof graphenebynearly2eVwithanaqueousintercalationprocess,ACSAppl. Mater.Interfaces7(2015)17155–17161.

[39]S.Chandramohan,K.JiHye,Y.S.Katharria,H.Nam,B.YunSeon,K.KangBok, P.JongBae,R.BeoDeul,K.HyunKyu,S.Eun-Kyung,H.Chang-Hee,Chemically modifiedmultilayergraphenewithmetalinterlayerasanefficientcurrent spreadingelectrodeforInGaN/GaNbluelight-emittingdiodes,J.Phys.D: Appl.Phys.45(2012)145101.

[40]R.Schlaf,H.Murata,Z.H.Kafafi,Workfunctionmeasurementsonindiumtin oxidefilms,J.ElectronSpectrosc.Relat.Phenom.120(2001)149–154.

[41]M.G.Helander,Z.B.Wang,J.Qiu,M.T.Greiner,D.P.Puzzo,Z.W.Liu,Z.H.Lu, Chlorinatedindiumtinoxideelectrodeswithhighworkfunctionfororganic devicecompatibility,Science332(2011)944–947.

[42]C.Casiraghi,S.Pisana,K.S.Novoselov,A.K.Geim,A.C.Ferrari,Raman fingerprintofchargedimpuritiesingraphene,Appl.Phys.Lett.91(2007) 233108.

[43]H.Liu,Y.Liu,D.Zhu,Chemicaldopingofgraphene,J.Mater.Chem.21(2011) 3335–3345.

[44]C.N.R.Rao,A.K.Sood,K.S.Subrahmanyam,A.Govindaraj,Graphenethenew two-Dimensionalnanomaterial,Angew.Chem.Int.Ed.48(2009)7752–7777.

[45]L.D’Arsie,S.Esconjauregui,R.S.Weatherup,X.Wu,W.E.Arter,H.Sugime,C. Cepek,J.Robertson,Stable,efficientp-typedopingofgraphenebynitricacid, RSCAdv.6(2016)113185–113192.

[46]A.Kasry,M.A.Kuroda,G.J.Martyna,G.S.Tulevski,A.A.Bol,Chemicaldopingof large-Areastackedgraphenefilmsforuseastransparent,conducting electrodes,ACSNano4(2010)3839–3844.

[47]U.A.Sevil,O.Güven,S.Süzer,Spectroscopicinvestigationofonsetand enhancementofelectricalconductivityinPVC/PANIcompositesandblends by␥-rayorUVirradiation,J.Phys.Chem.B102(1998)3902–3905.

[48]O.Birer,S.Suzer,U.A.Sevil,O.Guven,UV–VisIRandXPSanalysisofUV inducedchangesinPVCcomposites,J.Mol.Struct.482–483(1999)515–518.

[49]P.K.Srivastava,P.Yadav,V.Rani,S.Ghosh,Controlleddopingingraphene monolayersbytrappingorganicmoleculesatthegraphene-Substrate interface,ACSAppl.mater.Interfaces9(2017)5375–5381.

Şekil

Fig. 1. A Survey XP spectrum of a typical graphene on silicon wafer together with the O1s, C1s and Si2p levels recorded at a higher resolution
Fig. 2. (a) Schematic representation of a typical graphene device and behavior of Au4f peaks of the source and the drain electrodes under external bias
Fig. 4. XP spectra of (a) Si2p and (b) Cut-Off regions recorded of a p-type and an n-type H-terminated Si samples.
Fig. 7. (a) Schematics of the process showing the acid and base vapor exposure steps of PVC/Graphene device
+3

Referanslar

Benzer Belgeler

Furthermore, given the more gradual and persistent the volatility reaction to macroeconomic news, we test the time- variance in news effects by analyzing the conditional variance

that employs a single detector for each user (i.e., no detector randomization) 4 The main difference is that an additive noise component is employed at the detector in the noise

Starting from Chapter 4 , signal reconstruction (Chapter 4 ), and signal denois- ing (Chapter 5 ) problems are discussed respectively, and new signal processing algorithms based

This method is known as linear amplification using nonlinear components – referred to as LINC in the literature [4 – 8].. The main challenge of this technique is the combining of the

S¸ekil 3: Toplam de˘gis¸im tekni˘ginin bes¸ farklı g¨ur¨ult¨u se- viyesi ic¸in orijinal sinyalin kestirimindeki hatası.. S¸ekil 4: ¨ Onerilen teknikle elde edilen

Ibrahim, A., et al., Effects of annealing on copper substrate surface morphology and graphene growth by chemical vapor deposition. Jin, Y., et al., Roles of H2

Bu kez, İstanbul'da Urart Galerisi’nde açılacak olan kişisel sergisinin de ya rattığı olağan bir karşılaş­ ma içinde, şimdiye kadar görme olanağı

Ör- neğin Joinstream uygulaması spor, sanat, yoga ve sağlıklı beslenme gibi kursların görüntülü yapılabilmesi için altya- pı sunuyor.. www.youprobablyneedahaircut.com