• Sonuç bulunamadı

Investigations into the therapeutic effects of aerial and stem parts of Buxus papillosa CK Schneid.: In vitro chemical, biological and toxicological perspectives

N/A
N/A
Protected

Academic year: 2021

Share "Investigations into the therapeutic effects of aerial and stem parts of Buxus papillosa CK Schneid.: In vitro chemical, biological and toxicological perspectives"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Journal

of

Pharmaceutical

and

Biomedical

Analysis

jou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l oc a t e / j p b a

Investigations

into

the

therapeutic

effects

of

aerial

and

stem

parts

of

Buxus

papillosa

C.K.

Schneid.:

In

vitro

chemical,

biological

and

toxicological

perspectives

Hammad

Saleem

a,b

,

Thet

Thet

Htar

a

,

Rakesh

Naidu

c

,

Irshad

Ahmad

d

,

Gokhan

Zengin

e

,

Manzoor

Ahmad

f

,

Nafees

Ahemad

a,g,∗

aSchoolofPharmacy,MonashUniversityMalaysia,JalanLagoonSelatan,47500,BandarSunway,SelangorDarulEhsan,Malaysia bInstituteofPharmaceuticalSciences(IPS),UniversityofVeterinary&AnimalSciences(UVAS),Lahore,54000,Pakistan

cJeffreyCheahSchoolofMedicineandHealthSciences,MonashUniversityMalaysia,JalanLagoonSelatan,47500,BandarSunway,SelangorDarulEhsan,

Malaysia

dDepartmentofPharmacy,TheIslamiaUniversityofBahawalpur,Bahawalpur,63100,Pakistan eDepartmentofBiology,FacultyofScience,SelcukUniversity,Campus,Konya,Turkey fDepartmentofChemistry,UniversityofMalakand,Chakdara,Dir(L),Pakistan

gTropicalMedicineandBiologyMultidisciplinaryPlatform,MonashUniversityMalaysia,JalanLagoonSelatan,47500,BandarSunway,SelangorDarul

Ehsan,Malaysia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received9October2018

Receivedinrevisedform4January2019 Accepted6January2019

Availableonline7January2019 Keywords: Buxuspapillosa Phytochemicals Enzymeinhibition Antioxidant Cytotoxicity

a

b

s

t

r

a

c

t

Inthisstudy,differentsolventextracts(methanol,dichloromethaneandn-hexane)fromaerialandstem partsofBuxuspapillosaC.K.Schneid(Buxaceae)wereinvestigatedforapanoplyofbioassays.Biological profileswereestablishedbydeterminingantioxidantandenzymeinhibitionprofiles.Toxicitywastested usingMTTcellviabilityassayonfivedifferenthumancancercelllinesi.e,MCF-7,MDA-MB-231,CaSki, DU-145andSW-480.Forchemicalfingerprinting,totalbioactivecontentsandUHPLC-MSsecondary metabolitesprofileweredetermined.Generally,bothaerialandstemmethanolextractshadhighest totalbioactivecontents,radicalscavengingandreducingpowerpotential.DCMandn-hexaneextracts werefoundtobemostactivefortotalantioxidantandmetalchelatingactivity.TheUHPLC-MSanalysis ofmethanolextractsrevealedthepresenceofseveralphenolic,flavonoid,alkaloid,saponinand dep-sipeptidederivatives.Alltheextractsweresignificantlyactiveagainstbutyrylcholinesterase,whereas moderateinhibitionwasobservedforacetylcholinesterase,␣-glucosidaseandurease.Similarly,a con-siderablelevelofcytotoxicitywasobservedagainstallthetestedcelllineswithIC50valuesrangingfrom

26to225.9␮g/mL.Aerialmethanolandstemn-hexaneextractswerefoundtobemostcytotoxic. Princi-palcomponentanalysiswasalsoperformedtofindanypossiblecorrelationbetweenbiologicalactivities andtotalbioactivecontents.Onthebasisofourfindings,B.papillosamaybeconsideredaspromising sourceofbioactivemolecules.

©2019ElsevierB.V.Allrightsreserved.

1. Introduction

Bloomingresearchanddevelopmentinventivenessemphasized

thepolypharmacologicalprospectiveofplantsecondary

metabo-litesforthetreatment,preventionand/ormanagementofseveral

healthproblems [1,2].Indeed, theuseofherbalmedicationsto

curediseasespredatesrecordedhistoryofmankind.Advancesin

analyticaltechniqueshavestimulatesubstantialresearchforthe

∗ Correspondingauthorat:SchoolofPharmacy,MonashUniversityMalaysia,Jalan LagoonSelatan,47500,BandarSunway,SelangorDarulEhsan,Malaysia.

E-mailaddress:nafees.ahemad@monash.edu(N.Ahemad).

developmentofnewpharmacophoresandscaffoldsfordesigning

efficaciousagentsforseveraldiseases[1,3].

Inspiteofthefactthat,thepharmaceuticalindustrialrevolution

andadvancementoforganicchemistryresultedintheinclination

forsyntheticmedications.However,theassociatedsideeffectsand

high-costofthesesyntheticdrugsonhumanhealthhaverenewed

theinterestintheinvestigationofnaturalproductsfordrug

discov-eryanddevelopment[4].Plantshavealwaysservedhumanswith

allhisneedsintermsofshelter,clothing,food,flavours,fragrances

and most importantly,medicines [5]. Nowadays, knowledge of

ancientbotanicalmedicinalpracticesandapplicationofmodern

phytochemicaltechniqueshaveprovided excellenttoolsforthe

https://doi.org/10.1016/j.jpba.2019.01.007

(2)

purificationandstructuralelucidationofvariousphytochemicals,

which,inturn,hasgiveninsightsintotheirmodeofactiononthe

humanbody.Infact,11%ofthe252drugs,appraisedasbasicand

essentialbytheWorldHealthOrganisation(WHO),areexclusively

ofplantoriginandanumberofsyntheticdrugsareobtainedfrom

naturalprecursors[4].

ThegenusBuxusbelongstofamilyBuxaceaeandcomprisesof

approximately70speciesaroundtheworldwhichhavebeenused

intheindigenoussystemsofmedicineforanticholinesterase[6],

anti-HIV,immunosuppressive andcytotoxicityactivities[7,8].B.

papillosa,locallyknownasshamshad,oneofthecommonplant

ofthis genusis traditionallyusedtocure malaria,rheumatism,

skindiseases,headacheandalsoreportedtobeusedas

antidiar-rheal, antisecretory,cardiotonic and neurotonicagent agent [9].

However, previously nomuch research hasbeen done for this

speciesregardingitschemicalcomposition,toxicologyand

phar-macologicalactivities.Toaddressthislacuna,thisstudyaimedat

investigatingthetotalbioactivecontents,secondarymetabolomics

profilingaswellantioxidantpotentialofdifferentsolventextracts

of B. papillosa aerial and stem parts. The inhibitory potential

of all the extracts was tested on acetylcholinesterase,

butyryl-cholinesterase,␣-glucosidaseandurease.Moreover,aspecialaim

ofthisstudywastoassessthecytotoxicityagainstbreast,cervix,

prostateandcoloncancersinordertoestablishascientificbasisfor

furtherapplicationsofthisplantasafunctionalfood/ingredient.

Inaddition,forassessingthesimilarityofthebiologicalactivities

expressedbytheextractsandtoanalyzethecorrelationsbetween

themeasuredvariables,aprincipalcomponentanalysis(PCA)was

also performed.As faras our knowledge, this will be thefirst

reportonsuchcomprehensivebiological,chemicaland

toxicolog-icaldetailingofB.papillosa.

2. Materialandmethods

2.1. Plantcollectionandextraction

B.papillosaaerialandstempartswerecollectedfromthe

north-ernareasofPakistan andidentifiedby Dr.Abdul-RehmanNiazi

(InchargeHerbarium),Department ofBotany,Punjab University

Lahore,Pakistan.Inaddition,aVoucherspecimennumber(LAH

#7517)wasalsodepositedin theherbariumof Departmentof

Botany,PunjabUniversityLahore,Pakistan.Theshade-driedaerial

andstempartsweresubjectedforextractionbymaceration(72h)

successivelywithDCMandmethanolatroomtemperaturewith

occasionallyshaking.Theresultantextractswereconcentratedby

Rotavapor-R20at35◦C.

2.2. Totalphenolic,flavonoidsandsecondarymetaboliteprofile

Total phenolic content assay was done by utilizing

well-established Folin–Ciocalteu reagent method [10]. The phenolic

contents wereexpressedasmg gallicacidequivalentpergram

offreshsample(mgGAE/gextract).Totalflavonoidcontentswere

determinedwiththealuminiumchloridecolorimetricmethod[11].

Theflavonoidconcentrationwasexpressedasmgquercetin

equiv-alentpergramsample(mgQE/gextract).

Secondary metabolites were evaluated by RP-UHPLC-MS.

UHPLCofAgilent1290InfinityLCsystemcoupledtoAgilent6520

Accurate-Mass Q-TOF mass spectrometer withdual ESI source

was used [12,13]. Column specifications were as: Agilent

Zor-baxEclipseXDB-C18,narrow-bore2.1x150mm,3.5micron(P/N:

930990-902).Columnandauto-samplertemperaturewere

main-tainedat25◦Cand4◦C,respectively.Flowratewas0.5mL/min.

Mobilephasesusedwere:A-0.1%formicacidinwater,B-0.1%

formicacidinacetonitrile.Injectionvolumewas1.0␮L.Runtime

was25minandpost-runtimewas5min.FullscanMSanalysiswas

doneoverarangeofm/z100–1000usingelectrosprayionsource

innegativemode.Nitrogenwassuppliedasnebulizinganddrying

gasatflowratesof25and600L/hour,respectively.Thedryinggas

temperaturewas350◦C.Thefragmentationvoltagewasoptimized

to125V.Analysiswasperformedwithacapillaryvoltageof3500V.

DatawasprocessedwithAgilentMassHunterQualitativeAnalysis

B.05.00(Method:Metabolomics-2017-00004.m).Identificationof

compoundswasdonefromSearchDatabase:METLINAM

PCDL-N-170502.cdb,withparametersas:Matchtolerance:5ppm,Positive

Ions:+H,+Na,+NH4,NegativeIons:-H[14].

2.3. Antioxidantactivities

1,1-Diphenyl-2-picrylhydrazylradical(DPPH) assaywas

per-formed as described by Kolevaet al [15]. ABTS (2, 2-azino-bis

(3-ethylbenzothiazoline-6-sulphonicacid)radicalcation

scaveng-ingactivity,CUPRAC(Cupricionreducingantioxidantcapacity)and

metalchelatingactivitywasperformedasdescribepreviously[16].

TheFRAP(ferricreducingantioxidantpower)assayestimatesthe

abilityoftheplantextracttoreduceFe3+toFe2+andperformed

accordingtostandardmethodasdescribedpreviously[17].Total

antioxidantcapacity(TAC)ofextractswasevaluatedby

phospho-molybdenummethodaccordingtoPrietoetal[18].Thereducing

powerandtotalantioxidantcapacitywasexpressedasequivalent

ofgallicacid(mgGAE/g).TheABTSandCUPRACantioxidant

activ-itieswerereportedastroloxequivalents,whereasEDTAwasused

asreferencestandardformetalchelatingassay.

2.4. Enzymeassays

Chloinesterase(acetylcholinesteraseandbutyrylcholinesteras),

␣-glucosidase and urease inhibition activities were

deter-minedspectrophotometricallyaccordingtostandardmethodsas

describedpreviously[14].EserinewasusedascontrolforAChEand

BChE,acarbosefor␣-glucosidaseandkojicacidforurease.EZ–Fit

EnzymekineticssoftwarewasusedtocalculateIC50values

(Per-rellaScientificInc.Amherst,USA).Thepercentageinhibitionwas

calculatedas

Inhibition(%)=Control−TestControl ×100

2.5. MTTcytotoxicityassay

MCF-7,MDA-MB-231(breastcancer),CaSki(cervicalcancer),

DU-145(prostatecancer)andSW-480(Colon)celllineswereused

totestcytotoxicity.Thebreastcancercelllinesweremaintainedin

DMEMculturemediumwhileRPMI-1640mediawasusedforCaSki,

DU-145andSW-480cells.Bothmediaweresupplementedwith

10%FBS(foetalbovineserum)and1%P/S(penicillin-streptomycin)

environment.Cellswereculturedat37◦Cinahumidified

atmo-spherein5%CO2incubator.Thecytotoxicityofalltheextractswas

doneusingMTTassay[14].Thepercentagecellviability(%)was

calculatedbyusingfollowingformula

Cellviability(%)=Abss–Absc×100

Alloftheexperimentswerecarriedoutintriplicatedandthe

IC50values(48htreatmentwithcancercells)werealsocalculated

usingGraphpadprismsoftware(V7).

2.6. Statisticalanalysis

Alltheexperimentswererepeatedthreetimesandanalysiswas

doneintriplicates.Theobtainedresultswereexpressedasmean

value andstandard deviation(mean±SD).One-way analysisof

variance(ANOVA)wasusedtocalculatethedifferences,followed

(3)

Table1

TotalbioactivecontentsofB.papillosaaerialandstemextracts.

Plant Solvents Abbreviations Totalphenoliccontent

(TPC)(mgGAE/g)

TotalFlavonoidcontent

(TFC)(mgQE/g)

B.papillosaaerial Methanol BA-M 36.27±0.57a 40.48±0.93a

DCM BA-D 23.77±2.37b 21.75±0.3b

n-hexane BA-H 11.81±1.34c 20.71±2.06b

B.papillosastem Methanol BS-M 24.68±4.63b 47.10±1.51a

DCM BS-D 20.64±0.95b 24.53±1.53b

n-hexane BS-H 10.80±1.45c 4.56±0.64c

Datafromthreerepetitions,withmean±standarddeviation;meanswithdifferentsuperscriptlettersinthesamecolumnaresignificantly(p<0.05)different.GAE:gallic acidequivalent;QE:quercetinequivalent.

Fig.1.TotalionchromatogramsofB.papillosaaerialandstemmethanolextracts.

PrismsoftwarewasusedtocalculateIC50.SPSSv22.0softwarewas

usedtocarryoutallexperimentalanalysis.

3. Resultsanddiscussion

3.1. TotalbioactivecontentsandUHPLC-MSanalysis

TotalbioactivecontentsofdifferentsolventextractsofB.

papil-losaweredeterminedintermsoftotalphenolicandtotalflavonoid

contentsandtheresultsareshowninTable1.

The highest TPC were observed in BA-M (36.27±0.57mg

GAE/g), followed by BS-M (24.68±4.63mg GAE/g), BA-D

(23.77±2.37mgGAE/g) andBS-D (20.64±0.95 mg GAE/g).The

totalflavonoidcontentsof B.papillosarangedfrom47.10±1.51

to4.56±0.64mgQE/gextract.Thehighestvalueswereobtained

for BS-M and BA-M i.e., 40.48±0.93 and 47.10±1.51mg QE/g,

respectively.Bothn-hexaneextractsfromaerialand stemparts

hadlowesttotalbioactivecontents.Overall,highertotalbioactive

contentswerefoundinpolartonon-polarsolvent.Similarly,the

total phenolic contents of different solvent extracts of B.

sem-pervirensasreportedbyOrhanetal[19],alsoshowedmethanol

extractto exhibithigher phenolic content(63.85mgGAE/g). In

anotherstudy,B.hyrcanaleavesmethanolextract(148.2±4.1mg

GAE/g)wasfoundtohavehighest TPC ascompared withethyl

acetate(101.6±5.1mgGAE/g)andn-hexane(15.3±3.3mgGAE/g)

extracts[20].

Liquidchromatographymassspectrometryanalysisoftheaerial

andstemmethanolextractsofB.papillosawasperformedtohave

aninsightintothepossiblesecondarymetabolitecomponents.A

lineargradientelutionwithwaterandmethanolcontaining0.1%

fromicacidasthemobilephaseofferedthebestresolution.A

typ-icalchromatogramofboththeextractswithmassspectrometric

detectioninnegativeionmodeexhibitedquitecomplexpatterns

ofpeaksasshowninFig.1.TheUHPLC/MSanalysisofB.papillosa

aerialmethanolextracthasrevealedthepresenceof16different

compoundsandgiveninTable2.

Mostofthesecompoundsbelongtotypicalphenolicacids,

cin-namic acid and flavonoid derivatives. The flavonoids present

were diffutin, depressonol A, kaempferol

3-lathyroside-7-rhamnoside, kaempferol 3-(2G-glucosylrutinoside), quercetin

3-alpha-arabinopyranosyl-(1->2)-glucoside, robinin,

isoori-entin 2’-O-arabinoside, robinetin 3-rutinoside, quercetin

3-galactoside-7-rhamnoside,laricitrin3-rhamnosideandluteolin

3,4-diglucuronide. Gallic acid was the major phenolic

identi-fied. Moreover, coriandrone C (oumarin), Citrusin A (lycoside),

LucyosideJ(saponin)andAntanapeptinA(Ddepsipeptide)were

(4)

Fig.2. CytotoxicityofB.papillosaaerialextracts.

Thegraphsshowscytotoxiceffectsas(1)MCF-7(BA-M),(2)MCF-7(BA-D),(3)MCF-7(BA-H),(4)MDA-MB-231(BA-M),(5)MDA-MB-231(BA-D),(6)MDA-MB-231(BA-H), (7)CaSki(BA-M),(8)CaSki(BA-D),(9)CaSki(BA-H),(10)DU-145(BA-M),(11)DU-145(BA-D),(12)DU-145(BA-H),(13)SW-480(BA-M),(14)SW-480(BA-D)and(15) SW-480(BA-H)****indicatessignificantdifferencewhencomparedwithuntreated(control)cells(pvalue<0.05).

(5)

Table 2 UHPLC-MS of B. papillosa aerial methanol extract (negative ionization mode). S. No. RT (min) Base peak (m/z) Peak height AUC Proposed compounds Compound class Mol. formula Mol. mass MFG Diff (ppm) Vol (%) 1 0.63 245.04 90238 230847 Coriandrone C Coumarin C13 H10 O5 246.05 0.58 0.08 2 1.77 169.01 49829 380500 Gallic acid Phenolic C7 H6 O5 170.02 1.41 0.13 3 7.55 463.15 50991 419706 Diffutin Flavonoid C23 H28 O10 464.16 3.3 0.14 4 8.25 537.19 44308 387064 Citrusin A Glycoside C26 H34 O12 538.20 − 1.23 0.13 5 8.35 741.19 962282 9380450 Depressonol A Flavonoid C32 H38 O20 742.19 − 3.1 3.1 6 8.55 725.19 1419855 10045164 Kaempferol 3-lathyroside-7-rhamnoside Flavonoid C32 H38 O19 726.20 − 2.13 3.32 7 8.56 755.20 338457 2521837 Kaempferol 3-(2G-glucosylrutinoside) Flavonoid C33 H40 O20 756.21 − 1.13 0.83 8 8.60 595.13 362708 3165513 Quercetin 3-alpha-arabinopyranosyl-(1->2)-glucoside Flavonoid C26 H28 O16 596.13 − 2.22 0.57 9 8.61 739.20 182405 1291070 Robinin Flavonoid C33 H40 O19 740.21 − 0.02 0.43 10 8.82 579.13 372101 2260134 Isoorientin 2”-O-arabinoside Flavonoid C26 H28 O15 580.14 − 2.27 0.75 11 8.85 609.14 160543 1129312 Robinetin 3-rutinoside Flavonoid C27 H30 O16 610.15 − 2.83 0.37 12 8.98 609.14 51756 330836 Quercetin 3-galactoside-7-rhamnoside Flavonoid C27 H30 O16 610.15 0.79 0.11 13 9.72 477.10 49062 293647 Laricitrin 3-rhamnoside Flavonoid C22 H22 O12 478.11 − 5.12 0.1 14 10.07 809.43 66914 547995 Lucyoside J Saponin C42 H66 O15 810.44 − 2.21 0.18 15 10.31 635.12 71913 537819 Luteolin 3’,4’-diglucuronide Flavonoid C28 H28 O17 636.13 0.83 0.18 16 12.84 795.45 111349 1093479 Antanapeptin A Depsipeptide C41 H60 N4 O8 736.44 0.24 0.36 RT: retention time; AUC: area under curve.

Similarly, the stem methanol extract was found to

pos-sess 20 secondary metabolite compounds as presented in

Table3, andits MStotal ion chromatogramis shownin Fig.2.

Polyphenolics present were found to be beta-glucogallin, 2, 4,

6-trihydroxybenzoic acid, 4-O-methyl-gallate, ferulic acid

4-O-glucuronide,demethyloleuropein,p-salicylicacidandgrossamide.

Whereas,flavonoidsidentifiedweredepressonolA,kaempferol

3-lathyroside-7-rhamnoside,kaempferol3-(2G-glucosylrutinoside),

isoorientin2’-O-arabinoside,robinetin3-rutinoside,quercetin

3-galactoside-7-rhamnoside,jaceidin5-glucosideandwightin.Two

saponins(lucyoside J and phytolaccosideA), one iridoid

glyco-side(verbenalin),oneglycoside(citrusinB)andonedepsipeptide

(antanapeptin A) were alsopresent. This is the first report on

thepreliminaryUHPLC-MSanalysisofB.papillosaaerialandstem

methanolextracts.

3.2. Antioxidantcapacity

Determinationofantioxidantactivityusingonlyonemethod

isnotreliablesinceantioxidantsexhibittheirprotectiveroleby

threemainproposedmechanisms,namely,hydrogentransfer,

elec-trontransfer,andmetalchelation.Inthisrespect,theantioxidant

potentialoftheB.papillosaplantextractswasevaluatedusing

dif-ferent spectrophotometricmeasurements including,freeradical

scavenging(DPPHandABTS),reducingpower(CUPRACandFRAP),

phosphomolybdenumandmetalchelatingassaysandtheresults

arepresentedinTable4

IntheDPPHradicalassay,theBA-M(IC50=65.70±1.90␮g/mL),

BA-D(IC50=165.38±2.22␮g/mL)andBS-M(IC50=185.32±2.48

␮g/mL) displayed more potent radical scavenging potential

amongst allextracts.Moreover,in ABTS assay,similartoDPPH

results,theBA-M, BS-Mand BA-Dhasthehighest radical

scav-enging potential with values of 95.21±1.74, 86.29±1.16 and

73.51±0.48mgTE/g,respectively.Whereas,BA-H,BS-Dand

BS-Hwereleastactiveforboth DPPHand ABTSradicalscavenging

assays.Similartoourfindings,previousresearchershadreported

theB.hyrcanaleavesmethanolextract(47.8±0.8%)tohave

high-estDPPHinhibitionascomparedwithethylacetate(33.8±0.1%)

andn-hexane(20.8±0.6%)extracts[20].Similarly,anotherstudy

reported the methanol extract of B. wallichiana exhibited the

highestDPPHinhibition(IC50;29.2±2.10␮g/mL)amongdifferent

extracts[21].

FRAPandCUPRACassayswereutilizedtomeasurethe

reduc-ing potential of B. papillosa aerial and stem extracts. BA-M

(FRAP: 47.33±0.14mg GAE/g and CUPRAC: 134.26±10.02mg

TE/g) revealed more prominent reducing power capacity as

compared to BS-M (FRAP: 41.93±0.11mg GAE/g and CUPRAC:

98.42±1.20mgTE/g)andBA-D(FRAP:35.02±0.08mgGAE/gand

CUPRAC:81.55±2.33mgTE/g).Allotherthreeextractsexhibited

lowerreducingpowercapacities.

Similarly,phosphomolybdenumassaywasusedtodetermine

the total antioxidant capacity and theresults are presented in

Table4.BS-D(58.19±2.52mgGAE/g)andBA-D(42.32±1.65mg

GAE/g)weremostactiveforTAC,ascomparedwithBA-M,BA-H

andBS-Mwhich showsTACvalues of42.32±1.65, 31.19±1.38

and19.29±1.50mgGAE/g,respectively.Inmetalchelatingassay,

BS-D(46.64±7.53mgEDTA/g),BA-H(41.20±1.15mgEDTA/g)and

BA-D(37.17±2.94mgEDTA/g)werethemostactive,whereas

BA-M(8.32±0.99mg EDTA/g)wasleastactive.Takentogether,our

resultsindicatedthatthestudiedplantextractsexhibited

signif-icantantioxidantproperties.Overall,aerialmethanolextractwas

themostactiveforantioxidantcompounds.Clearly,theobtained

resultsareassociatedwiththelevelsoftotalbioactivecomponents

(6)

pre-Table 3 UHPLC-MS of B. papillosa stem methanol extract (negative ionization mode). S. No. RT (min) Base peak (m/z) Peak height AUC Proposed compounds Compound class Mol. formula Mol. mass MFG Diff (ppm) Vol (%) 1 0.68 387.13 268534 968683 Verbenalin Iridoid C17 H24 O10 388.13 0.03 0.21 2 1.3 331.07 546101 6069407 beta-Glucogallin Phenolic C13 H16 O10 332.07 − 4.83 1.34 3 1.76 169.02 253254 2126693 2,4,6-Trihydroxybenzoic acid Phenolic C7 H6 O5 170.02 − 1.96 0.47 4 7.16 183.03 299456 2947017 4-O-Methyl-gallate Phenolic C8 H8 O5 184.03 1.9 0.65 5 7.31 369.09 116400 751668 Ferulic acid 4-O-glucuronide Phenolic C16 H18 O10 370.09 − 6.01 0.17 6 7.44 525.17 113880 813974 Demethyloleuropein Polyphenol C24 H30 O13 526.17 − 3.21 0.18 7 8.33 741.19 699589 5336061 Depressonol A Flavonoid C32 H38 O20 742.19 − 2.3 1.18 8 8.54 567.21 99618 550841 Citrusin B Glycoside C27 H36 O13 568.21 − 1.82 0.12 9 8.54 725.20 370427 2560362 Kaempferol 3-lathyroside-7-rhamnoside Flavonoid C32 H38 O19 726.20 − 1.41 0.56 10 8.55 755.21 216328 1509661 Kaempferol 3-(2G-glucosylrutinoside) Flavonoid C33 H40 O20 756.21 − 1.72 0.33 11 8.82 579.14 98463 602503 Isoorientin 2”-O-arabinoside Flavonoid C26 H28 O15 580.14 1.29 0.13 12 8.84 609.15 304301 2085273 Robinetin 3-rutinoside Flavonoid C27 H30 O16 610.15 − 1.37 0.46 13 8.97 609.15 84059 560970 Quercetin 3-galactoside-7-rhamnoside Flavonoid C27 H30 O16 610.15 1.78 0.12 14 9.93 137.03 104194 878880 p-Salicylic acid Phenolic C7 H6 O3 138.03 3.62 0.19 15 10.06 809.44 341457 3141468 Lucyoside J Saponin C42 H66 O15 810.44 − 4.7 0.69 16 10.46 521.13 147738 939907 Jaceidin 5-glucoside Flavonoid C24 H26 O13 522.13 − 2.7 0.21 17 11.83 647.38 124942 1398703 Phytolaccoside A Saponin C36 H56 O10 648.38 − 2.13 0.31 18 11.98 623.24 172617 2320697 Grossamide Phenolic C36 H36 N2 O8 624.24 − 0.48 0.51 19 12.88 735.44 679669 7137133 Antanapeptin A Depsipeptide C41 H60 N4 O8 736.44 0.3 1.57 20 12.98 343.09 166817 1430549 Wightin Flavonoid C18 H16 O7 344.09 − 3.82 0.32 RT: retention time; AUC: area under curve.

viousstudies,whichreportedastrongcorrelationbetweentotal

bioactivecomponentsandantioxidantproperties[22]

3.3. Enzymeinhibition

Increasingevidencestendtoadvocate thelinkbetween

dia-betesandtheoccurrenceofneurodegenerativedisorders.Diabetes

sequelaeaffectthebrainovertimeuntilcognitivedeclinebecomes

clinically apparent. Cholinesterases have been targeted for the

managementofneurodegenerativedisorderssuchasAlzheimer’s

disease. On the other hand, ␣-glucosidase are key players in

thecontrolofglycaemiclevel.Interestingly,phytochemicalshave

provedtobeinhibitorsofthesekeyenzymesandhaveusheredto

thedevelopmentofnovelpharmaceuticals[23].Differentextracts

ofB.papillosaaerialandstempartsweretestedforAChE,BChE,

␣-glucosidaseandureaseinhibitionactivityandtheresultsareshown

inTable5.

AlltheextractswereleastactiveagainstAChEwithIC50values

morethan500␮g/mL.However,withtheonlyexceptionofBS-H,all

otherextractsweresignificantlyactiveagainstBChEwithIC50

val-uesrangingfrom21.27±0.59to26.45±0.47␮g/mL.Theobserved

higherbutyrylcholinesteraseinhibitionissupportedbysome

pre-vious researchers who had reported the presence of different

secondarymetabolitesfrombuxusspeciesforexample,B.hyrcana

andB.natalensistobepotentinhibitorsforcholinesterases[24–26].

Incaseof␣-glucosidaseinhibition,BS-HandBS-Mshowedhighest

inhibition (IC50 = 16.29±0.37 and 42.53±2.28␮g/mL,

respec-tively),but,BA-H(IC50 =113.24±2.15␮g/mL)and BS-D(IC50 =

175.46±3.29␮g/mL)werealsomoderatelyactiveforthisenzyme.

However,BA-MandBA-Dwereleastactivefor␣-glucosidase.The

resultsof␣-glucosidaseinhibitionareinaccordancewiththe

pre-viousstudieswhich had alsoreportedthehighestinhibition of

then-hexaneextract(42.9±2.3%)ofB. hyrcanaascompared to

methanolextract(12.3±1.1%)[20].Forurease,BA-M,BS-Mand

BS-HshowedmoderateinhibitionwithIC50valuesof223.74±0.48,

228.56±0.59and425.62±0.3528␮g/mL,respectively.Theother

threeextracts,BA-D,BA-HandBS-Dwerefoundtobeleastactive

againsturease.Ingeneral,BS-MandBS-Hweresignificantlyactive

againstallenzymes(exceptAChE)andoverall,theB.papillosastem

extractsweremoreactiveascomparedwithaerialextracts.This

isthefirstreportoncomprehensiveenzymeinhibitionprofilesof

differentsolventextractsofB.papillosaaerialandstemparts.

3.4. Cytotoxicity

Majorissues concerningconventional anticancer

chemother-apyaretheoccurrenceofsideeffectsinducedbythenon-specific

targetingofbothnormalandcancercells,andtheemergenceof

drug-resistantcancercells.Basedonthis,therehasbeengrowing

interestintheuseofnaturallyoccurringmoleculeswith

chemo-preventiveandchemotherapeuticpropertiesincancertreatment

[27].Themethanol,DCMandn-hexaneextractsofB.papillosaaerial

andstempartsweretestedforcytotoxicityagainstfivehuman

car-cinomacellsi.e.,breast(MCF-7andMDA-MB-231),cervix(CaSki),

prostate(DU-145)andcolon(SW-480).TheIC50valuesofthetested

extractsaregiveninTable6andthepercentagecellviabilityat

dif-ferentconcentrations(500-15.62␮g/mL)isshowninFigs.3and4.

Theaerialmethanolextractdisplayedthehighestlevelof

cyto-toxicityagainstthebreastcancercellline(MDA-MB-231;IC50 =

14.19␮g/mL),butitwasalsoconsiderablyactiveagainsttwoother

celllines,MCF-7andCaski(IC50=50.34and82.18␮g/mL,

respec-tively).BA-Dextractshowedmostsignificantcytotoxicityagainst

MCF-7(IC50=56.54␮g/mL)andconsiderabletoxicityagainstCaSki

andDU-145,withIC50 valuesof72.46and78.86␮g/mL,

respec-tively.TheBA-DextractwasalmostaspotentasBA-Mextractin

(7)

BA-Fig.3.CytotoxicityofB.papillosastemextracts.

Thegraphsshowscytotoxiceffectsas(1)MCF-7(BS-M),(2)MCF-7(BS-D),(3)MCF-7(BS-H),(4)MDA-MB-231(BS-M),(5)MDA-MB-231(BS-D),(6)MDA-MB-231(BS-H), (7)CaSki(BS-M),(8)CaSki(BS-D),(9)CaSki(BS-H),(10)DU-145(BS-M),(11)DU-145(BS-D),(12)DU-145(BS-H),(13)SW-480(BS-M),(14)SW-480(BS-D)and(15)SW-480 (BS-H).

(8)

Table4

AntioxidantactivitiesofB.papillosaaerialandstemextracts.

Samples Radicalscavengingactivity Reducingpower Totalantioxidant

capacity(TAC) Ferrouschelating %RSC (1mg/mL) DPPHIC50 (␮g/mL) AAEAC (mgAAE/g) ABTS (mgTE/g extract) FRAP (mgGAE/g) CUPRAC (mgTE/g extract) Phosphomolybdenum (mgGAE/g) MetalChelating (mgEDTA/g) BA-M 82.43±0.19 65.70±1.90 58.99±1.72 95.21±1.74 47.33±0.14 134.26±10.02 42.32±1.65 8.32±0.99 BA-D 79.34±0.41 165.38±2.22 23.40±0.31 73.51±0.48 35.02±0.08 81.55±2.33 51.16±3.12 37.17±2.94 BA-H 54.38±0.18 287.98±3.18 13.44±0.14 15.54±1.77 15.61±0.14 67.35±1.46 31.19±1.38 41.20±1.15 BS-M 86.16±0.41 185.32±2.48 20.88±0.27 86.29±1.16 41.93±0.11 98.42±1.20 19.29±1.50 14.98±0.52 BS-D 74.68±0.27 591.38±1.81 6.54±0.02 44.60±2.69 15.74±0.22 91.31±2.09 58.19±2.52 46.64±7.53 BS-H 61.33±1.05 920.21±35.52 4.21±0.16 5.64±1.44 11.64±0.29 65.19±3.26 26.85±1.77 31.43±2.56 Ascorbicacid 89.96±1.60 16.82±069 nt nt nt nt nt nt

Datafromthreerepetitions,withmean±standarddeviation;RSC:radicalscavengingcapacity;AAEAC:Ascorbicacidequivalentanti-oxidantcapacity;FRAP:ferricreducing anti-oxidantpower;TAC:totalantioxidantcapacity;nt:nottested.

Table5

EnzymeinhibitioneffectsofB.papillosaaerialandstemextracts.

Samples AChE BChE ␣-glucosidase Urease

Inhibition(%) IC50 (␮g/mL) Inhibition(%) IC50 (␮g/mL) Inhibition(%) IC50 (␮g/mL) Inhibition(%) IC50 (␮g/mL) BA-M 47.32±0.35 >500** 83.54±0.75 22.82±0.63 24.53±1.26 >500** 76.85±0.63 223.74±0.48 BA-D 16.74±0.23 >500** 82.35±0.56 26.45±0.47 8.47±1.27 >500** 35.26±0.45 >500** BA-H 5.36±0.14 >500** 79.42±0.45 25.63±0.38 87.62±2.53 113.24±2.15 15.38±0.26 >500** BS-M 25.25±0.46 >500** 84.73±0.75 23.54±0.63 91.35±2.53 42.53±2.28 75.25±0.74 228.56±0.59 BS-D 24.53±0.35 >500** 87.24±0.63 21.27±0.59 85.62±3.74 175.46±3.29 45.53±0.35 >500** BS-H 29.85±0.42 >500** 81.26±0.45 152.65±0.38 89.74±0.45 16.29±0.37 54.37±0.49 425.62±0.35 Eserine 91.27±1.17 0.04±0.01 82.82±1.09 0.85±0.01 nt nt nt nt Acarbose nt nt nt nt 92.83±0.18mM 37.45±0.16␮M nt nt Kojicacid nt nt nt nt nt nt 98.21±0.18 21.25±0.15 Valuesareexpressedasmeans±S.D.ofthreereplicates.

**TheIC

50valuewashigherthan500␮g/mL,nt:nottested,AChE:acetylcholinesterase;BChE:butyrylcholinesterase;nt:nottested.

Table6

CytotoxicityofB.papillosaaerialandstemextracts.

Celllines IC50value(␮g/mL)

B.papillosaaerial B.papillosastem

BA-M BA-D BA-H BS-M BS-D BS-H

MCF-7 MDA-MB-231 CaSki DU-145 SW-480 50.34 56.54 85.82 127 154.2 26 14.19 >500** 61.22 53.24 225.9 89.94 82.18 72.46 227.7 116.3 56.39 39.99 164.4 170.2 >500** 187 121.9 99.17 158.7 78.86 47.29 236.7 94.81 83.04

Valuesareexpressedasmeans±S.D.ofthreereplicates.

**TheIC50valuewashigherthan500␮g/mL.

(9)

Fig.5. Relationshipbetweenbiologicalactivitiesandthe4identifiedfactors;A:Correlationcircle(belowonfactor1and2);B:Mapofcorrelationbetweenvariablesand factors;C:Mapofsquaredcosinesofthevariables.

Fig.6.Relationshipbetweentotalbioactivecontents(phenolicsandflavonoids)anddifferentevaluatedbiologicalactivitiesassessedthroughPearson’slinearcorrelations; **thep-valuewaslowerthan0,01;*thep-valuewaslowerthan0,05.

Hextractshowedmostprominentcytotoxicityagainstthecolon

cancercelllineSW-480(IC50=47.29␮g/mL)andwasalsoactive

againstothertwobreastcelllines,MDA-MB-231andMCF-7(IC50

=61.22and85.82␮g/mL,respectively).IncaseofB.papillosastem

extracts,theBS-Hextractexhibitednotablecytotoxicityagainstthe

MCF-7cellline(IC50=26␮g/mL),andwasalsoconsiderablyactive

againstallotherfourcelllineswithIC50valuesrangingfrom39.99

to99.17␮g/mL.ThecytotoxicitypatternofBS-Mwasquite

sim-ilartothatoftheBA-M,whichalsoshowedthemostsignificant

cytotoxicityagainstMDA-MB-231cellline(IC50 =53.24␮g/mL).

Similarly,BA-DwasmostactiveagainstCaSki(IC50=56.39␮g/mL)

andSW-480(IC50=94.81␮g/mL).WiththeonlyexceptionofBS-M

andBS-D,allotherextractsshowedthehighestlevelofcytotoxicity

againstMCF-7cellline.Overall,themethanolextractwasthemost

cytotoxicagainstallthetestedcancercells.Cytotoxicactivities

con-cerningBuxusspeciesarescarce, previousstudiesrevealedthat

triterpenoids,alkaloids,tanninsandphenoliccompoundsisolated

fromBuxusspeciesexhibitedcytotoxicactivitiesagainstdifferent

humancancercelllines[7,28,29].Ourcurrentfindingsarein

con-cordantwiththefindingsofpreviousstudiesonthecytotoxicity

ofotherBuxusspecies.Forexample,significantcytotoxicactivity

isreportedfortriterpenoidalkaloidsisolatedfromB.microphylla

againstHepG2[7].TheobservedhighercytotoxicpotentialofB.

papillosaextractstowardsboththebreastcancercellsissupported

bysomepreviousstudieswhichhadreportedtheB.sempervirens

acetoneextracttoinducedcellcyclearrestinG0/G1phaseand

trig-geredcelldeathbyincreasedsub-G1cellpopulationtestedinfive

differentbreastcancercelllines(MCF7,MCF10CA1a,T47D,BT-20

andMDA-MB-435)[29].Similarly anotherstudyreportedtheB.

microphyllaforitscytotoxicityagainstfivehumantumorcelllines

(promyelocyticleukemiaHL-60,hepatocellularcarcinoma

SMMC-7721,lungadenocarcinomaA-549,breastcancerMCF-7andcolon

adenocarcinomaSW-480)bythemicro-culturetetrazolium(MTT)

assay[28].Incomparisontoearlierstudies,B.papillosaexhibited

strongtomoderatecytotoxicityagainsttheseselectedcelllines.

Tothebestofourknowledge,thisistheforemostdataregarding

toxicityofB.papillosaaerialextractsagainstanycarcinomacell

(10)

Fig.7.Structuringofthevariabilityexpressedbythesamples.A:IndividualsfactorialmapofPCA,B:DendrogramofAHC.

3.5. Variabilityanalysisofthebiologicalactivity

Toassessthesimilarity ofthebiological activitiesexpressed

bytheextractsandtoanalyzethecorrelationsbetweenthe

mea-suredvariables, a principalcomponent analysis(PCA)hasbeen

performed.17quantitativevariablesrepresentedby17tested

bio-logicalactivitieshaveallowedtoestablishthetypologyof6extracts

derivedfromtheaerialandstempartsofB.papillosa.Accordingto

Kaiser-Guttmanmeasure[30],thefirstfourfactorshavingEigen

valuesgreaterthanonehavebeenretained(Fig.4).Thesefactors

accountfor95,76%ofthetotalvariance.Theanalyzeofcorrelation

circle(belowonfactor1and2)completedbythesquaredcosines

andcorrelationmapallowedtocharacterizetheselectedfactors

bythevariables(Fig.5A,B&C).Accordinglythefirstfactor(Eigen

valueof7,94;varianceof49,65%)iscorrelatedpositivelywith

totalbioactivecontents(phenolicsandflavonoids),thetests

eval-uatingtheantioxidantcapacity(DPPH,ABTS,CUPRACandFRAP)

and cytotoxicity (SW-480) but negatively with metalchelating

andanti-urease.Thetotalantioxidant(Phosphomolybdenum)and

cytotoxicity(MDA-MB-231)testshighlycontributetothe

forma-tionoffactor 2(Eigenvalueof 3,15;variance of19,7%)while

␣-glucosidasehasalowercontribution.Thefactors3and4were

determinatedbyBChEandMCF-7,respectively.Inadditionalower

negativecorrelationisobservedbetweenthefactor3andtwo

cyto-toxicitytests(CaSkiandDU-145).

ThecorrelationgraphandmapbasedonPearsonlinear

corre-lationshavebeenanalyzedtoestimatethedegreeofassociation

betweenthetotalbioactivecontents(phenolicsandflavonoids)and

thedifferentevaluatedbiologicalactivities(Fig.5A&3).Ahighly

significantpositivecorrelationhasbeenfoundbetweenTPCand

CUPRAC(r=+0,958;p<0,01),TPCandABTS(r=+0,938;p<0,01),

TFCandSW-480(r=+0,957;p<0,01)whiletherehasbeena

signifi-cantpositivecorrelationforTPCandDPPH(r=+0,885;p<0,05),TPC

andFRAP(r=+0,898;p<0,05),TFCandABTS(r=+0,858;p<0,05),

TFCandFRAP(r=+0,833;p<0,05)(Fig.6).

Toanalyzethevariabilityexpressedbythesamples,the

indi-vidualsgraphofPCAhavebeencompletedbyanagglomerative

hierarchical clusteringbased on thecoordinates of samples on

thefirstfourfactorsofPCA.Averyheterogeneousdistributionof

sampleshavebeenobservedinthefactorialplane1–2anda

den-drogramprovided bytheAHCshow3distinctgroupstructured

(11)

4. Conclusion

Thisstudywasaimedtoinvestigatethebiologicaleffectsand

chemicalcompositionofB.papillosaaerialandstemparts.

UHPLC-MSresultsrevealedthepresenceofdepressonolA,antanapeptin

A,lucyosideJ,kaempferol3-lathyroside-7-rhamnoside,robinetin

3-rutinosideandquercetin3-galactoside-7-rhamnosideas

impor-tantsecondary metabolitesin themethanol extracts.Moreover,

thebiologicalscreeningsuggeststhatmethanolextractsexhibited

thestrongestantioxidantabilitiesinlinewiththehigherlevelsof

totalphenolicandflavonoidcontents.Bothpartshaveconsiderable

butyrylcholinesterase inhibition and thestem n-hexane extract

hasnotableactivity against␣-glucosidase enzyme. BA-M, BS-H

andBS-Mextractspresentedthemostpotentialcytotoxiceffects.

CurrentfindingssuggestthatB.papillosacanbeconsideredasa

sourceforhighvaluepolyphenolsfordevelopingnoveldrugleads.

However,futureresearchintermsofbio-guidedisolationofactive

compoundsisneededtoexploretheunexploitedpharmacological

potentialofthisplanttogetherwithmolecularmechanism.

Conflictofinterest

Authorshavenoconflictofinterest.

References

[1]G.O.Guler,G.Zengin,F.Karadag,A.Mollica,C.M.N.Picot,M.F.Mahomoodally, HPLC-DADprofilesandpharmacologicalinsightsofOnobrychisargyreasubsp isauricaextracts,Comput.Biol.Chem.76(2018)256–263.

[2]C.T˘anase,S.Cos¸arc˘a,F.Toma,A.Mare,A.Man,A.Miklos,S.Imre,I.Boz, Antibacterialactivitiesofbeechbark(FagussylvaticaL.)polyphenolicextract, Environ.Eng.Manag.J.17(4)(2018)877–884.

[3]M.Locatelli,G.Zengin,A.Uysal,S.Carradori,E.DeLuca,G.Bellagamba,A. Aktumsek,I.Lazarova,Multicomponentpatternandbiologicalactivitiesof sevenAsphodelinetaxa:potentialsourcesofnatural-functionalingredientsfor bioactiveformulations,J.EnzymeInhib.Med.Chem.32(1)(2017)60–67.

[4]Z.A.Bhat,Traditionalmedicinesindrugdiscovery,J.Pharm.Res.5(5)(2012) 2457–2459.

[5]S.Genovese,S.Fiorito,M.Locatelli,G.Carlucci,F.Epifano,Analysisof biologicallyactiveoxyprenylatedferulicacidderivativesinCitrusfruits,Plant FoodsHum.Nutr.69(3)(2014)255–260.

[6]S.G.Musharraf,M.Goher,B.Zareena,Quantificationofsteroidalalkaloidsin Buxuspapillosausingelectrosprayionizationliquidchromatography–triple quadrupolemassspectrometry,Steroids100(2015)5–10.

[7]Y.-X.Yan,X.-D.Hu,J.-C.Chen,Y.Sun,X.-M.Zhang,C.Qing,M.-H.Qiu, CytotoxictriterpenoidalkaloidsfromBuxusmicrophylla,J.Nat.Prod.72(2) (2009)308–311.

[8]M.A.Mesaik,S.A.Halim,Z.Ul-Haq,M.I.Choudhary,S.Shahnaz,S.Ayatollahi,S. Murad,A.Ahmad,ImmunosuppressiveactivityofbuxidinandE-buxenone frombuxushyrcana,Chem.Biol.DrugDes.75(3)(2010)310–317.

[9]H.Atta-ur-rahman,S.S.AliNasir,Z.Iqbal,Buxapapillosin-anewtriterpene fromtherootsofBuxuspapillosa,Nat.Prod.Lett.3(2)(1993)131–138.

[10]M.P.Kahkonen,A.I.Hopia,H.J.Vuorela,J.-P.Rauha,K.Pihlaja,T.S.Kujala,M. Heinonen,Antioxidantactivityofplantextractscontainingphenolic compounds,J.Agric.FoodChem.47(1999)3954–3962.

[11]Y.-L.Chew,J.-K.Goh,Y.-Y.Lim,Assessmentofinvitroantioxidantcapacity andpolyphenoliccompositionofselectedmedicinalherbsfromLeguminosae familyinPeninsularMalaysia,FoodChem.116(1)(2009)13–18.

[12]A.Mocan,C.Moldovan,G.Zengin,O.Bender,M.Locatelli,M.Simirgiotis,A. Atalay,D.C.Vodnar,S.Rohn,G.Cris¸an,UHPLC-QTOF-MSanalysisofbioactive constituentsfromtwoRomanianGoji(LyciumbarbarumL.)berriescultivars andtheirantioxidant,enzymeinhibitory,andreal-timecytotoxicological evaluation,FoodChem.Toxicol.115(2018)414–424.

[13]M.Locatelli,D.Melucci,G.Carlucci,C.Locatelli,RecentHPLCstrategiesto improvesensitivityandselectivityfortheanalysisofcomplexmatrices, Instrum.Sci.Technol.40(2-3)(2012)112–137.

[14]H.Saleem,T.T.Htar,R.Naidu,N.S.Nawawi,I.Ahmad,M.Ashraf,N.Ahemad, Biological,chemicalandtoxicologicalperspectivesonaerialandrootsof Filagogermanica(L.)huds:functionalapproachesfornovel

phyto-pharmaceuticals,FoodChem.Toxicol.123(2019)363–373.

[15]I.I.Koleva,T.A.VanBeek,J.P.Linssen,Ad.Groot,L.N.Evstatieva,Screeningof plantextractsforantioxidantactivity:acomparativestudyonthreetesting methods,Phytochem.Anal.13(1)(2002)8–17.

[16]D.M.Grochowski,S.Uysal,A.Aktumsek,S.Granica,G.Zengin,R.Ceylan,M. Locatelli,M.Tomczyk,Invitroenzymeinhibitoryproperties,antioxidant activities,andphytochemicalprofileofPotentillathuringiaca,Phytochem.Lett. 20(2017)365–372.

[17]N.Saeed,M.R.Khan,M.Shabbir,Antioxidantactivity,totalphenolicandtotal flavonoidcontentsofwholeplantextractsTorilisleptophyllaL,BMC Complement.Altern.Med.12(1)(2012)221.

[18]P.Prieto,M.Pineda,M.Aguilar,Spectrophotometricquantitationof antioxidantcapacitythroughtheformationofaphosphomolybdenum complex:specificapplicationtothedeterminationofvitaminE,Anal. Biochem.269(2)(1999)337–341.

[19]I.E.Orhan,S.A.Erdem,F.S.Senol,M.Kartal,B.Sener,Explorationof

cholinesteraseandtyrosinaseinhibitory,antiprotozoalandantioxidanteffects ofBuxussempervirensL.(boxwood),Ind.CropsProd.40(2012)116–121.

[20]H.Dehghan,Y.Sarrafi,P.Salehi,Antioxidantandantidiabeticactivitiesof11 herbalplantsfromHyrcaniaregion,Iran,Iran.JFoodDrugAnal.24(1)(2016) 179–188.

[21]R.Nandeesh,E.Manjunatha,V.S.Kumar,Evaluationofantioxidantand antimicrobialactivityofvariousextractsofBuxuswallichianaBaillwood,Res. J.Pharmacogn.Phytochem.9(2)(2017)69.

[22]S.Cesa,S.Carradori,G.Bellagamba,M.Locatelli,M.A.Casadei,A.Masci,P. Paolicelli,Evaluationofprocessingeffectsonanthocyanincontentandcolour modificationsofblueberry(Vacciniumspp.)extracts:comparisonbetween HPLC-DADandCIELABanalyses,FoodChem.232(2017)114–123.

[23]S.-Y.Pan,S.-F.Zhou,S.-H.Gao,Z.-L.Yu,S.-F.Zhang,M.-K.Tang,J.-N.Sun,D.-L. Ma,Y.-F.Han,W.-F.Fong,Newperspectivesonhowtodiscoverdrugsfrom herbalmedicines:CAM’soutstandingcontributiontomoderntherapeutics, Evid.-BasedComplementAlternatMed.(2013).

[24]M.I.Choudhary,S.Shahnaz,S.Parveen,A.Khalid,S.A.MajeedAyatollahi, Atta-ur-Rahman,M.Parvez,Newtriterpenoidalkaloidcholinesterase inhibitorsfromBuxushyrcana,J.Nat.Prod.66(6)(2003)739–742.

[25]W.L.Matochko,A.James,C.W.Lam,D.J.Kozera,A.Ata,R.M.Gengan, TriterpenoidalalkaloidsfromBuxusnatalensisandtheiracetylcholinesterase inhibitoryactivity,J.Nat.Prod.73(11)(2010)1858–1862.

[26]A.Ata,C.D.Iverson,K.S.Kalhari,S.Akhter,J.Betteridge,M.H.Meshkatalsadat, I.Orhan,B.Sener,TriterpenoidalalkaloidsfromBuxushyrcanaandtheir enzymeinhibitory,anti-fungalandanti-leishmanialactivities, Phytochemistry71(14-15)(2010)1780–1786.

[27]D.J.Newman,Naturalproductsasleadstopotentialdrugs:anoldprocessor thenewhopefordrugdiscovery?J.Med.Chem.51(9)(2008)2589–2599.

[28]S.-T.Bai,G.-L.Zhu,X.-R.Peng,J.-R.Dong,M.-Y.Yu,J.-C.Chen,L.-S.Wan,M.-H. Qiu,CytotoxicityoftriterpenoidalkaloidsfromBuxusmicrophyllaagainst humantumorcelllines,Molecules21(9)(2016)1125.

[29]O.Ait-Mohamed,V.Battisti,V.Joliot,L.Fritsch,J.Pontis,S.Medjkane,C. Redeuilh,A.Lamouri,C.Fahy,M.Rholam,AcetonicextractofBuxus sempervirensinducescellcyclearrest,apoptosisandautophagyinbreast cancercells,PLoSOne6(9)(2011),e24537.

[30]JanDeLeeuw,Exploratoryandmultivariatedataanalysis,J.Am.Stat.Assoc. 88(1993)696–698.

Şekil

Fig. 1. Total ion chromatograms of B. papillosa aerial and stem methanol extracts.
Fig. 2. Cytotoxicity of B. papillosa aerial extracts.
Fig. 3. Cytotoxicity of B. papillosa stem extracts.
Fig. 4. Eigen values and percentage of variability expressed by the factors.
+3

Referanslar

Benzer Belgeler

Ampirik analizin sonuçlarına göre performans beklentisi ve sosyal etki faktörlerinin kullanım niyeti üzerinde olumlu bir etkiye sahip olduğu, fakat çaba

Demanslı ve demanslı olmayan yaşlılarda ilk sırada “sözel agresif olmayan davranışlar” görülerken, ikinci sırada demanslı yaşlılarda “fiziksel agresif olmayan

Zehirli ve Olumciil Bir Mantar Turti Olan Amanita Phalloides Fr.(Link) iherinde Kimyasal ve Biyolojik Ara§tIrmalar.. H.BuLENT &lt;;ETiNa ). TURHAN BA

O hâlde medya ahlakının temelleneceği genel ahlak çerçevesi olarak anlaşılmalıdır.. Buradaki genel ahlak ifadesi bir toplumun ahlak kabullerinin geneli olmaktan çok, bütün

mızın ustalarından İbrahim Çallı’nın ve Çallı Atölyesi’nden yetişen sanatçıların yapıtlarının yer aldı­ ğı sergi İstanbul’da MSÜ Resim Heykel

In vitro antibacterial and antifungal activity of Lathyrus species Methanol extracts and n-hexane, chloroform, ethyl acetate, and water fractions from the aerial parts of

The endothelial-dependent relaxation response to ACh (1 mM) in the control rats was higher than in the diabetic rats, which was increased after the incubation of the extracts (100

Results: The stem and root extracts showed no activity at the maximum concentration, while the leaf extract at 100 µg/mL showed remarkable cell growth inhibition against