• Sonuç bulunamadı

Efficiency and stability of probabilistic assignments in marriage problems

N/A
N/A
Protected

Academic year: 2021

Share "Efficiency and stability of probabilistic assignments in marriage problems"

Copied!
12
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available atScienceDirect

Games

and

Economic

Behavior

www.elsevier.com/locate/geb

Efficiency

and

stability

of

probabilistic

assignments

in marriage

problems

Battal Do˘gan

a

,

Kemal Yıldız

b

,∗

aFacultyofBusinessandEconomics,UniversityofLausanne,Switzerland bDepartmentofEconomics,BilkentUniversity,Turkey

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received20July2014

Availableonline17December2015

JELclassification: C60 C71 C78 D61 Keywords: Marriageproblems Probabilisticassignment Efficiency Stability

We study marriage problems where two groups of agents, men and women, match each other and probabilistic assignments are possible. When only ordinal preferences are observable, stochastic dominance efficiency (sd-efficiency) is commonly used. First, we provide a characterization of sd-efficient allocations in terms of a property of an orderrelationdefined onthesetofman–womanpairs.Then,usingthischaracterization, we constructivelyprovethatforeachprobabilisticassignmentthatissd-efficientforsome ordinal preferences,there isavon Neumann–Morgensternutility profileconsistentwith the ordinal preferences for whichthe assignment is Pareto efficient. Second, we show that when the preferences are strict, for each ordinal preference profile and each ex-poststableprobabilisticassignment,thereisavon Neumann–Morgensternutilityprofile, consistentwiththeordinal preferences,forwhichtheassignmentbelongstothecoreof theassociatedtransferableutilitygame.

©2015ElsevierInc.All rights reserved.

1. Introduction

Thetheoryoftwo-sidedmatchingproblemshasbeenusefulinprovidingsolutionstomanyreal-lifeeconomicproblems (seeRoth andSotomayor,1990).A marriageproblem,whichconstitutesabasisfortwo-sidedmatchingproblems,consists of two equal-sized groups of agents: menand women. Each man has ordinal preferences over women and vice versa. A majorityoftheliteratureisfocused ondeterministicassignments,wheremenandwomenarematchedone-to-one.One canalsothinkofprobabilisticassignments,whicharelotteriesoverdeterministicassignments,andtheseareinterestingfor atleast two reasons: (1) agents maymatchin fractions; forexample, a consultantmay allocatehis time among several firms,1 (2) probabilisticassignments mayhelpusachieve fairnesswhenit isnot possiblewithdeterministic assignments (e.g. Bogomolnaiaand Moulin, 2001). Here, we consider probabilistic assignments, andin particular their “stability” and “efficiency”.

Weconsidera modelwhereonlyordinalpreferenceinformationisavailable.That is,foreach man,all weknowishis preferenceorderingoverwomen,andviceversa,whichisinlinewiththeapplicationsandthetheoreticalliterature.Most allocationrulesthathavebeendiscussedinthisliteratureelicitonlyordinalpreferences,as opposed toutility information

WearegratefultoPauloBarelli,SrihariGovindan,BettinaKlaus,EfeOk,ArielRubinstein,WilliamThomson,RakeshVohra,twoanonymousreferees,the

associateeditor,seminarparticipantsatBilkentUniversityandUniversityofRochester,andparticipantsattheBosphorousWorkshoponEconomicDesign andWorkshoponSocialChoiceandMechanismDesignattheUniversityofManchesterfortheirhelpfulcomments.

*

Correspondingauthor.

E-mailaddresses:battaldogan@gmail.com(B. Do˘gan),kemal.yildiz@bilkent.edu.tr(K. Yıldız).

1 SeeManjunath (2014)andBogomolnaiaandMoulin (2004)formoreexamplesoffractionalmatchingmarkets. http://dx.doi.org/10.1016/j.geb.2015.12.001

(2)

over possible mates.2 When only ordinal preference information is available, extensively studied efficiency and stability notionsarestochasticdominanceefficiency (sd-efficiency)andex-poststability.We askwhetherprobabilisticassignmentsthat aresd-efficientorex-poststableforordinalpreferencesarepossiblyefficientorstableforcardinalpreferences.

The maincontributionofthispaperpertainstostability,whichisa centralrobustness conditionfortwo-sided match-ings. A deterministicassignment is stableifno pair ofa man and awoman prefers each other to their assignedmates. A probabilisticassignmentisex-poststableifitcanbeexpressedasalotteryoverstabledeterministicassignments.In the deterministiccase,if anassignmentisstable,thenitisalsointhecoreofanassociatednon-transferableutility(NTU)game (RothandSotomayor,1990).It followsthatinanordinalenvironmentwheremonetarytransfersarenotallowed,if an as-signmentisex-poststable,thenthereisnoincentiveforex-post3 groupdeviation.However,ex-ante,4 agroupofmenand

women maybreakawayfromtherestofsocietyandmayformmatchesamongthemselvesthatmakeeachofthembetter off in terms ofexpected utility.This possibility motivatesus to ask whetherex-post stability implieswelfare properties deduciblefromtheordinalpreferencesthatwouldpreventsuchbreakaways.

Weshowthatwhenpreferencesarestrict(noagentisindifferentbetweentwodifferentagents),foreachex-poststable probabilistic assignment, there is a utility profile consistent with the ordinal preferences such that no group of agents consistingofequalnumbersofmenandwomencandeviatetoaprobabilisticassignmentamongthemselvesandmakeeach memberbetteroff.In fact,we proveanevenstrongerresult(Theorem 2):foreachex-poststableprobabilisticassignment, thereisautilityprofileconsistentwiththeordinalpreferencessuchthatnogroupofagentsconsistingofequalnumbersof menandwomencandeviatetoaprobabilistic assignmentamongthemselvesinwhichthesumoftheir expectedutilities is greater.Put differently,we associatewitheachutility profilea transferableutility (TU)game,as inShapleyandShubik (1971),in whichacoalitionisadmissibleifitconsistsofequalnumbersofmenandwomen,andtheworth ofeachsuch coalitionisthemaximaltotalexpectedutilityitcanachievebyformingmatchesamongthemselves.5We showthatforeach

ex-poststableassignment,thereisautilityprofilesuchthattheassignmentbelongstothecoreoftheassociatedTU-game (Theorem 2).Thatis,evenifweweretoallowmonetarytransfers,therewouldbenoprofitableex-antegroupdeviation.

Our other result pertains to efficiency. A natural efficiency requirementfor probabilistic assignments is sd-efficiency, which is based on the first-order stochastic dominance relation. A probabilistic assignment stochastically dominates (sd-dominates) another if for each agent, the probability distribution assigned to that agent in the former first-order stochastically dominatestheprobability distributionassignedtothatagent inthelatterassignment.Assignments thatare undominated inthissensearecalled“sd-efficient”.6 We askthefollowingquestion:Consider anordinalpreferenceprofile

andan sd-efficient assignment.Does thereexista utility profileconsistent withtheordinal preferencesatwhich the as-signmentisParetoefficient?We showthatforeachordinalpreferenceprofile,andforeachsd-efficientassignment,onecan constructautilityprofileconsistentwiththeordinalpreferencessuchthatthesumoftheexpectedutilitiesoftheagentsis maximizedatthatassignment(Theorem 1).To provetheresult,we characterizethesd-efficiencyofanassignmentinterms ofapropertyofanorderrelationthatwedefineoverthesetofman–womanpairs.7

Our results regarding efficiency are intimately related to some recent results. Carroll (2011) proves a counterpart of

Theorem 1inamoregeneralsocialchoicesetup,fromwhichTheorem 1canbeobtainedasacorollary.Azizetal. (2015)

provide an interesting non-expectedutility generalizationof Carroll (2011).Ourresultsare basedon anorder theoretical analysis; we characterize the sd-efficiency ofan assignment in terms ofthe acyclicity of abinary relationon the set of man–womanpairs,whichparallelstheresultsbyBogomolnaiaandMoulin (2001)andKattaandSethuraman (2006).In this vein,Azizetal. (2015)notethatitdoesnotseempossibletoextendthischaracterizationtoCarroll’s(2011)ortheirgeneral socialchoicesetting.Moreover,theutility profileconstructedinTheorem 1clearly relatestotheutilityprofileconstructed inTheorem 2,whichshedsfurtherlightontherelationbetweensd-efficiencyandex-poststability.8

Ourresultsforstability,unlike efficiency,cannotbe directlyrelatedtotherecentfindings onthegeneralsocialchoice setup.To proveTheorem 2,we observeaninterestingpropertyofex-poststableassignmentsrelatedtothelatticestructure of stabledeterministic assignments (see Knuth,1976,pp. 92–93, who attributesthe discovery ofthislattice structure to J.H. Conway). InProposition 3,we showthat each ex-poststableprobabilistic assignment canbe decomposedintoa col-lectionofdeterministic stableassignments,whichcanbeorderedinsuch awaythateachman’swelfareisnon-increasing andeachwoman’swelfareisnon-decreasingaswefollowtheassignments fromthefirsttothelast.Thisresult,whichwe show viatheroundingapproach duetoTeoandSethuraman (1998),playsakeyroleintheproofofTheorem 2.A corollary ofTheorem 2isthatex-poststabilityimpliessd-efficiencywhenpreferencesarestrict,whichisindependentlyshownalso byManjunath (2011).

2 Onejustificationforwhysuchmechanismsarecommonisthatitisacomplexprocessforanagenttoformulatehisutilityinformation.SeeBogomolnaia andMoulin (2001)foradetaileddiscussion.

3 Aftertherealizationofadeterministicassignment.

4 Thatis,beforetherealizationofaparticulardeterministicassignment. 5 Weassumepreferencestobequasilinearinmoney.

6 Thisnotionisusually referredtoas“ordinalefficiency”,startingfromBogomolnaiaandMoulin (2001).Here,we usetheterminologyofThomson (2010).

7 Fortheproblemofassigningobjects,similarcharacterizationsaregivenbyBogomolnaiaandMoulin (2001)inthecaseofstrictpreferencesandby KattaandSethuraman (2006)inthecaseofweakpreferences.

8 Infact,as notedintheproofofProposition 2,if theex-poststableassignmenthasadecompositionintostableassignmentssuchthatnoagentmatches

(3)

1.1. Relatedliterature

Fortheprobabilisticassignmentsetup,a strandoftheliteraturediscussesdifferentstabilitynotionsandtheirrelationto eachother.Attheheartofthisliteratureliesthenotionofex-poststability,whichisalsoatthecenter ofourstudy.Roth etal. (1993),Rothblum (1992),andVande Vate (1989) provideacharacterizationofthesetofex-poststableassignments thatwesummarizeinLemma 2anduseintheproofofProposition 3.Morerecently,Manjunath (2011)investigatesseveral ex-ante stability and corenotions that are based on first-order stochastic dominance. Kesten and Ünver (2015)propose ex-ante stability notions forthe school choice problem, in whichschools havepriorityorderings ratherthen preferences, which are not takeninto consideration inthe welfare analysis. Second, schoolsare assumedto behave non-strategically. In allthesestudies,thefocusisonstability andcorenotionsbasedonordinalpreferenceinformation.In contrast,we are interested intherelationship betweenex-post stability basedonordinal preferencesandacorenotionbased oncardinal preferences.

FollowingBogomolnaiaandMoulin (2001),one strandofthe literaturestudies theprobabilistic assignmentofobjects. In this literature, a result similar to our Theorem 1, which is due to McLennan (2002),9 follows from our Theorem 1

(Corollary 1). Manea (2008) gives a constructive proof of McLennan’s result. Ourproof technique is similar to Manea’s: An orderrelation,theacyclicityofwhichcharacterizesanassignment’ssd-efficiency,is usedtoconstructtheutilityprofile. As showninManea (2008),if only onesideofthemarkethaspreferencesovertheother,thentherelationratherdirectly deliversthedesiredutilityprofile.However,in marriageproblems,thepreferencesofbothmenandwomenmustbetaken into account,both in sd-efficiencyand utilitariansocial welfare considerations.We show that doing so requires a rather novelconstructionoftheutilityprofilecomparedtothecaseofone-sidedmarkets.

Inthedeterministicassignmentliterature,thetheoryofstableassignmentswithouttransfers(NTU-model)isfirst devel-opedbyGaleandShapley (1962).Givenpreferencerankings,thealgorithmtheyproposeselectsastableassignmentthatis Paretodominantfortheproposingsideamongallstableassignments.Ontheotherhand,thetheoryofstableassignments withtransfers(TU-model)isdevelopedbyShapleyandShubik (1971),whereforgivenvaluationsofagents,thecoreofthe associatedTU-game(theassignmentgame)ischaracterized.10

OurTheorem 2offersa connectionbetweenTUandNTU-models.Echenique (2008) andEcheniqueetal. (2013)offera similarconnectionbetweenTUandNTU-modelsbasedontheobservablecontentofstabilityinbothsetups.Theiranalysis isina revealedpreferenceframework,in whichordinal preferencesarenot observableandare recoveredfromanobserved

aggregatematching.11Echeniqueetal. (2013)arguethatinthissetting,matchingtheorywithtransfersisnestedinmatching

theory withouttransfers,that is,foreach aggregatematching,if thereisautility profilesuch thatthematchingisinthe coreof the associated TU-game,then there is an ordinal preference profile such that the matching is theunique stable matching.For ourTheorem 2, we assume that ordinal preferencesand an ex-post stableassignment are observable,but utilityprofilesarenot.We constructautilityprofilethatisconsistentwiththeordinalpreferencessuchthatthematching isinthecoreoftheassociatedTU-game.Sincetheconversestatementdoesnothold,12bycontrastwithEchenique (2008), in oursettingmatchingtheorywithouttransfersisnestedinmatchingtheorywithtransfers.

Anotherrecentstudy,whichprovides severalinteresting insightsontherelationshipbetweenstability inTU and NTU-models,isEcheniqueandGalichon (2014).Oneoftheir goalsistounderstandforwhichstabledeterministicassignments, availabilityofmonetary transferswouldnot affectstability.Theyshowthat, fora particularsubsetofstabledeterministic assignments, whichthey call“isolated” assignments, foranyordinal preferenceprofile,one can constructautility profile suchthateachisolatedstabledeterministicassignmentremainsstablewhenmonetarytransfersareintroduced.Attheend ofSection3.3,we showthattheirresultfollowsfromourTheorem 2.

2. Theframework

LetM beasetofn menandW asetofn women.Eachi

M haspreferencesoverW ,andeach j

W haspreferences over M. Let N

=

M

W . For each i

N, the preferences of i, which we denote by Ri, is a weakorder, that is, Ri is transitiveandcomplete.Let Pi denotetheassociatedstrict preferencerelation,and Ii theassociatedindifference relation. Let

R

i denotethesetofall possiblepreferencerelationsfori,and

R

≡ ×

i∈N

R

i denotethesetofall possiblepreference profiles.

A deterministicassignment isaone-to-onefunction

μ

:

M

W

M

W suchthatforeach

(

m

,

w

)

M

×

W ,we have

μ

(

m

)

W ,

μ

(

w

)

M,and

μ

(

m

)

=

w ifandonlyif

μ

(

w

)

=

m.A deterministicassignmentcanberepresentedbyann

×

n

matrix,withrowsindexedby menandcolumnsindexedbywomen, andhaving entriesin

{

0

,

1

}

,suchthat eachrowand eachcolumnhasexactlyone 1.Sucha matrixiscalleda permutationmatrix.Foreach

(

m

,

w

)

M

×

W ,having1 inthe

(

m

,

w

)

entryindicates thatm isassignedto w.A probabilisticassignment isaprobabilitydistributionoverdeterministic assignments.A probabilisticassignmentcan berepresentedby ann

×

n matrixhavingentriesin

[

0

,

1

]

suchthat thesum

9 Athanassoglou (2011)approachestheprobleminMcLennan (2002)byusingduality. 10 ThistheoryisappliedtothemarriageproblembyBecker (1973).

11 SeeEcheniqueetal. (2013)forthedefinitionofanaggregatematching. 12 SeeourExample 2.

(4)

of the entries in each row and each column is 1. Such a matrix is a doublystochasticmatrix. For each probabilistic assignment

π

,andeachpair

(

m

,

w

)

M

×

W ,theentry

π

mw indicatestheprobabilitythatm isassignedtow at

π

.Since eachdoublystochasticmatrixcanberepresentedasaconvexcombinationofpermutationmatrices(Birkhoff,1946andVon Neumann, 1953),the set ofall doubly stochastic matricesprovides another representationforthe set ofall probabilistic assignments.Let



bethesetofalldoublystochasticmatrices.

Wedenotethecollectionofalllotteriesover M by

L(

M

)

,andthecollectionofall lotteriesoverW by

L(

W

)

.Foreach

i

M withpreferences Ri

R

i,a von Neumann–Morgenstern(vNM)utilityfunctionuiisareal-valuedmappingonW ,i.e.

ui

:

W

→ R

.We obtainthecorrespondingpreferencesofi over

L(

W

)

bycomparingexpectedutilities.Foreachi

M with preferences Ri

R

i,a vNMutilityfunction uiisconsistentwith Riifforeachpair

(

w

,

w

)

W wehaveui

(

w

)

ui

(

w

)

if andonlyifwRiw.Foreachwoman,a (vNM)utilityfunctionconsistentwithherordinalpreferencesisdefinedsimilarly.

Foreachutilityprofileu

= (

ui

)

iN andprobabilisticassignment

π

,the utilitariansocialwelfareat

(

u

,

π

)

isthesumof theexpectedutilitiesoftheagents,thatis:

SW

(

u

,

π

)

=



(m,w)∈M×W

π

mw

(

um

(

w

)

+

uw

(

m

)).

Anassignment

π

isex-anteutilitarian-welfaremaximizingatautilityprofile u ifitmaximizesthesocialwelfareat u, i.e.

π

argmaxπ∈SW

(

u

,

π

)

.

Next,we defineawell-known notionofefficiencythatisindependentofanyvNM utilityspecificationconsistentwith theordinal preferences.Let

π

,

π



∈ 

and R

R

;we saythat

π

first-orderstochasticallydominates

π

 at R ifforeach pair

(

m

,

w

)

M

×

W :



w:wRmw

π

mw



w:wRmw

π

mw and



m:mRwm

π

mw



m:mRwm

π

mw

such that for atleast one pair, at least one of the inequalities is strict. An assignment

π

∈ 

issd-efficientat R if no probabilisticassignmentsd-dominates

π

atR.Foreach R

R

,let Psd

(

R

)

denotethesetofsd-efficientassignmentsatR.

3. Results

3.1. Acharacterizationofsd-efficiency

Foreachpair

(

π

,

R

)

∈ 

×

R

,we definetworelations

(π,R)and

(π,R)onM

×

W inducedby

(

π

,

R

)

,andcharacterize

thesd-efficiencyofanassignment

π

atR intermsofapropertyof

(π,R) and

(π,R).

Foreachpair

(

m

,

w

),

(

m

,

w

)

M

×

W ,

(

m

,

w

)

(π,R)

(

m

,

w

)

ifandonlyif

π

mw

>

0,

π

mw

>

0,andwImw,mIwm. For each pair

(

m

,

w

),

(

m

,

w

)

M

×

W ,

(

m

,

w

)

(π,R)

(

m

,

w

)

ifand onlyif

π

m,w

>

0,

π

mw

>

0, and wRmw,mRw

m with at least one strict preference. Let the relation

(π,R) be the union of the two relations just defined. That is,

(π,R)

=∼

(π,R)

(π,R).

Ifassignment

π

isdeterministicandpreferencesarestrict,then

(

m

,

w

)

(π,R)

(

m

,

w

)

impliesthatm andwprefereach

other totheir assignedmates.Furthermore,supposethat

(

m

,

w

)

(π,R)

(

m

,

w

)

(π,R)

(

m

,

w

)

.Then, m andm (or w and

w)arebetteroffbyexchangingmates.In general,if therelation

(π,R)hasacycle,agentsinthecyclecanParetoimprove

byexchangingmatesalongthecycle.Next,we formulateanacyclicityrequirementon

(π,R)withthesameimplicationfor

sd-efficiency.

Notethat,if

(

m

,

w

)

(π,R)

(

m

,

w

)

,then

(

m

,

w

)

and

(

m

,

w

)

arenotrelatedaccordingto

(π,R),thatis,

(

m

,

w

)



(π,R)

(

m

,

w

)

.A strongcycleof

(

π,R)isasequenceofpairs

(

m1

,

w1

),

(

m2

,

w2

)

,

. . . ,

(

mk

,

wk

)

M

×

W suchthat

(

m1

,

w1

)

(π,R)

(

m2

,

w2

)

(π,R)

. . .

(π,R)

(

mk

,

wk

)

(π,R)

(

m1

,

w1

)

. The relation

(

π,R) isweaklyacyclic ifand only ifit has no strong cycle. Next,we characterizesd-efficientassignments. Thisresultgeneralizescharacterizationsofsd-efficiencyofobject as-signmentsonthestrictpreferencedomain(BogomolnaiaandMoulin,2001)andontheweakpreferencedomain(Kattaand Sethuraman,2006).

Proposition1.Anassignment

π

issd-efficientatapreferenceprofileR ifandonlyif

(π,R)isweaklyacyclic. Proof. Let

π

∈ 

,R

R

.

Only-ifpart: Weprovethecontrapositivestatement.Supposethat

(π,R)isnotweaklyacyclic,thatis,thereisasequence

of pairs

(

m1

,

w1

),

(

m2

,

w2

)

,

. . . ,

(

mk

,

wk

)

M

×

W such that

(

m1

,

w1

)

(π,R)

(

m2

,

w2

)

(π,R)

. . .

(π,R)

(

mk

,

wk

)

(π,R)

(

m1

,

w1

)

.Let



mini∈{1,...,k}

π

miwi.Let

π



∈ 

bedefinedbysettingforeachi

∈ {

1

,

. . . ,

k

}

,

π

mi wi

=

π

miwi



,

π

mi wi+1

=

π

miwi+1

+



(withtheconventionthat wk+1

=

w1),andforeachotherpair

(

m

,

w

)

,

π

mw

=

π

mw.Notethat

π

sd-dominates

π

atR.Thus,

π

Psd

(

R

)

.

Ifpart: We provethe contrapositive statement.Suppose that

π

/

Psd

(

R

)

, thatis,there is

π



∈ 

thatsd-dominates it. Without loss of generality, suppose that there is a man, say m1

M, who is better off at

π

 in stochastic dominance

(5)

suchthat m1Rw2m2 and

π

m2w2

<

π

m2w2.Notethat

(

m1

,

w1

)

(π,R)

(

m2

,

w2

)

.Now,therearem3

M, w3

W such that

w3Rm2 w2,

π

m2w3

>

π

m2w3,m2Rw3m3,and

π

m3w3

<

π

m3w3. Then,

(

m1

,

w1

)

(π,R)

(

m2

,

w2

)

(π,R)

(

m3

,

w3

)

.Proceeding inductively,we canaddpairstothissequence,andsincetherearefinitelymanyman–womanpairs,thissequenceincludes acycleof

(π,R).

If the cycle includes

(

m1

,

w1

)

, then it is strong and we are done. Suppose otherwise. Let the cycle consist of

(

x1

,

y1

),

(

x2

,

y2

),

. . . ,

(

xk

,

yk

)

M

×

W .Note that

(

x1

,

y1

)

(π,R)

(

x2

,

y2

)

(π,R)

. . .

(π,R)

(

xk

,

yk

)

(π,R)

(

x1

,

y1

)

.

Remem-ber that

π

x1y1

<

π

x1y1

,

π

x2y2

<

π

x2y2

,

. . . ,

π

xkyk

<

π

xkyk, and

π

 x1y2

>

π

x1y2

,

π

x2y3

>

π

x2y3

,

. . . ,

π

xky1

>

π

xky1. Let



1

min

{

π

x1y1

π

x1y1

,

. . . ,

π

xkyk

π

 xkyk

}

,



2

min

{

π



x1y2

π

x1y2

,

. . . ,

π

xky1

π

xky1

}

and



min

{

1

,



2

}

.Let

π



∈ 

be de-fined by settingfor each i

∈ {

1

,

. . . ,

k

}

,

π

xiyi

=

π

xiyi

+



,

π

xiyi+1

=

π

xiyi+1



(with the convention that yk+1

=

y1), and foreach other pair

(

m

,

w

)

,

π

mw

=

π

mw . Sinceforeach i

∈ {

1

,

. . . ,

k

}

, yiIxi yi+1 and xi−1Iyi xi,

π

 alsosd-dominates

π

. Also,by theconstructionof

π

,therearetwo consecutivepairsinthecycle,say

(

xt

,

yt

)

and

(

xt+1

,

yt+1

)

,suchthat either

π

xtyt

=

π

xtyt or

π

xtyt +1

=

π

xtyt+1.

Now,because

π

 sd-dominates

π

,as we didabove,we can findacycleof

(π,R),say

(

x1

,

y1

)

,

(

x2

,

y2

)

,

. . . ,

(

xt

,

yt

)

M

×

W ,suchthatforeach i

∈ {

1

,

. . . ,

t

}

,

π

x iyi

<

π

xiyi and

π

xiyi+1

>

π

xiyi+1 (withtheconvention that yt+1

=

y1).Notethat

(

xt

,

yt

)

and

(

xt+1

,

yt+1

)

cannotbepartofthiscycleconsecutively,implyingthatthisnewcyclemustbedifferentfromthe

cyclethatwasidentifiedbefore.Continuingsimilarly,we obtainadditionalassignmentsthatsd-dominate

π

andadditional cycles.Noneofthose cyclescaninclude

(

xt

,

yt

)

and

(

xt+1

,

yt+1

)

consecutively;andforeach additionalcycle, we identify

additionalconsecutivepairsinthecyclethatcannotbepartofanycycleinthefuture,implyingthateachcycleisdifferent fromanycyclethat wasidentifiedbefore.Sincethenumberofcyclesin

(π,R) isfinite,thisprocesseventually leadstoa

strongcycle.Thus,

(π,R)isnotweaklyacyclic.

2

Given R

R

, for each

π

Psd

(

R

)

, the relation

(π,R) can have cycles of the form

(

m1

,

w1

)

(π,R)

(

m2

,

w2

)

(π,R)

. . .

(π,R)

(

mk

,

wk

)

(π,R)

(

m1

,

w1

)

.However,

(π,R)beingweaklyacyclicimpliesthatsuchacycleshouldbelongto

(π,R),

thatis,thecycleshouldbeoftheform

(

m1

,

w1

)

(π,R)

(

m2

,

w2

)

(π,R)

. . .

(π,R)

(

mk

,

wk

)

(π,R)

(

m1

,

w1

)

.

Given

(

π

,

R

)

∈ 

×

R

, letCπ,R be thebinary relationon M

×

W ,definedasfollows:Foreach pair

(

m

,

w

),

(

m

,

w

)

M

×

W ,

(

m

,

w

)

Cπ,R

(

m

,

w

)

ifandonlyifthereisacycleof

(π,R)thatcontainsboth,thatis,thereisasequenceofpairs

(not necessarily distinct)

(

m1

,

w1

),

(

m2

,

w2

)

,

. . . ,

(

mk

,

wk

)

M

×

W that includes

(

m

,

w

)

and

(

m

,

w

)

, and is such that

(

m1

,

w1

)

(π,R)

(

m2

,

w2

)

(π,R)

. . .

(π,R)

(

mk

,

wk

)

(π,R)

(

m1

,

w1

)

.Notethat Cπ,R isan equivalence relationon M

×

W , that is, it is reflexive, symmetric, and transitive. For each pair

(

m

,

w

)

M

×

W , let

[

m

,

w

]

Cπ,R

≡ {(

m

,

w

)

M

×

W

:

(

m

,

w

)

Cπ,R

(

m

,

w

)

}

denote the equivalenceclass of

(

m

,

w

)

relative to Cπ,R.Let

(π,R) be the relationdefined onthe

setofall equivalenceclassesof C(π,R) asfollows:Foreach pair

(

m1

,

w1

),

(

m2

,

w2

)

M

×

W ,

[

m1

,

w1

]

(π,R)

[

m2

,

w2

]

if

andonlyif

[

m1

,

w1

]

= [

m2

,

w2

]

andthereare

(

m1

,

w1

)

∈ [

m1

,

w1

]

,

(

m2

,

w2

)

∈ [

m2

,

w2

]

suchthat

(

m1

,

w1

)

(π,R)

(

m2

,

w2

)

.

Notethat,if

π

Psd

(

R

)

,then

(π,R)isacyclic.

3.2. Anefficiencytheorem

In thissection we show that for each probabilistic assignment that is sd-efficient ata givenpreference profile,there isa utilityprofileconsistent withthesepreferences suchthat theprobabilistic assignmentmaximizesthesumofthe ex-pected utilities.First,let usconsider thesimplecasewhere thesd-efficient assignment forwhicha utility functionis to be constructedis anefficient deterministicassignment,

μ

.Let u bea utility profileconsistent with R suchthat foreach

(

m

,

w

)

M

×

W ,if m and w arematchedat

μ

,thenum

(

w

)

=

uw

(

m

)

=

1.Further,foreach w

W suchthatw

mw,let 0

<

um

(

w

)

< δ

forsome

δ >

0 andforeach w

W suchthatw

mw,let1

<

um

(

w

)

<

1

+



forsome



>

0.Letuw be similarlydefined.Notethatforsomesmallenoughselectionof

δ

and



,theefficientassignment

μ

isawelfaremaximizing assignmentatutilityprofileu.

This construction would fail even for the simplest probabilistic assignment, which is obtained as a mixture of two efficient deterministic assignments. However, we show that the same conclusion holds foreach sd-efficient probabilistic assignment

π

byprovidinganexplicitconstructionforautilityprofileatwhich

π

iswelfaremaximizing.Theconstruction inthenextexampleisinstructivetounderstandthegeneralconstructiontofollowinTheorem 1.

Example1.LetM

= {

1

,

2

,

3

}

andW

= {

a

,

b

,

c

}

.Letthepreferenceprofile R beasfollows:

R1 R2 R3 Ra Rb Rc

a b c 3 1 2

c a b 2 3 1

b c a 1 2 3

Let

μ

betheassignmentwhere1 ismatchedwitha,2 with b,and3 withc.Let

μ

betheassignmentwhere1 ismatched withb,2 withc,and3 with a.Let

π

assign0

.

5 probabilitytoeachof

μ

and

μ

.

(6)

Now,letu besuchthateach agentgetsutility 1 fromhis/hertop-rankedagentandutility0 fromhis/herthird-ranked agent. Further,each agentgetsutilityintheopen interval

(

0

,

1

/

2

)

fromhis/hersecond-rankedagent.Clearly,foreachpair

(

m

,

w

)

,if

π

mw

>

0,thenum

(

w

)

+

uw

(

m

)

=

1.Moreover,if

π

mw

=

0,thenum

(

w

)

+

uw

(

m

)

<

1.Hence,thesumofexpected utilities,whichis3 at

π

,cannotexceed3 atanyprobabilisticassignment.

Intheaboveconstruction,foreachman–womanpair,thesumoftheutilitiestheygetfromeachotheristhesame,and thataspectplaysthecriticalrole.Forourgeneralresult,a similarconstructionworks.

Theorem1.Foreachpreferenceprofileandeachassignmentthatissd-efficientatit,thereisautilityprofileconsistentwiththe preferenceprofilesuchthattheassignmentisex-anteutilitarianwelfaremaximizingatthatutilityprofile.

Proof. Let

(

π

,

R

)

∈ 

×

R

besuchthat

π

Psd

(

R

)

.Sincewefix

(

π

,

R

)

throughouttheproof,we remove thereferenceto

(

π

,

R

)

indenotingthebinaryrelationswehavedefined,andsimplywrite

,

,

,and

.

Foreachpairm

M, w

W ,letsmw denotethelengthofthelongestpathof

startingat

[

m

,

w

]

,andletemw denote thelengthofthelongestpathof

endingat

[

m

,

w

]

.13

Step 1: Constructinganauxiliaryutilityprofile. Foreachm

M,let vm

:

W

→ R

bedefinedbysetting,foreach w

W , vm

(

w

)

=

emw emw

+

smw

.

Foreachw

W ,letvw

:

M

→ R

bedefinedbysetting,foreachm

M, vw

(

m

)

=

smw emw

+

smw

.

Notethatforeachpair

(

m

,

w

)

M

×

W ,vm

(

w

)

+

vw

(

m

)

=

1.

Lemma1.Let

(

m

,

w

),

(

m

,

w

)

M

×

W .If

[

m

,

w

]

[

m

,

w

]

,thenvw

(

m

)

>

vw

(

m

)

. Proof. Sinceemw

<

emw andsmw

>

smw,then

smw smw

+

emw

>

smw smw

+

emw

,

i.e. 1 1

+

emws mw

>

1 1

+

emw smw

.

2

One consequenceof the Lemma is that, foreach pair

(

m

,

w

),

(

m

,

w

)

M

×

W , if

[

m

,

w

]

[

m

,

w

]

, then vm

(

w

)

+

vw

(

m

)

<

1.Letz

((

m

,

w

),

(

m

,

w

))

=

1

vm

(

w

)

vw

(

m

)

if

[

m

,

w

]

[

m

,

w

]

,and1 otherwise.Let min

(m,w),(m,w)M×Wz

((

m

,

w

), (

m



,

w

))

2



.

Step 2: Definingtheutilityprofile u. Letm

M.Letumbedefinedasfollows(foreachw

W ,we defineuwinasymmetric way):

i. For each w

W suchthat

π

mw

>

0,set um

(

w

)

vm

(

w

)

.We show that um is consistentwith Rm onthe subset of womenforwhom

π

mw

>

0.Letm

M andw

,

w

W besuchthat

π

mw

>

0 and

π

mw

>

0.Withoutlossofgenerality, suppose that wRmw. If w Imw, then note that

(

m

,

w

)

∼ (

m

,

w

)

, and

[

m

,

w

]

∼ [

m

,

w

]

. Thus, um

(

w

)

=

um

(

w

)

, as desired.If wPmw,then

(

m

,

w

)

(

m

,

w

)

,and

[

m

,

w

]

[

m

,

w

]

.Thus,um

(

w

)

>

um

(

w

)

,as desired.

ii. For each w

W such that

π

mw

=

0 and there is no w

W with

π

mw

>

0, wRmw, set um

(

w

)

≤ −

1. Obviously, at this step the utilities can be chosen such that um is consistent with Rm on the subset of women for whom the utilitiesaredefinedsofar.

iii. Foreach w

W suchthat

π

mw

=

0 andthere is w

W with

π

mw

>

0, wRmw, considera bestsuch w,that is,

π

mw

>

0,wRmw,andthereisnosuch w

W with wPmw.Setum

(

w

)

∈ [

vm

(

w

),

vm

(

w

)

+



]

.Obviously,at this steptheutilitiescanbechosensuchthatum isconsistentwithRm ontheentiresetofwomen.

LetthefunctionSW

(

u

,

.)

: 

→ R

bedefinedbysetting,foreach

π



∈ 

, SW

(

u

,

π



)

=



(m,w)M×W

[

π

mw

(

um

(

w

)

+

uw

(

m

))

].

13 Apathoflengthk of consistsofk pairs(m

(7)

Step 3: SW attainsitsmaximumat

π

. For each pair

(

m

,

w

)

M

×

W , if

π

mw

>

0, then um

(

w

)

+

uw

(

m

)

=

1. Thus,

SW

(

u

,

π

)

=

n. We showthat foreach pair

(

m

,

w

)

M

×

W , if

π

mw

=

0, then um

(

w

)

+

uw

(

m

)

1, which implies that themaximalpossibleex-anteutilitariansocialwelfareisn,anditisreachedat

π

.

Let

(

m

,

w

)

M

×

W be such that

π

mw

=

0. Suppose that there is no w

W such that

π

mw

>

0, wRmw. Then,

um

(

w

)

≤ −

1.If thereisnom

M suchthat

π

mw

>

0 andmRwm,thenuw

(

m

)

≤ −

1 andum

(

w

)

+

uw

(

m

)

<

1.If thereis

m

M suchthat

π

mw

>

0 andmRwm,thenuw

(

m

)

uw

(

m

)

+



<

2.Thus,um

(

w

)

+

uw

(

m

)

<

1.Thecasewhenthereis nom

M suchthat

π

mw

>

0,mRwm,is symmetric.

So,thereisonlyonecaselefttoconsider.Supposethatthereisw

W suchthat

π

mw

>

0 and wRmw,andthereis

m

M suchthat

π

mw

>

0 andmRwm.Letw andm bethebestsuch agents.Notethat

(

m

,

w

)

(

m

,

w

)

.If w Imw andmIwm,thenbyLemma 1,um

(

w

)

+

uw

(

m

)

<

1.So,supposethatforatleastoneagent,thepreferenceisstrict.Then,

(

m

,

w

)

(

m

,

w

)

and

[

m

,

w

]

[

m

,

w

]

.Recallthatz

((

m

,

w

),

(

m

,

w

))

=

1

vm

(

w

)

vw

(

m

)

2



.Now, um

(

w

)

+

uw

(

m

)

≤ [

um

(

w

)

+



] + [

uw

(

m

)

+



] =

vm

(

w

)

+

vw

(

m

)

+

2



whichimpliesum

(

w

)

+

uw

(

m

)

1,as desired.

2

The welfare theorem by McLennan (2002) for the problem of allocating objects is a corollary of Theorem 1. To see this,firstconsiderthefollowingcounterpartsofsd-efficiencyandutilitariansocialwelfareforthatmodel.Letuskeepthe men-womennotation.Anassignment

π

∈ 

men-sidesd-dominates

π



∈ 

at R

∈ R

ifforeachagent i

M,thelottery assignedtoi at

π

sd-dominatestheoneassignedat

π

.Thatis,foreachpair

(

m

,

w

)

M

×

W ,



w:wRmw

π

mw



w:wRmw

π

mw 

suchthat foratleastonepairtheinequalityisstrict.Anassignment

π

∈ 

ismen-sidesd-efficientat R

∈ R

ifno prob-abilisticassignmentmen-sidesd-dominatesitat R.Foreachutilityprofileu

= (

ui

)

iN andprobabilisticassignment

π

,the men-sideutilitariansocialwelfareat

(

u

,

π

)

isthesumoftheutilitiesofthemen,thatis:

MSW

(

u

,

π

)

=



mM



wW

π

mwum

(

w

).

Aprobabilistic assignment

π

isex-antemen-sideutilitarianwelfaremaximizingatautilityprofile u ifit maximizes themen-sidesocialwelfareatu,thatis,

π

argmaxπ∈MSW

(

u

,

π

)

.

Corollary1.(SeeMcLennan,2002.)Foreachpreferenceprofileandeachassignmentthatismen-sidesd-efficientatit,thereisautility profileconsistentwiththepreferenceprofilesuchthattheassignmentisex-antemen-sideutilitarianwelfaremaximizingatthatutility profile.

Proof. Let

π

∈ 

bemen-sidesd-efficientatR

R

.LetR

R

besuchthatforeachm

M, Rm

=

Rm,andeachwomanis indifferentbetweenanytwomenat R.Notethat

π

ismen-sidesd-efficientalsoat R.Moreover,

π

Psd

(

R

)

.ByTheorem 1, thereisautilityprofileu consistentwithRsuchthat

π

isex-anteutilitarianwelfaremaximizingatu.Sinceeachwoman getsthesameutility fromanytwomenatu,

π

isex-antemen-sideutilitarianwelfaremaximizingatu. Now,let u bea utility profilesuchthatforeachm

M, um

=

um,andforeach w

W ,uw isconsistentwithRw.Notethat

π

isex-ante men-sideutilitarianwelfaremaximizingatu.

2

3.3. Astabilitytheorem

Acentral robustness criterion for deterministic assignments is“stability”,which requires thatthere be no unmatched man–womanpair who prefer each other to their assignedmates. A counterpartofstability forprobabilistic assignments is “ex-post” stability,whichrequires that there be atleastone decompositionof theprobabilistic assignment into stable deterministicassignments.

Let

D

denote theset ofdeterministic assignments. An assignment

μ

∈ D

is stable at R

∈ R

ifthere isno

(

m

,

w

)

M

×

W such that mPw

μ

(

w

)

, wPm

μ

(

m

)

. An assignment

π

∈ 

is ex-poststable if it can be expressed as a convex combinationofstabledeterministicassignments.

From thispoint on,we restrict ourselvesto strict preferences.Foreach i

N, let

P

i

R

i bethe setof all transitive, anti-symmetric,andcompletepreferencerelationsfori.Let

P = ×

iN

P

i bethesetofallstrictpreferenceprofiles.

Weshowthatex-poststabilityimplieswelfareproperties,beyondsd-efficiency,whicharealsodeduciblefromtheordinal preferencesandcanavoidex-antebreakawaysofmen-womencoalitionsfromthesociety.

Acoalition S

=

M

W

M

W is admissible if

|

M

|

= |

W

|

.Let

A

bethe setofalladmissiblecoalitions.Foreach

S

A

,let



S denotethesetofprobabilisticassignmentsdefinedover S.Foreachutilityprofileu

= (

u

(8)

transferableutilitygame defined by settingforeach S

=

M

W

A

, Vu

(

S

)

tobe themaximum totalexpectedutility coalition S canachieveamongitsmembers.Thatis,foreachS

=

M

W

A

,

Vu

(

S

)

=

max πS∈S



(m,w)∈M×W

π

mwS

(

um

(

w

)

+

uw

(

m

)).

Let E

(

um

|

π

)

=



wW

π

mwum

(

w

)

be the expected value of um at

π

and E

(

uw

|

π

)

=



mM

π

mwuw

(

m

)

the expected value ofuw at

π

.Givenautility profileu,an assignment

π

∈ 

isinthe coreof Vu ifnocoalitioncanincreaseits total expected utilityby deviating toanother probabilistic assignmentwherethey are matchedamong themselves.Thatis,for each S

A

, Vu

(

S

)



mM E

(

um

|

π

)

+



wW E

(

uw

|

π

).

LetC

(

Vu

)

bethe setofallassignmentsthatareinthecoreof Vu.

Let P

P

.LetPM andPW denotethecommonpreferencesofmenandwomenoverdeterministicassignmentsinduced by P ,definedasfollows:Foreachpair

μ

,

μ



D

,

μ

PM

μ

ifandonlyifforeachm

M,

μ

Rm

μ

withstrictpreferencefor somem.TherelationPW isdefinedsimilarly.

An assignment

π

∈ 

is well-ordered ex-poststable at P

∈ P

if it has a decomposition into stable assignments

μ1

,

. . . ,

μ

T suchthatforeacht

,

t

∈ {

1

,

. . . ,

T

}

witht

<

t,we have

μ

t PM

μ

t and

μ

tPW

μ

t.

Proposition2.Ifanassignment

π

iswell-orderedex-poststableatastrictpreferenceprofile,thenthereisautilityprofileu consistent withthepreferenceprofilesuchthat

π

C

(

Vu

)

.

Proof. Let

π

∈ 

be well-orderedex-post stableat P

P

. Suppose that

π

hasthe following decompositioninto stable assignments:

π

= λ

1μ1

+ λ

2μ2

+ · · · + λ

T

μ

T.Supposethatforeachpairt

,

t

∈ {

1

,

2

,

. . . ,

T

}

suchthatt

<

t,

μ

t PM

μ

t and

μ

t PW

μ

t.

Wefirstdefinetheutilitieseachagentgetsfromtheagentsthathe/sheismatchedwithpositiveprobability.Let

(

m

,

w

)

M

×

W suchthat

π

mw

>

0.First note thatifm is matchedto w in twodifferentassignments inthe decomposition,say

μ

t,

μ

t,t

<

t,thenthey shouldbematchedinall assignmentsbetween

μ

t and

μ

t,thatis,foreach t

∈ {

t

,

t

+

1

,

. . . ,

t

}

,

μ

t

(

m

)

=

w.So,let

μ

p

,

μ

p+1

,

. . . ,

μ

qbethelistofassignmentsatwhichm ismatchedtow.Let

λ

mw

≡ λ

p

p+1

+· · ·+λ

q.

Let uw

(

m

)

=

λ

p

λ

mw

·

p T

+

1

+

λ

p+1

λ

mw

·

p

+

1 T

+

1

+ · · · +

λ

q

λ

mw

·

q T

+

1

,

and um

(

w

)

=

λ

p

λ

mw

·

T

p

+

1 T

+

1

+

λ

p+1

λ

mw

·

T

p T

+

1

+ · · · +

λ

q

λ

mw

·

T

q

+

1 T

+

1

.

Ifthereisauniqueassignment

μ

t inthedecompositionsuchthat

μ

t

(

m

)

=

w,we simplyhaveuw

(

m

)

=

T+t1 andum

(

w

)

=

T−t+1

T+1 .

14

Next, we argue that the utilities each agent gets fromthe agents that he/she is matched with zero probability can be defined in such a way that for each such pair

(

m

,

w

)

M

×

W , um

(

w

)

+

uw

(

m

)

<

1. Let

(

m

,

w

)

M

×

W be such that

π

mw

=

0.If there isno w

W suchthat

π

mw

>

0 and wPmw,thenlet um

(

w

)

≤ −

1.The casewhenthere isno

m

W suchthat

π

mw

>

0,mPwmisthesame.So,supposethattherearem

M

,

w

W suchthat

π

mw

>

0,wPmw, and

π

mw

>

0,mPwm.Supposew.l.o.g.that w andmarebestsuchagentsatPw and Pm.We willshowthatum

(

w

)

+

uw

(

m

)

<

1.First,notethatthepairs

(

m

,

w

)

and

(

m

,

w

)

cannotappearinthesameassignmentofthedecomposition,since otherwisethatassignmentwouldnotbestable.Supposethatm and warematchedinassignments

μ

p

,

μ

p+1

,

. . . ,

μ

q,and

mandw arematchedinassignments

μ

p

,

μ

p+1

,

. . . ,

μ

q.Eitherq

<

porq

<

p.In factwecannothaveq

<

p;otherwise,

m wouldpreferhismatein

μ

q,namelyw,tohismatein

μ

p.Butthen,m wouldpreferw tohismatein

μ

p,contradicting the assumption that

μ

p is stable. Thus q

<

p. Since um

(

w

)

TT+p+11 anduw

(

m

)

q



T+1, um

(

w

)

+

uw

(

m

)

<

1. Then,

by argumentssimilartotheproofofTheorem 1,foreachsuchm, w,m,w,letz

((

m

,

w

),

(

m

,

w

))

=

1

um

(

w

)

uw

(

m

)

and let 2



be the minimum of z

((

m

,

w

),

(

m

,

w

))

. Now, for the pair

(

m

,

w

)

, let um

(

w

)

∈ [

um

(

w

),

um

(

w

)

+



]

and let

uw

(

m

)

∈ [

uw

(

m

),

uw

(

m

)

+



]

.Thus, utility profileu is consistentwith P andforeach pair

(

m

,

w

)

thatis matchedwith zeroprobabilityum

(

w

)

+

uw

(

m

)

<

1.

Now,we showthat

π

C

(

Vu

)

.First,foreachadmissiblecoalition S

=

M

W,Vu

(

S

)

≤ |

M

|

.Now,let

(

m

,

w

)

M

×

W . We showthat E

(

um

|

π

)

+

E

(

uw

|

π

)

=

1.Observethat

E

(

um

|

π

)

= λ

1 T T

+

1

+ λ

2 T

1 T

+

1

+ · · · + λ

T 1 T

+

1

·

Referanslar

Benzer Belgeler

As a senate member, I joined a meeting of Anadolu University at Hacettepe and there I had an intensive discussion with Professor Yunus Müftü, regarded stand-in son of Professor

129 Figure 4.44: Curve showing the required number of sample size for West Mesaria regions’ rainfall, based on the percentage deviations of the mean values .... 129

The dog was autopsied some time later and the visible colour changes in the external appearance of the skin and bruises were attributed to ante- mortem wounds in the

Çözüm.. İstemdeki her bir unsur, yukarıdaki birinci adım- da tanımlandığı gibi üründe olup olmadığına bakılır. Eğer bu unsurlardan bir tanesi bile yoksa patent

Kemal Bilbaşar hakkında yapılan son çalışmaysa, konumuzla benzer bir çalışma olan ve 2016 yılında Sabahattin Kapucu tarafından yapılan “Kemal Bilbaşar'ın

Çalışma sonucundaki bulgular, doğal yiye­ ceklerle zenginleştirilmiş mikst diyet fiberinin, diyetle tedavi edilen tip II diabetikler ile OAD kullanan tip II

The ratio of the speed of light in a vacuum to the speed of light in another substance is defined as the index of refraction ( refractive index or n) for the substance..

When the rays of certain wavelengths are absorbed, the energy of the beam passes to the substance and the molecules, atoms, electrons of the matter become more energized, which