• Sonuç bulunamadı

Simpson type integral inequalities for harmonic convex functions via conformable fractional integrals

N/A
N/A
Protected

Academic year: 2021

Share "Simpson type integral inequalities for harmonic convex functions via conformable fractional integrals"

Copied!
13
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Simpson Type Integral Inequalities for Harmonic Convex Functions via

Conformable Fractional Integrals

Zeynep ŞANLI1,*

1Department of Mathematics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey zeynep.sanli@ktu.edu.tr, ORCID: 0000-0000-1564-2634

Received: 14.08.2020 Accepted: 07.12.2020 Published: 30.12.2020

Abstract

Fractional integral operators are very useful in the field of mathematical analysis and optimization theory. The main aim of this investigation is to establish a new Simpson type conformable fractional integral equality for harmonically convex functions. Using this identity, some new results related to Simpson-like type conformable fractional integral inequalities are obtained. Then, some interesting conclusions are attained for some special cases of conformable fractional integrals when 𝛼 = 1.

Keywords: Simpson inequality; Conformable fractional integral; Harmonic convex.

Conformable Kesirli İntegraller Aracılığıyla Harmonik Konveks Fonksiyonlar için Simpson Tipi İntegral Eşitsizlikleri

Öz

Kesirli integral operatörleri matematiksel analiz ve optimizasyon teorisi alanlarında oldukça kullanışlıdır. Bu araştırmanın temel amacı harmonik konveks fonksiyonlar için yeni bir Simpson tipi conformable kesirli integral eşitliği kurmaktır. Bu eşitliği kullanarak Simpson tipi conformable kesirli integral eşitsizlikleri ile ilgili bazı yeni sonuçlar elde edildi. Daha sonra, 𝛼 = 1 olduğunda, conformable kesirli integrallerin bazı özel durumları için ilginç sonuçlara ulaşıldı.

(2)

Anahtar Kelimeler: Simpson eşitsizliği; Conformable kesirli integral; Harmonik

konveks.


1. Introduction

We will start with the following inequality which is well known in the literature as Simpson’s inequality.

Theorem 1. Let 𝑓: [𝑎, 𝑏] → ℝ be a four times continuously differentiable mapping on (𝑎, 𝑏) and 0𝑓(")0

$= sup4𝑓(")(𝑥)4 < ∞. Then, the following inequality holds:

8∫ 𝑓(𝑥)𝑑𝑥 −%&'( <)(')*)(%) + + 2𝑓 ? '*% + @A % ' 8 ≤ , +--.0𝑓(")0$(𝑏 − 𝑎)". (1)

Inequality (1) has been studied by several authors (see [1-11]).

In [12], İşcan gave the definition of harmonically convex functions as follow:

Definition 2. [12] Let 𝐼 ⊂ ℝ\{0} be a real interval. A function 𝑓: 𝐼 → ℝ is said to be harmonically convex, if

𝑓 ? /0

1/*(,&1)0@ ≤ 𝑡𝑓(𝑣) + (1 − 𝑡)𝑓(𝑢), (2)

for all 𝑢, 𝑣 ∈ 𝐼 and 𝑡 ∈ [0,1]. If the inequality (2) is reversed, then 𝑓 is said to be harmonically concave.

Harmonic convex functions are important for mathematical inequalities. Many authors obtained several inequalities for harmonic convex functions [12-15]. The most famous inequality which has been used with harmonic convex functions is Hermite-Hadamard, which is stated as follow:

Theorem 3. [12] Let 𝑓: 𝐼 ⊂ ℝ\{0} be a hormanically convex function and 𝑢, 𝑣 ∈ [𝑎, 𝑏] with 𝑢 < 𝑣. If 𝑓 ∈ 𝐿[𝑢, 𝑣] then the following inequalities hold:

𝑓 ?+/0 /*0@ ≤ /0 0&/∫ )(2) 2! 𝑑𝑥 ≤ % ' )(/)*)(0) + . (3)

The aim of this paper is to establish Simpson type conformable fractional integral inequalities based on harmonically convexity.

2. Preliminaries

(3)

Definition 4. Let 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏 and 𝑓 ∈ 𝐿[𝑎, 𝑏]. The left and right Riemann-Liouville fractional integrals 𝐽'*3 𝑓 and 𝐽

%&3 𝑓 order 𝛼 > 0 are defined by

𝐽'*3 𝑓 = , 4(3)∫ (𝑥 − 𝑡)3&,𝑓(𝑡)𝑑𝑡, 𝑥 > 𝑎 2 ' , 𝐽%&3 𝑓 =4(3), ∫ (𝑡 − 𝑥)% 3&,𝑓(𝑡)𝑑𝑡, 𝑥 < 𝑏, 2

respectively, where Γ(𝛼) is the Gamma function defined by Γ(𝛼) = ∫ 𝑒$ &1𝑡3&,𝑑𝑡

. (see [16],

p.69).

The following definition of conformable fractional integrals can be found in [13, 17, 15]. Definition 5. Let 𝛼 ∈ (𝑛, 𝑛 + 1], 𝑛 = 0, 1, 2, … , 𝛽 = 𝛼 − 𝑛, 𝑎, 𝑏 ∈ ℝ with 𝑎 < 𝑏 and 𝑓 ∈ 𝐿[𝑎, 𝑏]. The left and right conformable fractional integrals 𝐼3'𝑓 and 𝐼

3 % 𝑓 order 𝛼 > 0 are defined by 𝐼3'𝑓 = , 5!∫ (𝑥 − 𝑡) 7(𝑡 − 𝑎)8&,𝑓(𝑡)𝑑𝑡, 𝑥 > 𝑎 2 ' , 𝐼3 % 𝑓 = , 5!∫ (𝑡 − 𝑥)7(𝑏 − 𝑡)8&,𝑓(𝑡)𝑑𝑡, 𝑥 < 𝑏, % 2 respectively.

It is easily seen that if one takes 𝛼 = 𝑛 + 1 in the Definition 5 (for the left and right conformable fractional integrals), then the Definition 4 is obtained (the left and right Riemann-Liouville fractional integrals) for 𝛼 ∈ ℕ.

3. Main Results

Throughout the paper, we will use the following notations for our results: 𝑢,(𝑡) =(,&1)'*(,*1)%+'% ,

𝑢+(𝑡) =(,*1)'*(,&1)%+'% , 𝐻 = +'%

'*%.

Let’s begin the following lemma which will help us to obtain the main results:

Lemma 6. Let 𝜑: 𝐼 ⊂ (0, ∞) → ℝ, be a differentiable function on 𝐼°, 𝑎, 𝑏 ∈ 𝐼° and 𝑎 < 𝑏.

(4)

, ;[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] − 23&,? '% %&'@ 3 4(3*,) 4(3&7)Z 𝐼3 " #(𝜑 ∘ 𝜙) ?, <@ + $"𝐼3(𝜑 ∘ 𝜙) ?, <@ ] (4) =𝑏 − 𝑎 2𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛)_ 𝑝(𝑡; 𝛼, 𝑛)b(𝑢,(𝑡))+𝜑:c(𝑢,(𝑡)d − (𝑢+(𝑡))+𝜑:c(𝑢+(𝑡)de𝑑𝑡, , . where 𝑝(𝑡; 𝛼, 𝑛) = ∫ f,(𝛽(𝑛 + 1, 𝛼 − 𝑛) −, (𝛽1(𝑛 + 1, 𝛼 − 𝑛)g 𝑑𝑡 , . and 𝜙(𝑥) =, 2, 𝛼 > 0.

Proof. We begin by considering the following computations which follow from change of

variables and using the definition of the conformable fractional integrals. 𝐼, = , 7!∫ 𝑝(𝑡; 𝛼, 𝑛)(𝑢,(𝑡)) +𝜑:c(𝑢 ,(𝑡)d𝑑𝑡 = , . , ( +'% '&% 4(3&7) 4(3*,)𝜑c(𝑢,(𝑡)d|. , +.7!, '&%+'%i∫ ?∫ 𝑥 7(1 − 𝑥)3&7&,𝑑𝑥 1 . @ 𝜑c(𝑢,(𝑡)d𝑑𝑡 , . − ∫ 𝑡7(1 − 𝑡)3&7&,𝜑c(𝑢 ,(𝑡)d𝑑𝑡 , . j = 2𝑎𝑏 𝑎 − 𝑏 1 3 Γ(𝛼 − 𝑛) Γ(𝛼 + 1)c𝜑(𝑎) − 𝜑(𝐻)d − 1 2 2𝑎𝑏 𝑎 − 𝑏 Γ(𝛼 − 𝑛) Γ(𝛼 + 1)𝜑(𝑎) +1 2f 2𝑎𝑏 𝑎 − 𝑏g 3*, , '𝐼3(𝜑 ∘ 𝜙) f1 𝐻g = 2𝑎𝑏 𝑎 − 𝑏 Γ(𝛼 − 𝑛) Γ(𝛼 + 1)l 1 6𝜑(𝑎) + 1 3𝜑(𝐻)n −, +? +'% '&%@ 3*, " $𝐼3(𝜑 ∘ 𝜙) ?, <@ and similarly 𝐼, = , 7!∫ 𝑝(𝑡; 𝛼, 𝑛)(𝑢,(𝑡)) +𝜑:c(𝑢 ,(𝑡)d𝑑𝑡 , . = 2𝑎𝑏 𝑏 − 𝑎 Γ(𝛼 − 𝑛) Γ(𝛼 + 1)l− 1 6𝜑(𝑎) − 1 3𝜑(𝐻)n + 1 2f 2𝑎𝑏 𝑏 − 𝑎g 3*, 𝐼3 , %(𝜑 ∘ 𝜙) f1 𝐻g. Thus, we have %&' +'% 4(3*,) 4(3&7)(𝐼,− 𝐼+) = , ; [𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)]

(5)

− 23&,f 𝑎𝑏 𝑏 − 𝑎g 3Γ(𝛼 + 1) Γ(𝛼 − 𝑛) ⎣ ⎢ ⎢ ⎡ 𝐼 3 , %(𝜑 ∘ 𝜙) f1 𝐻g + ,'𝐼3(𝜑 ∘ 𝜙) f1 𝐻g⎦ ⎥ ⎥ ⎤ .

Remark 7. If we take 𝛼 = 𝑛 + 1 in Lemma 6, then we get

, ;[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] − 23&,? '% %&'@ 3 Γ(𝛼 + 1) Z 𝐽" #* 3 (𝜑 ∘ 𝜙) ?, <@ +𝐽" $& 3 (𝜑 ∘ 𝜙) ?, <@ ] (5) =𝑏 − 𝑎 2𝑎𝑏 _ l 1 3− 𝑡3 2n b(𝑢,(𝑡))+𝜑:c(𝑢,(𝑡)d − (𝑢+(𝑡))+𝜑:c(𝑢+(𝑡)de𝑑𝑡 , . .

Remark 8. If we take 𝛼 = 1 in Remark 7, then we have

, ;[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] − '% %&'∫ >(2) 2! 𝑑𝑥 % ' (6) =𝑏 − 𝑎 2𝑎𝑏 _ f 1 3− 𝑡 2g b(𝑢,(𝑡))+𝜑:c(𝑢,(𝑡)d − (𝑢+(𝑡))+𝜑:c(𝑢+(𝑡)de𝑑𝑡 , . .

Theorem 9. Let 𝜑: 𝐼 ⊂ (0, ∞) → ℝ, be a differentiable function on 𝐼°, 𝑎, 𝑏 ∈ 𝐼° and 𝑎 < 𝑏.

If 𝜑: ∈ 𝐿[𝑎, 𝑏], and |𝜑:| is harmonic convex function on [𝑎, 𝑏], then the following inequality

holds: u,;[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] − 23&,?'% %&'@ 3 4(3*,) 4(3&7)Z 𝐼3 " #(𝜑 ∘ 𝜙) ?, <@ + "$𝐼3(𝜑 ∘ 𝜙) ?, <@ ]u (7) ≤𝑏 − 𝑎 2𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛)l 8𝜑:(')|(ℑ"(𝑡; 𝛼, 𝑛) + (ℑ+(𝑡; 𝛼, 𝑛)@ +|𝜑′(𝑏)|(ℑ((𝑡; 𝛼, 𝑛) + (ℑ"(𝑡; 𝛼, 𝑛)) n, where ,(𝑡; 𝛼, 𝑛) = ∫ |𝑝(𝑡; 𝛼, 𝑛)|(𝑢., ,(𝑡))+ ,*1+ 𝑑𝑡, +(𝑡; 𝛼, 𝑛) = ∫ |𝑝(𝑡; 𝛼, 𝑛)|(𝑢., +(𝑡))+ ,&1+ 𝑑𝑡, ((𝑡; 𝛼, 𝑛) = ∫ |𝑝(𝑡; 𝛼, 𝑛)|(𝑢., ,(𝑡))+ ,&1+ 𝑑𝑡,

(6)

"(𝑡; 𝛼, 𝑛) = ∫ |𝑝(𝑡; 𝛼, 𝑛)|(𝑢., +(𝑡))+ ,*1+ 𝑑𝑡,

where 𝑛 = 0,1,2, … and 𝛼 ∈ (𝑛, 𝑛 + 1].

Proof. From Lemma 6 and |φ:| is harmonic convex, we have

uu16[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] − 23&,f 𝑎𝑏 𝑏 − 𝑎g 3Γ(𝛼 + 1) Γ(𝛼 − 𝑛) ⎣ ⎢ ⎢ ⎡ 𝐼 3 , %(𝜑 ∘ 𝜙) f1 𝐻g + ,'𝐼3(𝜑 ∘ 𝜙) f1 𝐻g⎦ ⎥ ⎥ ⎤ uu ≤𝑏 − 𝑎 2𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛)_|𝑝(𝑡; 𝛼, 𝑛)|((𝑢,(𝑡))+𝜑:(𝑢,(𝑡)) + (𝑢+(𝑡))+𝜑:(𝑢+(𝑡)))𝑑𝑡 , . ≤𝑏 − 𝑎 2𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛)_|𝑝(𝑡; 𝛼, 𝑛)| , . l(𝑢,(𝑡))+f1 + 𝑡 2 |𝜑:(𝑎)| + 1 − 𝑡 2 |𝜑:(𝑏)|g + (𝑢+(𝑡))+f 1 − 𝑡 2 |𝜑:(𝑎) y+ 1 + 𝑡 2 |𝜑:(𝑏)ygn 𝑑𝑡 ≤𝑏 − 𝑎 2𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛)?|𝜑:(𝑎)4cℑ,(𝑡; 𝛼, 𝑛) + ℑ+(𝑡; 𝛼, 𝑛)d + |𝜑:(𝑏)4cℑ((𝑡; 𝛼, 𝑛) + ℑ"(𝑡; 𝛼, 𝑛)d@.

This completes the proof.

Theorem 10. Let 𝜑: 𝐼 ⊂ (0, ∞) → ℝ, be a differentiable function on 𝐼°, 𝑎, 𝑏 ∈ 𝐼° and 𝑎 <

𝑏. If 𝜑:∈ 𝐿[𝑎, 𝑏], and |φ:|A is harmonic convex function on [𝑎, 𝑏] for 𝑞 > 1 and , B+

,

B= 1, then

the following inequality holds:

u, ;[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] − 23&,? '% %&'@ 3 4(3*,) 4(3&7)Z 𝐼3 " #(𝜑 ∘ 𝜙) ?, <@ + "$𝐼3(𝜑 ∘ 𝜙) ?, <@ ]u (8) ≤𝑏 − 𝑎 2𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛)f 1 2g +A*, i_|𝑝(𝑡; 𝛼, 𝑛)|B𝑑𝑡 , . j , B × i (𝛾,(𝑞; 𝑎, 𝑏)|𝜑:(𝑎)|A+ 𝛾+(𝑞; 𝑎, 𝑏)|𝜑:(𝑏)|A) , A +(𝛾((𝑞; 𝑎, 𝑏)|𝜑:(𝑎)|A+ 𝛾 "(𝑞; 𝑎, 𝑏)|𝜑:(𝑏)|A) , A j, where

(7)

𝛾,(𝑞; 𝑎, 𝑏) = −

𝑎+A𝑏+A(c(8𝑏+− 8𝑎𝑏)𝑞 − 4𝑏++ 8𝑎𝑏d𝑒+ C5(%*')A

+c(2𝑎+− 2𝑏+)𝑞 + 𝑏+− 2𝑎𝑏 − 3𝑎+d𝑒+ C5(+%)A. 2+A&,𝑒&+ C5(%*')A&+ C5(+%)A

(𝑏 − 𝑎)+(2𝑞+− 3𝑞 + 1) ,

𝛾+(𝑞; 𝑎, 𝑏) =

𝑎+A𝑏+Ac4𝑏+𝑒+ C5(%*')A+ ((2𝑏+− 2𝑎+)𝑞 − 3𝑏+− 2𝑎𝑏 + 𝑎+d𝑒+ C5(+%)A

. 2+A&,𝑒+ C5(%*')A&+ C5(+%)A

(𝑏 − 𝑎)+(2𝑞+− 3𝑞 + 1) ,

𝛾((𝑞; 𝑎, 𝑏) =

𝑎+A𝑏+Ac4𝑏+𝑒+ C5(%*')A+ ((2𝑎+− 2𝑏+)𝑞 + 𝑏+− 2𝑎𝑏 − 3𝑎+d𝑒+ C5(+')A

. 2+A&,𝑒+ C5(%*')A&+ C5(+')A

(𝑏 − 𝑎)+(2𝑞+− 3𝑞 + 1) ,

𝛾"(𝑞; 𝑎, 𝑏) =

𝑎+A𝑏+A(c(8𝑎𝑏 − 8𝑎+)𝑞 − 8𝑎𝑏 + 4𝑎+d𝑒+ C5(%*')A

+c(2𝑎+− 2𝑏+)𝑞 + 3𝑏++ 2𝑎𝑏 − 𝑎+d𝑒+ C5(+')A. 2+A&,𝑒&+ C5(%*')A&+ C5(+')A

(𝑏 − 𝑎)+(2𝑞+− 3𝑞 + 1) ,

𝑛 = 0,1,2, … and 𝛼 ∈ (𝑛, 𝑛 + 1].

Proof. From Lemma 6 and using Hölder’s integral inequality and the harmonic convexity of |φ:|A, we have uu16[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] − 23&,f 𝑎𝑏 𝑏 − 𝑎g 3Γ(𝛼 + 1) Γ(𝛼 − 𝑛) ⎣ ⎢ ⎢ ⎡ 𝐼3,%(𝜑 ∘ 𝜙) f1 𝐻g + ,'𝐼3(𝜑 ∘ 𝜙) f𝐻g⎦1 ⎥ ⎥ ⎤ uu ≤𝑏 − 𝑎 2𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛)i_|𝑝(𝑡; 𝛼, 𝑛)|B𝑑𝑡 , . j , B ⎩ ⎪ ⎨ ⎪ ⎧ i_((𝑢,(𝑡))+A|𝜑:(𝑢 ,(𝑡))|A𝑑𝑡 , . j , A + i_((𝑢+(𝑡))+A|𝜑:(𝑢+(𝑡))|A𝑑𝑡 , . j , A ⎭ ⎪ ⎬ ⎪ ⎫

(8)

≤𝑏 − 𝑎 2𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛) ⎩ ⎪ ⎨ ⎪ ⎧ i_|𝑝(𝑡; 𝛼, 𝑛)|B𝑑𝑡 , . j , B × ⎣ ⎢ ⎢ ⎢ ⎡ i_((𝑢,(𝑡))+A…|φ:(𝑎)|Af 1 + 𝑡 2 g + |φ:(𝑏)|Af 1 − 𝑡 2 g† 𝑑𝑡 , . j , A + i_((𝑢+(𝑡))+A…|φ:(𝑎)|Af 1 − 𝑡 2 g + |φ:(𝑏)|Af 1 + 𝑡 2 g† 𝑑𝑡 , . j , A ⎦ ⎥ ⎥ ⎥ ⎤ ⎭ ⎪ ⎬ ⎪ ⎫ ≤𝑏 − 𝑎 𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛)f 1 2g , +A*, i_|𝑝(𝑡; 𝛼, 𝑛)|B𝑑𝑡 , . j , B × ‡(𝛾,(𝑞; 𝑎, 𝑏)|φ:(𝑎)|A+ 𝛾 +(𝑞; 𝑎, 𝑏)|φ:(𝑏)|A) , A + (𝛾((𝑞; 𝑎, 𝑏)|φ:(𝑎)|A+ 𝛾 "(𝑞; 𝑎, 𝑏)|φ:(𝑏)|A) , Aˆ.

This completes the proof.

Remark 11. If we take 𝛼 = 𝑛 + 1, after that if we take 𝛼 = 1 in Theorem 10, we obtain the following inequality

‰1 6[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] − 𝑎𝑏 𝑏 − 𝑎_ φ(x) 𝑥+ 𝑑𝑥 , . ‰ ≤𝑏 − 𝑎 12𝑎𝑏l 2B*,+ 1 3(𝑝 + 1)n , B f1 4g , A × ‡(𝛾,(𝑞; 𝑎, 𝑏)|φ:(𝑎)|A+ 𝛾+(𝑞; 𝑎, 𝑏)|φ:(𝑏)|A) , A + (𝛾((𝑞; 𝑎, 𝑏)|φ:(𝑎)|A+ 𝛾 "(𝑞; 𝑎, 𝑏)|φ:(𝑏)|A) , Aˆ with _ y1 2𝑡 − 1 3y B 𝑑𝑡 = , . 2B*++ 2 (𝑝 + 1)6B*,.

(9)

Theorem 12. Let 𝜑: 𝐼 ⊂ (0, ∞) → ℝ be a differentiable function on 𝐼°, 𝑎, 𝑏 ∈ 𝐼° and 𝑎 <

𝑏. If 𝜑:∈ 𝐿[𝑎, 𝑏] and |φ:|A is harmonic convex function on [𝑎, 𝑏] for 𝑞 ≥ 1, then the following

inequality holds: u, ;[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] − 23&,? '% %&'@ 3 4(3*,) 4(3&7)Z 𝐼3 " #(𝜑 ∘ 𝜙) ?, <@ + "$𝐼3(𝜑 ∘ 𝜙) ?, <@ ]u (9) ≤𝑏 − 𝑎 2𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛)i_|𝑝(𝑡; 𝛼, 𝑛)|B𝑑𝑡 , . j ,&,A × i (𝜁,(𝑞, 𝑡; 𝛼, 𝑛)|𝜑′(𝑎)|A+ 𝜁+(𝑞, 𝑡; 𝛼, 𝑛)|𝜑′(𝑏)|A) , A +(𝜁((𝑞, 𝑡; 𝛼, 𝑛)|𝜑′(𝑎)|A+ 𝜁 "(𝑞, 𝑡; 𝛼, 𝑛)|𝜑′(𝑏)|A) , A j where 𝜁,(𝑞, 𝑡; 𝛼, 𝑛) = ∫ |𝑝(𝑡; 𝛼, 𝑛)|(𝑢., ,(𝑡))+A ,*1+ 𝑑𝑡, 𝜁+(𝑞, 𝑡; 𝛼, 𝑛) = ∫ |𝑝(𝑡; 𝛼, 𝑛)|(𝑢., ,(𝑡))+A ,&1+ 𝑑𝑡, 𝜁((𝑞, 𝑡; 𝛼, 𝑛) = ∫ |𝑝(𝑡; 𝛼, 𝑛)|(𝑢., +(𝑡))+A ,&1+ 𝑑𝑡, 𝜁"(𝑞, 𝑡; 𝛼, 𝑛) = ∫ |𝑝(𝑡; 𝛼, 𝑛)|(𝑢., +(𝑡))+A ,&1+ 𝑑𝑡, 𝑛 = 0,1,2, … and 𝛼 ∈ (𝑛, 𝑛 + 1].

Proof. From Lemma 6 and using the power mean inequality, we see that the following inequality holds:

(10)

uu16[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] − 23&,f 𝑎𝑏 𝑏 − 𝑎g 3Γ(𝛼 + 1) Γ(𝛼 − 𝑛) ⎣ ⎢ ⎢ ⎡ 𝐼 3 , %(𝜑 ∘ 𝜙) f1 𝐻g + ,'𝐼3(𝜑 ∘ 𝜙) f1 𝐻g⎦ ⎥ ⎥ ⎤ uu ≤𝑏 − 𝑎 2𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛)_|𝑝(𝑡; 𝛼, 𝑛)| ?c𝑢,(𝑡)d + |𝜑′(𝑢,(𝑡))| , . + c𝑢+(𝑡)d+|𝜑′(𝑢+(𝑡))|@ 𝑑𝑡 ≤𝑏 − 𝑎 2. 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛) ⎩ ⎪ ⎨ ⎪ ⎧ i_|𝑝(𝑡; 𝛼, 𝑛)|B𝑑𝑡 , . j ,&A, × ⎣ ⎢ ⎢ ⎢ ⎡ i_|𝑝(𝑡; 𝛼, 𝑛)|c𝑢,(𝑡)d+A|𝜑′(𝑢,(𝑡))|A𝑑𝑡 , . j , A ⎦ ⎥ ⎥ ⎥ ⎤ + i_|𝑝(𝑡; 𝛼, 𝑛)|c𝑢+(𝑡)d+A|𝜑′(𝑢+(𝑡))|A𝑑𝑡 , . j , A ⎭ ⎪ ⎬ ⎪ ⎫ .

By the harmonic convexity of |𝜑′|A we write

∫ |𝑝(𝑡; 𝛼, 𝑛)|c𝑢., ,(𝑡)d+A|𝜑′(𝑢,(𝑡))|A𝑑𝑡 ≤ |𝜑:(𝑎)|A_|𝑝(𝑡; 𝛼, 𝑛)|c𝑢 ,(𝑡)d+A 1 + 𝑡 2 𝑑𝑡 , . +|𝜑:(𝑏)|A_|𝑝(𝑡; 𝛼, 𝑛)|c𝑢 ,(𝑡)d+A 1 − 𝑡 2 𝑑𝑡 , . and ∫ |𝑝(𝑡; 𝛼, 𝑛)|c𝑢., +(𝑡)d+A|𝜑′(𝑢+(𝑡))|A𝑑𝑡 ≤ |𝜑:(𝑎)|A_|𝑝(𝑡; 𝛼, 𝑛)|c𝑢 +(𝑡)d+A 1 − 𝑡 2 𝑑𝑡 , .

(11)

+|𝜑:(𝑏)|A_|𝑝(𝑡; 𝛼, 𝑛)|c𝑢 +(𝑡)d+A 1 + 𝑡 2 𝑑𝑡 , . .

Using the last two inequalities, we obtain

uu1 6[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] − 23&,f 𝑎𝑏 𝑏 − 𝑎g 3Γ(𝛼 + 1) Γ(𝛼 − 𝑛) ⎣ ⎢ ⎢ ⎡ 𝐼 3 , %(𝜑 ∘ 𝜙) f1 𝐻g + ,'𝐼3(𝜑 ∘ 𝜙) f1 𝐻g⎦ ⎥ ⎥ ⎤ uu ≤𝑏 − 𝑎 2𝑎𝑏 1 𝑛! Γ(𝛼 + 1) Γ(𝛼 − 𝑛)i_|𝑝(𝑡; 𝛼, 𝑛)|𝑑𝑡 , . j ,&,A × ⎣ ⎢ ⎢ ⎢ ⎡ i|𝜑:(𝑎)|A_|𝑝(𝑡; 𝛼, 𝑛)|c𝑢 ,(𝑡)d+A 1 + 𝑡 2 𝑑𝑡 , . + |𝜑:(𝑏)|A_|𝑝(𝑡; 𝛼, 𝑛)|c𝑢 ,(𝑡)d+A 1 − 𝑡 2 𝑑𝑡 , . j , A + i|𝜑:(𝑎)|A_|𝑝(𝑡; 𝛼, 𝑛)|c𝑢 +(𝑡)d+A 1 + 𝑡 2 𝑑𝑡 , . + |𝜑:(𝑏)|A_|𝑝(𝑡; 𝛼, 𝑛)|c𝑢 +(𝑡)d+A 1 − 𝑡 2 𝑑𝑡 , . j , A ⎦ ⎥ ⎥ ⎥ ⎤ .

Remark 13. If we take 𝛼 = 𝑛 + 1, after that if we take 𝛼 = 1 in Theorem 12, we obtain the following inequality

8,;[𝜑(𝑎) + 4𝜑(𝐻) + 𝜑(𝑏)] −%&''% ∫'%>(2)2! 𝑑𝑥8 ≤𝑏 − 𝑎 2𝑎𝑏 f 5 36g ,&,A ‡(𝜁,(𝑞, 𝑡; 𝛼, 𝑛)|𝜑:(𝑎)|A+ 𝜁+(𝑞, 𝑡; 𝛼, 𝑛)|𝜑:(𝑏)|A) , A + (𝜁((𝑞, 𝑡; 𝛼, 𝑛)|𝜑:(𝑎)|A+ 𝜁 "(𝑞, 𝑡; 𝛼, 𝑛)|𝜑:(𝑏)|A) , Aˆ. 4. Conclusion

In this paper, by using a new identity of Simpson-like type for conformable fractional integral for harmonic convex functions, we obtained some new Simpson type conformable

(12)

fractional integral inequalities. Furthermore, some interesting conclusions were obtained for some special values of 𝛼.

References

[1] Alomari, M., Darus, M., Dragomir, S.S., New inequalities of Simpson’s type for s-convex functions with applications, Research Group in Mathematical Inequalities and Applications Research Report Collection, 12(4), 2009.

[2] Dragomir, S.S., Agarwal, R.P., Cerone, P., On Simpson’s inequality and applications, Journal of Inequalities and Applications, 5(2), 2000.

[3] Luo, C.Y., Du, T.S., Zhang, Y., Certain new bounds considering the weighted Simpson-like type inequality and applications, Journal of Inequalities and Applications, (2018), Article ID 332, 2018.

[4] Matloka, M., Some inequalities of Simpson type for h-convex functions via fractional integrals, Abstract and Applied Analysis, (2015), 5 pages, 2015.

[5] Matloka, M., Weighted Simpson type inequalities for h-convex functions, Journal of Nonlinear Sciences and Applications, 10, 5570-5780, 2017.

[6] Rashid, S., Akdemir A.O., Jarad, F., Noor, M.A., Noor, K.I., Simpson’s type integral inequalities for k-fractional integrals and their applications, AIMS Mathematics, 4(4), 1087-1100, 2019.

[7] Sarıkaya, M.Z., Bardak, S., Generalized Simpson type integral inequalities, Konuralp Journal of Mathematics, 7, 186-191, 2019.

[8] Sarıkaya, M.Z, Set, E., Özdemir, M.E., On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex, Journal of Applied Mathematics, Statistics and Information, 9(1), 37-45, 2013.

[9] Sarıkaya, M.Z, Set, E., Özdemir, M.E., On new inequalities of Simpson’s type for s-convex funcyions, Computers and Mathematics with Applications, 60, 2191-2199, 2010.

[10] Tunç, M., Göv, E., Balgeçti, S., Simpson type quantum integral inequalities for convex functions, Miskolc Mathematical Notes, 19(1), 649-669, 2018.

[11] Zhu, T., Wang, P., Du, T.S., Some estimates on the weighted Simpson like integral inequalities and their applications, Journal of Nonlinear Functional Analysis, Article ID 17, 2020. [12] İşcan, İ., Hermite-Hadamard type inequalities for harmonically convex functions, Hacettepe Journal of Mathematics and Statistics, 46(6), 935-942, 2014.

[13] Awan, M.U., Noor, M.A., Mihai, M.V., Noor, K.I., Inequalities via harmonic convex functions: Conformable fractional calculus approach, Journal of Mathematical Inequalities, 12(1), 143-153, 2018.

[14] Latif, A.M., Hussein, S., Baloch, M., Weighted Simpson’s type inequalities for HA-convex, Punjab University Journal of Mathematics, 57(2), 11-24, 2020.

[15] Şanlı, Z., Köroğlu, T., New conformable fractional Hermite-Hadamard type inequalities for harmonically convex functions, Journal of Mathematical Analysis, 9(6), 77-79, 2017.

[16] Kılbaş, A.A., Srivastava, H.M., Trujillo, J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.

(13)

[17] Abdeljawad, T., Yiğit, N., Aktaş, E., Özgen, U., On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 57-59, 2015.

Referanslar

Benzer Belgeler

İşletmenin yabancı sermaye ile ortaklık yapıp yapmama durumuna göre örgüt- çevre etkileşimi arasında anlamlı bir fark olup olmadığını belirlemek amacıyla

Orman endüstrisinin bir alt sektörü olan levha endüstrisinin Düzce ili oransal talep trendinin kaplama ve parke alt sektörlerine benzer, kereste alt sektörünün

These results show that acute administration of rapamycin, especially in 5 mg/kg dose of rapamycin prolongs the latency of maternal aggression, and decreased the number of attacks,

[Ammâ odaların biri] yani anda hıfzı şart olunan oda [kargir ve diğeri] yani müstevda‘ın hilâf-ı şart olarak hıfz ittiği oda [ahşap olmak] ya biri

Comparison of the con- trol group with the GTx-applied 48-hour, 25 mg/kg RH-applied 48-hour, 50 mg/kg RH-applied 24- and 48-hour, 75 mg/kg RH-applied 24- and 48-hour groups has shown

RBSÖ açısından benlik saygısı, anne-baba ilgisi ve babayla ilişki hasta grubunda kontrol grubuna göre daha düşük iken, eleştiriye duyarlılık, depresif

Numerous experimental studies have been carried out to investigate the effect of deep cryogenic heat treatment on the mechanical properties of tool steels; however, very little

Changes in biomass accumulation and total Cd content in leaf, bark and roots of black poplar plants exposed to individual Cd, sodium nitroprusside (SNP) and combined Cd +