• Sonuç bulunamadı

On the spectral norms of Hankel matrices with Fibonacci and Lucas numbers

N/A
N/A
Protected

Academic year: 2021

Share "On the spectral norms of Hankel matrices with Fibonacci and Lucas numbers"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selçuk J. Appl. Math. Selçuk Journal of Vol. 12. No. 1. pp. 71-76, 2011 Applied Mathematics

On The Spectral Norms of Hankel Matrices with Fibonacci and Lucas Numbers

Süleyman Solak1, Mustafa Bahsi2

1Selcuk University Education Faculty 42090 Meram, Konya, Turkiye

e-mail:ssolak@ selcuk.edu.tr

2Cumra Imam Hatip Lisesi, Cumra Konya, Turkiye

e-mail:m hvbahsi@ yaho o.com

Received Date: March 2, 2010 Accepted Date: November 30, 2010

Abstract. This paper is concerned with the work of the authors’ [M.Akbulak and D. Bozkurt, on the norms of Hankel matrices involving Fibonacci and Lucas numbers, Selçuk J. Appl. Math. 9 (2), (2008), 45-52] on the spectral norms of the matrices  = [+]=0−1 and  = [+]=0−1  where  and  denote

the Fibonacci and Lucas numbers, respectively[1]. Akbulak and Bozkurt have found the inequalities for bounds of spectral norms of matrices  and . As for us, we have found the equalities for the spectral norms of matrices  and . Key words: Spectral norm; Hankel matrix; Fibonacci number; Lucas number. 2000 Mathematics Subject Classification: 15A60,15A15,15B05,11B39.

1. Introduction and Preliminaries

The matrix  = []=0−1 , where  = + is called the Hankel matrix. In

section 2, we calculate the spectral norms of Hankel matrices

(1)  = [+]=0−1

and

(2)  = [+]=0−1

where  and  denote  th Fibonacci and Lucas numbers, respectively.

Now we start with some preliminariesLet  be any x matrix. The spectral norm of the matrix  is defined as kk2=

q max

1≤≤(

(2)

conjugate transpose of matrix . For a square matrix , the square roots of the eigenvalues of  are called the singular values of . Genarally, we denote

the singular values as  =

np

  is eigenvalue of matrix 

o 

Moreover, the spectral norm of matrix  is the maximum singular value of matrix . If  is symetric matrix, then the spectral norm of matrix  is maximum eigenvalue of matrix The equation det( − )=0 is known as the characteristic equation of  and the left-hand side known as the characteristic poynomial of . The solutions of characteristic equation are known as the eigenvalues of matrix.

Fibonacci and Lucas numbers are the numbers in the following sequences, re-spectively:

0 1 1 2 3 5 8  and 2 1 3 4 7 11 18  in addition, these numbers are defined backwards by

0 1 −1 2 −3 5 −8  and 2 −1 3 −4 7 −11 18  .

The sequence  of Fibonacci numbers is defined by recurrence relation 

=−1+ −2 with initial values 0= 0 and 1= 1The sequence  of Lucas

numbers is defined by recurrence relation  =−1+ −2 with initial values

0= 2 and 1= 1

2. Main Results

Theorem 1. Let the matrix A be as in (1). Then the spectral norm of matrix A is kk2= ⎧ ⎪ ⎨ ⎪ ⎩ 2−1−1+√2−12 −22−1+42+1 2   even 2−1−1+√2−12 −22−1+42−3 2   odd 

Proof. Since matrix A is symetric, the spectral norm of A is maximum eigen-value of matrix A. For this, we must find the roots of the characteristic polyno-mial (3) det( − ) = ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  − 0 −1  −−1 −1  − 2  − .. . ... . .. ... −−2 −−1  −2−3 −−1 −   − 2−2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 

(3)

Then there are two position. Position I. If n is even:

If we apply the row and column operations to (3), then we have

det( − ) = ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯   − 0  0 0 0 0   −  0 0 0 .. . ... ... ... . .. ... ... ... 0 0 0 0    − 0 0 0 0  0  − −2 −−1 0 0 0 0  0 −−1  − 2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  Thus | − | = −2[( − −2)( − 2) − 22−1] = −2[2− (2−1− 1) − 2] .

Hence, the roots of the equation | − | = 0 are

12= 2−1− 1 ± q 2 2−1− 22−1+ 42+ 1 2 = 0  = 3 4   Hereby kk2= 2−1− 1 + q 2 2−1− 22−1+ 42+ 1 2 

Position II. If n is odd:

If we apply the row and column operations to (3), then we have

det(−) = ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯   − 0  0 0 0 0   −  0 0 0 .. . ... ... ... . .. ... ... ... 0 0 0 0    − 0 0 0 0  0  − −1−3 −2+ −1−2 0 0 0 0  0 −−1−2  − 2−1 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 

The value of the det( − ) is

| − | = −2[2− (2−1+ −1−3) + 22−1−3

−2−1−2+ 2−12−2]

(4)

Hence, the roots of the equation | − | = 0 are 12= 2−1− 1 ± q 2 2−1− 22−1+ 42− 3 2 = 0  = 3 4  

Since matrix A is symetric, then

kk2= 2−1− 1 + q 2 2−1− 22−1+ 42− 3 2 

Theorem 2. Let the matrix B be as in (2). Then the spectral norm of matrix B is kk2= ⎧ ⎪ ⎨ ⎪ ⎩ 2−1+1+(2−1−1)√5 2  n even 2−1+1+√5(2−1−1)2+4 2  n odd 

Proof. Since matrix B is symetric, the spectral norm of B is maximum eigen-value of matrix B. For this, we must find the roots of the characteristic polyno-mial (4) det( − ) = ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  − 0 −1  −−1 −1  − 2  − .. . ... . .. ... −−2 −−1  −2−3 −−1 −   − 2−2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 

Then there are two position. Position I. If n is even:

If we apply the row and column operations to (4), then we have

det( − ) = ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯   − 0  0 0 0 0   −  0 0 0 .. . ... ... ... . .. ... ... ... 0 0 0 0    − 0 0 0 0  0  − 2−2− 1 −2−1+ 1 0 0 0 0  0 −2−1+ 1  − 2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 

(5)

Thus

| − | = −2[( − 2−2− 1)( − 2) − (2−1− 1)2]

= −2[2− (2−1+ 1) + 2− 2]

Hence, the roots of the equation | − | = 0 are 12= 2−1+ 1 ± (2−1− 1) √ 5 2 = 0  = 3 4   Hereby kk2= 2−1+ 1 + (2−1− 1) √ 5 2 

Position II. If n is odd:

If we apply the row and column operations to (4), then we have

det( − ) = ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯   − 0  0 0 0 0   −  0 0 0 .. . ... ... ... . .. ... ... ... 0 0 0 0    − 0 0 0 0  0  − 2−4− 1 −22−2+ 1 0 0 0 0  0 −2−3+ 1  − 22−1 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ 

The value of the det( − ) is

| − | = −2[2− (2−4+ 22−1+ 1) + 22−12−4+ 22−1

−22−22−3+ 22−2+ 2−3− 1]

= −2[2− (2−1+ 1) + 2− 3]

Hence, the roots of the equation | − | = 0 are

12= 2−1+ 1 ± p 5(2−1− 1)2+ 4 2 = 0  = 3 4  

Since matrix A is symetric, then kk2=

2−1+ 1 +

p

5(2−1− 1)2+ 4

(6)

References

1. Akbulak, M. and Bozkurt, D. (2008): On the norms of Hankel matrices involving Fibonacci and Lucas numbers, Selçuk J. Appl. Math., 9, no.2, 45-52.

Referanslar

Benzer Belgeler

Accordingly, the EU integration process of Kosovo is a perfect case to study horizontal coherence between different EU policies, the vertical coherence between the policies of

First, advertisers are opting to place their ads in only one or two newspapers for any one specific time period, usually one Arabic language daily and/or one English language

Bunlar: Devlet Başkanının halk tarafından seçilmesi, Devlet Başkanının önemli (anayasal) yetkilere sahip olması ve yürütme görevini yerine getiren bir

Yapılan bu araştırma sonucunda genel olarak okulöncesi öğretmenliğinde okuyan öğretmen adaylarının büyük bir çoğunluğunun okulöncesi eğitimde bilgisayar

Teknik: Serbest üfleme tekniği (aletle şekillendirme –cam ipliği bezeme ) Renk: Renksize doğru açık sarı.. Tanımı:

Türkiye Büyük Millet Meclisi 14 Mayıs 1950 seçimlerinden sonra yeni bir döneme girmiştir. Bu dönem ülkedeki insanların yeni oluşan meclisten çok şey beklediği bir dönme

Swap, “belirli bir miktar ve nitelikteki para, döviz, mali araç, alacak, mal gibi varlıklarla yükümlülüklerin, önceden belirlenen fiyat ve koşullara göre, gelecekteki

Bu çalışmada, Türkiye Kömür İşletmeleri-Ege Linyitleri İşletmesi Soma linyit açık ocağı Işıklar panosunda belirlenen şev duraysızlık probleminin sahada