• Sonuç bulunamadı

Başlık: Representation number formulae for some octonary quadratic formsYazar(lar):KÖKLÜCE, BülentCilt: 63 Sayı: 2 Sayfa: 135-145 DOI: 10.1501/Commua1_0000000719 Yayın Tarihi: 2014 PDF

N/A
N/A
Protected

Academic year: 2021

Share "Başlık: Representation number formulae for some octonary quadratic formsYazar(lar):KÖKLÜCE, BülentCilt: 63 Sayı: 2 Sayfa: 135-145 DOI: 10.1501/Commua1_0000000719 Yayın Tarihi: 2014 PDF"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

REPRESENTATION NUMBER FORMULAE FOR SOME OCTONARY QUADRATIC FORMS

BÜLENT KÖKLÜCE

Abstract. We …nd formulae for the number of representation of a positive integer n by each of the quadratic forms

x21+ x22+ x23+ x24+ 2x25+ 2x26+ 6x27+ 6x28; x21+ x22+ 2x23+ 2x24+ 2x25+ 2x26+ 3x27+ 3x28; x21+ x22+ 3x23+ 3x24+ 6x25+ 6x26+ 6x27+ 6x28; x21+ x22+ x23+ x24+ 2x25+ 2x26+ 3x27+ 3x28; x21+ x22+ 2x23+ 2x24+ 2x25+ 2x26+ 6x27+ 6x28; x21+ 2x22+ 2x23+ 2x24+ 2x25+ 4x26+ 6x27+ 6x28; 2x21+ 2x22+ 3x23+ 6x24+ 6x25+ 6x26+ 6x27+ 12x28;

by using some known convolution sums of divisor functions and known repre-sentation formulae for quaternary quadratic forms. Formulae for some other octonary quadratic forms of these type are given before in [4, 5, 6, 11, 17].

1. Introduction

Let N, N0, Z and C denote the set of natural numbers, non-negative integers, integers and complex numbers so that N0= N [ f0g. For k 2 N we set

k(n) := 8 > < > : X d2N djn dk ; n 2 N; 0 ; n =2 N:

We write (n) for 1(n). For a1; : : : ; a82 N and n 2 N0 we de…ne

N (a1; : : : ; a8; n) := card (x1; : : : ; x8) 2 Zk: n = a1x21+ + a8x28 : (1.1)

2010 Mathematics Subject Classi…cation. 11A25, 11E25.

Key words and phrases. Quadratic forms; Representation numbers. Received by the editors: 21.11.2013, accepted: 03.07.2014.

*The main results of this paper presented in part at the conference Algerian-Turkish Interna-tional Days on Mathematics 2013 (ATIM’ 2013) to be held September 12–14, 2013 in ·Istanbul at the Fatih University.

c 2 0 1 4 A n ka ra U n ive rsity

(2)

If l of a1; : : : ; a8 are equal, say,

ai = ai+1 = = ai+l 1= a; (1.2)

we indicate this in N (a1; : : : ; a8; n) by writing alfor ai; ai+1; : : : ; ai+l 1 as in [4, 6, 11].

It is clear that the number N (18; n) is just the number of representations of n as the sum of eight squares. The problem of evaluating N (18; n) was considered by earlier mathematicians. An Implicit formula for N (18; n) is given by Jacobi [10]. Explicit formula are obtained in [5, 17]. The representation numbers N (11; 47; n); N (12; 46; n); N (13; 45; n); N (14; 44; n); N (15; 43; n); N (16; 42; n); N (17; 41; n) are evaluated in [6]. Alaca and Williams [4] have found formulae for N (12; 36; n); N (14; 34; n), N (16; 32; n). Alaca, Alaca and Williams [5] have determined N (18; n); N (16; 22; n); N (15; 22; 41; n), N (14; 24; n); N (14; 22; 42; n); N (14; 44; n); N (13; 24; 41 ; n); N (13; 22; 43; n); N (12; 26; n); N (12; 24; 42; n); N (12; 22; 44; n); N (11; 26; 41; n); N (11; 24; 43; n); and N (11; 22; 45; n). The author has derived formulae before for N (14; 64; n); N (24; 34; n) and N (14; 34; n) in [11] and for N (12; 22; 32; 62; n); N (14; 32 ; 62; n); N (12; 22; 34; n); N (24; 32; 62; n) and N (12; 22; 64; n) in [12].

In the present paper, we use the representation number formulae for the quater-nary quadratic forms x2

1+x22+x23+x24, x21+x22+2x23+2x24, x21+x22+3x23+3x24and some known convolution sums to derive formulae for seven octonary quadratic forms. We explicitly …nd formulae for any of N (14; 22; 62; n), N (12; 24; 32; n), N (12; 32; 64; n), N (14; 22; 32; n), N (12; 24; 62; n), N (1; 24; 4; 62; n) and N (22; 3; 64; 12; n).

The formulae are given in terms of the function 3(n) and the numbers c1;6(n), c1;8(n); c1;12(n), c3;4(n); c1;24(n); c3;8(n); which are de…ned in next section. After some preliminaries we prove the following theorem in section 3. In our calculations we use the software Pari GP.

Theorem 1.1. Let n 2 N then, (i) N (14; 22; 62; n) = 7 5 3(n) 7 5 3( n 2) 27 5 3( n 3) + 28 5 3( n 4) + 27 5 3( n 6) 448 5 3( n 8) 108 5 3( n 12) + 1728 5 3( n 24) + 4 5c1;6(n) 16 5 c1;6( n 2) 64 5 c1;6( n 4) 2c1;8(n) 22 5c1;12(n) + 61 5c1;24(n); (ii) N (12; 24; 32; n) = 7 5 3(n) 7 5 3( n 2) 27 5 3( n 3) + 28 5 3( n 4) + 27 5 3( n 6) 448 5 3( n 8) 108 5 3( n 12) + 1728 5 3( n 24) + 4 5c1;6(n) + 16 5 c1;6( n 2) 64 5 c1;6( n 4) +2c1;8(n) + 8 5c3;4( n 2) 1 5c3;8(n);

(3)

(iii) N (12; 32; 64; n) = 1 5 3(n) 1 5 3( n 2) 21 5 3( n 3) + 4 5 3( n 4) + 21 5 3( n 6) 64 5 3( n 8) 84 5 3( n 12) + 1344 5 3( n 24) 4 15c1;6(n) 16 15c1;6( n 2) + 64 15c1;6( n 4) 6c1;8( n 3) 88 15c1;12( n 2) + 61 15c1;24(n); (iv) N (14; 22; 32; n) = 14 15 3(n) 14 15 3( n 2) 54 5 3( n 3) + 28 5 3( n 4) + 54 5 3( n 6) 448 5 3( n 8) 108 5 3( n 12) + 1728 5 3( n 24) 6 5c1;6(n) 16 5c1;6( n 2) 64 5c1;6( n 4) + 2c1;8(n) + 22 5c1;12(n) + 1 5c3;4(n) + 8 5c3;4( n 2) 1 5c3;8(n); (v) N (12; 24; 62; n) = 7 10 3(n) 7 10 3( n 2) 27 10 3( n 3) + 28 5 3( n 4) + 27 10 3( n 6) 448 5 3( n 8) 108 5 3( n 12) + 1728 5 3( n 24) + 2 5c1;6(n) + 8 5c1;6( n 2) +48 5c1;6( n 4) c1;8(n) 11 5c1;12(n) 22 5c1;12( n 2) 4 5c3;4( n 2) +61 10c1;24(n); (vi) N (1; 24; 4; 62; n) = 7 20 3(n) 7 20 3( n 2) 27 20 3( n 3) + 27 20 3( n 6) + 28 5 3( n 8) 448 5 3( n 16) 108 5 3( n 24) + 1728 5 3( n 48) + 1 5c1;6(n) +2 5c1;6( n 2) 8 5c1;6( n 4) 64 5c1;6( n 8) 1 2c1;8(n) + 2c1;8( n 2) 11 10c1;12(n) 11 5c1;12( n 2) + 1 5c3;4( n 2) + 8 5c3;4( n 4) +61 20c1;24(n) 1 5c3;8( n 2);

(4)

(vii) N (22; 3; 64; 12; n) = 1 20 3(n) 1 20 3( n 2) 21 20 3( n 3) + 21 20 3( n 6) + 4 5 3( n 8) 64 5 3( n 16) 84 5 3( n 24) + 1344 5 3( n 48) 1 15c1;6(n) 2 15c1;6( n 2) + 8 15c1;6( n 4) + 64 15c1;6( n 8) + 3 2c1;8( n 3) 6c1;8( n 6) 11 15c1;12( n 2) 88 15c1;12( n 4) + 1 30c3;4(n) + 1 15c3;4( n 2) +61 15c1;24( n 2) 1 60c3;8(n):

2. Some Known Formulae for Convolution Sums of Divisor Functions In this section we give a short history and a list of necessary convolution sums of divisor function which will be required to …nd the representation numbers of the above mentioned quadratic forms. Most of the known convolutions sums are given by the authors Alaca, Alaca and Williams. To see the detailed calculations of the convolution sums see the cited articles. For r; s; n 2 N with r s we de…ne the convolution sum Wr;s(n) by Wr;s(n) := X (l;m)2N2 rl+sm=n (l) (m):

The convolution sum W1;1(n) = 5 12 3(n) n 2 (n) + 1 12 (n) (2.1)

…rst appeared in a letter from Besge to Liouville [5]. It has been evaluated also in [8], [9] and [15].

The following three sums are given in [9]:

W1;2(n) = 1 12 3(n) + 1 3 3( n 2) n 8 (n) n 4 ( n 2) + 1 24 (n) + 1 24 ( n 2); (2.2) W1;3(n) = 1 24 3(n) + 3 8 3( n 3) 1 12n (n) 1 4n ( n 3) + 1 24 (n) + 1 24 ( n 3); (2.3) W1;4(n) = 1 48 3(n) + 1 16 3( n 2) + 1 3 ( n 4) n 16 (n) n 4 ( n 4) (2.4) +1 24 (n) + 1 24 ( n 4):

The convolution sum W1;3(n) was also evaluated in [13], [14], [16]. Alaca and Williams [3] have proved that

(5)

W1;6(n) = 1 120 3(n) + 1 30 3( n 2) + 3 40 3( n 3) + 3 10 3( n 6) + ( 1 24 n 24) (n) +( 1 24 n 4) ( n 6) 1 120c1;6(n); (2.5) and W2;3(n) = 1 120 3(n) + 1 30 3( n 2) + 3 40 3( n 3) + 3 10 3( n 6) + ( 1 24 n 12) ( n 2) +( 1 24 n 8) ( n 3) 1 120c1;6(n); (2.6) where 1 X n=1 c1;6(n)qn= q 1 Y n=1 (1 qn)2(1 q2n)2(1 q3n)2(1 q6n)2: (2.7) It was shown in [18] that

W1;8(n) = 1 192 3(n) + 1 64 3( n 2) + 1 16 3( n 4) + 1 3 3( n 8) + ( 1 24 n 32) (n) +( 1 24 n 4) ( n 8) 1 64c1;8(n); (2.8) where 1 X n=1 c1;8(n)qn = q 1 Y n=1 (1 q2n)4(1 q4n)4: (2.9)

Evaluation of the following two convolution sums are due to Alaca, Alaca and Williams [1]. W1;12(n) = 1 480 3(n) + 1 160 3( n 2) + 3 160 3( n 3) + 1 30 3( n 4) + 9 160 3( n 6)(2.10) +3 10 3( n 12) + ( 1 24 n 48) (n) + ( 1 24 n 4) ( n 12) 11 480c1;12(n); where 11 1 X n=1 c1;12(n)qn (2.11) = 10q 1 Y n=1 (1 qn) 1(1 q2n)2(1 q3n)3(1 q4n)3(1 q6n)2(1 q12n) 1 +q 1 Y n=1 (1 qn) 2(1 q2n)8(1 q3n) 2(1 q4n) 2(1 q6n)8(1 q12n) 2

(6)

and W3;4(n) = 1 480 3(n) + 1 160 3( n 2) + 3 160 3( n 3) + 1 30 3( n 4) + 9 160 3( n 6) (2.12) +3 10 3( n 12) + ( 1 24 n 16) ( n 3) + ( 1 24 n 12) ( n 4) 1 480c3;4(n); where 1 X n=1 c3;4(n)qn (2.13) = 10q2 1 Y n=1 (1 qn)3(1 q2n)2(1 q3n) 1(1 q4n) 1(1 q6n)2(1 q12n)3 +q 1 Y n=1 (1 qn) 2(1 q2n)8(1 q3n) 2(1 q4n) 2(1 q6n)8(1 q12n) 2: Here 11c1;12(n) and c3;4(n) are integers, see [1].

Recently Alaca, Alaca and Williams [2] have shown that

W1;24(n) = 1 1920 3(n) + 1 640 3( n 2) + 3 640 3( n 3) + 1 160 3( n 4) + 9 640 3( n 6) +1 30 3( n 8) + 9 160 3( n 12) + 3 10 3( n 24) + ( 1 24 n 96) (n) +( 1 24 n 4) ( n 24) 61 1920c1;24(n); (2.14) where 61 1 X n=1 c1;24(n)qn (2.15) = 34q 1 Y n=1 (1 + qn)(1 q2n)(1 q3n)3(1 q4n)3(1 q6n)(1 q12n 6) +30q 1 Y n=1 (1 + qn)3(1 q2n)2(1 q3n)(1 q4n)2(1 q6n)3(1 q12n 6)2 3q 1 Y n=1 (1 q2n 1)2(1 + q3n)6(1 q4n)2(1 q6n)6(1 q12n 6)6 +4q2 1 Y n=1 (1 + qn)(1 + q2n)2(1 q3n)3(1 q4n)4(1 + q6n)(1 q12n) 2q2 1 Y n=1 (1 + qn)2(1 q2n)3(1 + q3n)2(1 q4n)(1 q6n)3(1 q12n);

(7)

and W3;8(n) = 1 1920 3(n) + 1 640 3( n 2) + 3 640 3( n 3) + 1 160 3( n 4) + 9 640 3( n 6) +1 30 3( n 8) + 9 160 3( n 12) + 3 10 3( n 24) + ( 1 24 n 32) ( n 3) +( 1 24 n 12) ( n 8) 1 1920c3;8(n); (2.16) where 1 X n=1 c3;8(n)qn= (2.17) q 1 Y n=1 (1 q2n 1)2(1 + q3n)6(1 q4n)2(1 q6n)6(1 q12n 6)6 +2q2 1 Y n=1 (1 qn)2(1 + q2n)5(1 + q3n)6(1 q6n)6(1 q12n 6)3 +42q2 1 Y n=1 (1 qn)(1 q2n)(1 + q3n)3(1 q6n)6 30q2 1 Y n=1 (1 qn)(1 q2n)3(1 + q3n)3(1 q4n 2)2(1 q6n)2(1 q12n)2 +4q3 1 Y n=1 (1 + qn)(1 q4n)2(1 q6n 3)3(1 q12n)6 52q3 1 Y n=1 (1 q2n)2(1 q4n 2)2(1 q12n)6

It is obvious that 61c1;24(n) and c3;8(n) are integers. In any formula n 2 N and q 2 C.

3. Proof of Theorem 1.1

We just prove part (i) in details. The proofs of the remaining part are similar. We …rstly consider the following three quaternary quadratic forms.

f1:= x21+ x22+ x23+ x24 (3.1)

f2:= x21+ x22+ 2x23+ 2x24 (3.2)

(8)

f4:= x21+ 2x22+ 2x23+ 4x24 (3.4)

For l 2 N0we set ri(l) = card (x1; : : : ; x4) 2 Z4: l = fi(x1; x2; x3; x4) : Obviously ri(0) = 1 for i 2 f1; 2; 3; 4g. It is known (see for example [7]) that

r1(l) = 8 (l) 32 ( l 4); l 2 N; (3.5) r2(l) = 4 (l) 4 ( l 2) + 8 ( l 4) 32 ( l 8); l 2 N; (3.6) r3(l) = 4 (l) 8 ( l 2) 12 ( l 3) + 16 ( l 4) + 24 ( l 6) 48 ( l 12); l 2 N;(3.7) r4(l) = 2 (l) 2 ( l 2) + 8 ( l 8) 32 ( l 16); l 2 N: (3.8)

Proof. (i) The form f := x2

1+ x22+ x23+ x24+ 2x25+ 2x26+ 6x27+ 6x28can be obtained from the sum of the quaternary quadratic forms f1 := x21+ x22 + x23+ x24 and f3:= x21+ x22+ 3x23+ 3x24: It is clear that N (14; 22; 62; n) = X l;m2N0 l+2m=n r1(l)r3(m) = r1(0)r3( n 2) + r1(n)r3(0) + X l;m2N l+2m=n r1(l)r3(m):

(9)

Thus by using the equations (3.5) and (3.7) we have N (14; 22; 62; n) (4 (n 2) 8 ( n 4) 12 ( n 6) + 16 ( n 8) + 24 ( n 12) 48 ( n 24) +8 (n) 32 (n 4)) = X l;m2N l+2m=n (8 (l) 32 (l 4))(4 (m) 8 ( m 2) 12 ( m 3) + 16 ( m 4) + 24 ( m 6) 48 (m 12)) = 32 X l;m2N l+2m=n (l) (m) 64 X l;m2N l+2m=n (l) (m 2) 96 X l;m2N l+2m=n (l) (m 3) +128 X l;m2N l+2m=n (l) (m 4) + 192 X l;m2N l+2m=n (l) (m 6) 384 X l;m2N l+2m=n (l) (m 12) 128 X l;m2N l+2m=n (l 4) (m) 256 X l;m2N l+2m=n (l 4) ( m 2) + 384 X l;m2N l+2m=n (l 4) ( m 3) 512 X l;m2N l+2m=n (l 4) ( m 4) 768 X l;m2N l+2m=n (l 4) ( m 6) + 1536 X l;m2N l+2m=n (l 4) ( m 12) = 32W1;2(n) 64W1;4(n) 96W1;6(n) + 128W1;8(n) + 192W1;12(n) 384W1;24(n) 128W1;2( n 2) 256W1;1( n 4) + 384W2;3( n 2) 512W1;2( n 4) 768W1;3( n 4) + 1536W1;6( n 4):

Using (2.1)-(2.6), (2.8), (2.10) and (2.14) and adding 4 (n 2) 8 ( n 4) 12 ( n 6) + 16 (n 8) + 24 ( n 12) 48 ( n 24) + 8 (n) 32 ( n

4) to both sides we obtain the asserted formula.

(ii) N (12; 24; 32; n) = X l;m2N0

2l+m=n

r1(l)r3(m): Using equations (3.5), ( 3.7) and then (2.1)-(2.6), (2.8), (2.12) and ( 2.16) we obtain the asserted formula.

(iii) N (12; 32; 64; n) = X l;m2N0

6l+m=n

r1(l)r3(m): Using equations (3.5), ( 3.7) and then (2.1)-(2.6), (2.8), (2.10) and ( 2.14) we obtain the asserted formula.

(iv) N (14; 22; 32; n) = X l;m2N0

l+m=n

r2(l)r3(m): Using equations (3.6), ( 3.7) and then (2.1)-(2.6), (2.8)), (2.10), ( 2.12) and (2.16) we obtain the asserted formula.

(v) N (12; 24; 62; n) = X l;m2N0

l+2m=n

r2(l)r3(m): Using equations (3.6), ( 3.7) and then (2.1)-(2.6), (2.8), (2.10), (2.12) and (2.14) we obtain the asserted formula.

(10)

(vi) Clearly N (1; 24; 4; 62; n) = X l;m2N0

2l+m=n

r3(l)r4(m): Using equations (3.7), ( 3.8) and then (2.1)-(2.6), (2.8), (2.10), (2.12), (2.14) and (2.16) we obtain the asserted formula.

(vii) N (22; 3; 64; 12; n) = X l;m2N0

2l+3m=n

r3(l)r4(m): Using equations (3.7), ( 3.8) and then (2.1)-(2.6), (2.8), (2.10), (2.12), (2.14) and (2.16) we obtain the asserted for-mula.

References

[1] A. Alaca, ¸S. Alaca, K.S. Williams, Evaluation of the convolution sums X l+12m=n

(l) (m)

and X

3l+4m=n

(l) (m), Adv. Theoretical Appl. Math. 1 (1) (2006), 27-48. [2] A. Alaca, ¸S. Alaca, K.S. Williams, Evaluation of the convolution sums X

l+24m=n

(l) (m)

and X

3l+8m=n

(l) (m), Math. J. Okayama Univ. 49 (2007), 93-111. [3] ¸S. Alaca, K.S. Williams, Evaluation of the convolution sums X

l+6m=n

(l) (m) and X

2l+3m=n

(l) (m), J. Number Theory 124 (2007), 491-510.

[4] ¸S. Alaca, K.S. Williams, The number of representation of a positive integer by certain oc-tonary quadratic forms, Funct. Approx. 43 (1) (2010), 45-54.

[5] A. Alaca, ¸S. Alaca, K.S. Williams, Fourteen octonary quadratic forms, Int. J. Number Theory 6(2010), 37-50.

[6] A. Alaca, ¸S. Alaca, K.S. Williams, Seven octonary quadratic forms, Acta Arith. 135 (2008), 339-350.

[7] A. Alaca, ¸S. Alaca, M. F. Lemire, K.S. Williams, Nineteen quaternary quadratic forms, Acta Arith. 130 (2007), 277-310.

[8] J.W.L. Glaisher, On the square of the series in which the coe¢ cients are the sums of the divisors of the exponents, Mess. Math. 14 (1885), 156-163.

[9] J.G. Huard, Z.M. Ou, B.K. Spearman, K.S. Williams, Elementary Theory for the Millenium II, edited by M.A. Bennet, B. C. Berndt, N. Boston, H. G. Diamond, A. J. H. Hildebrand, and W. Philipp, A. K. Peters, Natick, Massachusetts, 2002, pp. 229-274.

[10] C.G.J. Jacobi, Fundamenta nova theoriae functionum ellipticarum, 1829, in Gesammelte Werke, Erster Band (Chelsea Publishing Co., New York, 1969), pp. 49–239.

[11] B. Köklüce, The representation numbers of three octonary quadratic forms, Int. J. Number Theory 9 (2013), 505-516.

[12] B. Köklüce, On the number of representation of positive integers by some octonary quadratic forms, 2nd International Eurasian Conference on Mathematical Sciences and Applications ( IECMSA), Sarajevo, Bosnia and Herzegovina, August, 2013.

[13] G. Mel…, On some modular identities, Number Theory (K. Györy, A.Pethö, and V. Sos, eds), de Gruyter, Berlin, 1998, pp. 371-382.

[14] G. Mel…, Some Problems in Elementary Number Theory and Modular Forms, Ph. D. thesis, University of Pisa, 1998.

(11)

[15] K.S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.

[16] K.S. Williams, A cubic transformation formula for 2F(12;23; 1; z) and some arithmetic con-volution formulae, Math. Proc. Cambridge Philos. Soc. 137 (2004), 519-539.

[17] K.S. Williams, An arithmetic proof of Jacobi’s eight squares theorem, Far East J. Math. Sci. 3(2001), 1001-1005. , Paci…c J. Math. 228 (2006), 387-396.

[18] K. S. Williams, The convolution sum X m<n8

(m) (n 8m); Paci…c J. Math, 228 (2006) 387–396.

Current address : Faculty of Education, Fatih University, Istanbul, Turkey E-mail address : bkokluce@fatih.edu.tr

Referanslar

Benzer Belgeler

Yükleme hali başta üçüncü teklik şahıs iyelik eki +( s)ln olmak üzere, birkaç isim tamlaması ve diğer işelik ekieri üzerinde eksizdir. Yünelme Hali (Dative)

Keywords and phrases: Conformable fractional derivative, approximate-analytical solution, fractional option pricing equation, Adomian decomposition method, modified

Bir buruksu mutluluk sandığım Salt benim diye aldandığım Kendi yalanlarıma kandığım Arttı yaşadıkça duyduğum acı Yitirmemek için o acıyı

It is noteworthy that small band gaps result for copolymers of acceptors that strongly prefer quinoid structures in 1:2 stoichiometry and of acceptors that weakly prefer

Gül Kurtuluş, Ph.D., English Language and Literatüre Department, Faculty of Humanities and Letters, Bilkent University.. environmental issues today. As early as the 16th century,

Since, the sign of real effective exchange rate in the long run equations of export supply and capital goods import demand obtained in Johansen cointegration analysis is wrong;

a Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara, Turkey b Department of Mathematics, Faculty of Sciences, Middle East Technical University,

Kadın öğrencilerin erkek öğrencilerden daha eşitlikçi olduğu, toplumsal cinsiyet kalıp yargılarını ve meslek içinde cinsiyete dayalı