• Sonuç bulunamadı

Measurements of Absolute Hadronic Branching Fractions of the Lambda(+)(c) Baryon

N/A
N/A
Protected

Academic year: 2021

Share "Measurements of Absolute Hadronic Branching Fractions of the Lambda(+)(c) Baryon"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

This is the accepted manuscript made available via CHORUS. The article has been

published as:

Measurements of Absolute Hadronic Branching Fractions of

the Λ_{c}^{+} Baryon

M. Ablikim et al. (BESIII Collaboration)

Phys. Rev. Lett. 116, 052001 — Published 5 February 2016

DOI:

10.1103/PhysRevLett.116.052001

(2)

Measurements of absolute hadronic branching fractions of the

Λ

c

baryon

M. Ablikim1, M. N. Achasov9,e, X. C. Ai1, O. Albayrak5, M. Albrecht4, D. J. Ambrose44, A. Amoroso49A,49C, F. F. An1,

2

Q. An46,a, J. Z. Bai1, R. Baldini Ferroli20A, Y. Ban31, D. W. Bennett19, J. V. Bennett5, M. Bertani20A, D. Bettoni21A,

3

J. M. Bian43, F. Bianchi49A,49C, E. Boger23,c, I. Boyko23, R. A. Briere5, H. Cai51, X. Cai1,a, O. Cakir40A, A. Calcaterra20A,

4

G. F. Cao1, S. A. Cetin40B

, J. F. Chang1,a, G. Chelkov23,c,d, G. Chen1, H. S. Chen1, H. Y. Chen2, J. C. Chen1,

5

M. L. Chen1,a, S. J. Chen29, X. Chen1,a, X. R. Chen26, Y. B. Chen1,a, H. P. Cheng17, X. K. Chu31, G. Cibinetto21A,

6

H. L. Dai1,a, J. P. Dai34, A. Dbeyssi14, D. Dedovich23, Z. Y. Deng1, A. Denig22, I. Denysenko23, M. Destefanis49A,49C,

7

F. De Mori49A,49C, Y. Ding27, C. Dong30, J. Dong1,a, L. Y. Dong1, M. Y. Dong1,a, Z. L. Dou29, S. X. Du53, P. F. Duan1,

8

E. E. Eren40B, J. Z. Fan39, J. Fang1,a, S. S. Fang1, X. Fang46,a, Y. Fang1, R. Farinelli21A,21B, L. Fava49B,49C, O. Fedorov23,

9

F. Feldbauer22, G. Felici20A, C. Q. Feng46,a, E. Fioravanti21A, M. Fritsch14,22, C. D. Fu1, Q. Gao1, X. L. Gao46,a,

10

X. Y. Gao2, Y. Gao39, Z. Gao46,a, I. Garzia21A, K. Goetzen10, L. Gong30, W. X. Gong1,a, W. Gradl22, M. Greco49A,49C,

11

M. H. Gu1,a, Y. T. Gu12, Y. H. Guan1, A. Q. Guo1, L. B. Guo28, Y. Guo1, Y. P. Guo22, Z. Haddadi25, A. Hafner22, S. Han51,

12

X. Q. Hao15, F. A. Harris42, K. L. He1, T. Held4, Y. K. Heng1,a, Z. L. Hou1, C. Hu28, H. M. Hu1, J. F. Hu49A,49C, T. Hu1,a,

13

Y. Hu1, G. S. Huang46,a, J. S. Huang15, X. T. Huang33, Y. Huang29, T. Hussain48, Q. Ji1, Q. P. Ji30, X. B. Ji1, X. L. Ji1,a,

14

L. W. Jiang51, X. S. Jiang1,a

, X. Y. Jiang30, J. B. Jiao33, Z. Jiao17, D. P. Jin1,a

, S. Jin1, T. Johansson50, A. Julin43,

15

N. Kalantar-Nayestanaki25, X. L. Kang1, X. S. Kang30, M. Kavatsyuk25, B. C. Ke5, P. Kiese22, R. Kliemt14, B. Kloss22,

16

O. B. Kolcu40B,h, B. Kopf4, M. Kornicer42, W. Kuehn24, A. Kupsc50, J. S. Lange24,a, M. Lara19, P. Larin14, C. Leng49C,

17

C. Li50, Cheng Li46,a

, D. M. Li53, F. Li1,a

, F. Y. Li31, G. Li1, H. B. Li1, J. C. Li1, Jin Li32, K. Li13, K. Li33, Lei Li3,

18

P. R. Li41, Q. Y. Li33, T. Li33, W. D. Li1, W. G. Li1, X. L. Li33, X. M. Li12, X. N. Li1,a, X. Q. Li30, Z. B. Li38, H. Liang46,a,

19

Y. F. Liang36, Y. T. Liang24, G. R. Liao11, D. X. Lin14, B. J. Liu1, C. X. Liu1, D. Liu46,a, F. H. Liu35, Fang Liu1, Feng Liu6,

20

H. B. Liu12, H. H. Liu1, H. H. Liu16, H. M. Liu1, J. Liu1, J. B. Liu46,a, J. P. Liu51, J. Y. Liu1, K. Liu39, K. Y. Liu27,

21

L. D. Liu31, P. L. Liu1,a, Q. Liu41, S. B. Liu46,a, X. Liu26, Y. B. Liu30, Z. A. Liu1,a, Zhiqing Liu22, H. Loehner25,

22

X. C. Lou1,a,g, H. J. Lu17, J. G. Lu1,a, Y. Lu1, Y. P. Lu1,a, C. L. Luo28, M. X. Luo52, T. Luo42, X. L. Luo1,a, X. R. Lyu41,

23

F. C. Ma27, H. L. Ma1, L. L. Ma33, Q. M. Ma1, T. Ma1, X. N. Ma30, X. Y. Ma1,a, Y. M. Ma33, F. E. Maas14,

24

M. Maggiora49A,49C, Y. J. Mao31, Z. P. Mao1, S. Marcello49A,49C, J. G. Messchendorp25, J. Min1,a, R. E. Mitchell19,

25

X. H. Mo1,a, Y. J. Mo6, C. Morales Morales14, N. Yu. Muchnoi9,e, H. Muramatsu43, Y. Nefedov23, F. Nerling14,

26

I. B. Nikolaev9,e, Z. Ning1,a, S. Nisar8, S. L. Niu1,a, X. Y. Niu1, S. L. Olsen32, Q. Ouyang1,a, S. Pacetti20B, Y. Pan46,a,

27

P. Patteri20A, M. Pelizaeus4, H. P. Peng46,a, K. Peters10, J. Pettersson50, J. L. Ping28, R. G. Ping1, R. Poling43, V. Prasad1,

28

H. R. Qi2, M. Qi29, S. Qian1,a, C. F. Qiao41, L. Q. Qin33, N. Qin51, X. S. Qin1, Z. H. Qin1,a, J. F. Qiu1, K. H. Rashid48,

29

C. F. Redmer22, M. Ripka22, G. Rong1, Ch. Rosner14, X. D. Ruan12, V. Santoro21A, A. Sarantsev23,f, M. Savri´e21B,

30

K. Schoenning50, S. Schumann22, W. Shan31, M. Shao46,a, C. P. Shen2, P. X. Shen30, X. Y. Shen1, H. Y. Sheng1,

31

W. M. Song1, X. Y. Song1, S. Sosio49A,49C, S. Spataro49A,49C, G. X. Sun1, J. F. Sun15, S. S. Sun1, Y. J. Sun46,a, Y. Z. Sun1,

32

Z. J. Sun1,a, Z. T. Sun19, C. J. Tang36, X. Tang1, I. Tapan40C, E. H. Thorndike44, M. Tiemens25, M. Ullrich24, I. Uman40D,

33

G. S. Varner42, B. Wang30, B. L. Wang41, D. Wang31, D. Y. Wang31, K. Wang1,a, L. L. Wang1, L. S. Wang1, M. Wang33,

34

P. Wang1, P. L. Wang1, S. G. Wang31, W. Wang1,a, W. P. Wang46,a, X. F. Wang39, Y. D. Wang14, Y. F. Wang1,a,

35

Y. Q. Wang22, Z. Wang1,a, Z. G. Wang1,a, Z. H. Wang46,a, Z. Y. Wang1, T. Weber22, D. H. Wei11, J. B. Wei31,

36

P. Weidenkaff22, S. P. Wen1, U. Wiedner4, M. Wolke50, L. H. Wu1, Z. Wu1,a, L. Xia46,a, L. G. Xia39, Y. Xia18, D. Xiao1,

37

H. Xiao47, Z. J. Xiao28, Y. G. Xie1,a, Q. L. Xiu1,a, G. F. Xu1, L. Xu1, Q. J. Xu13, Q. N. Xu41, X. P. Xu37, L. Yan49A,49C,

38

W. B. Yan46,a, W. C. Yan46,a, Y. H. Yan18, H. J. Yang34, H. X. Yang1, L. Yang51, Y. X. Yang11, M. Ye1,a, M. H. Ye7,

39

J. H. Yin1, B. X. Yu1,a, C. X. Yu30, J. S. Yu26, C. Z. Yuan1, W. L. Yuan29, Y. Yuan1, A. Yuncu40B,b, A. A. Zafar48,

40

A. Zallo20A, Y. Zeng18, Z. Zeng46,a, B. X. Zhang1, B. Y. Zhang1,a, C. Zhang29, C. C. Zhang1, D. H. Zhang1, H. H. Zhang38,

41

H. Y. Zhang1,a, J. J. Zhang1, J. L. Zhang1, J. Q. Zhang1, J. W. Zhang1,a, J. Y. Zhang1, J. Z. Zhang1, K. Zhang1, L. Zhang1,

42

X. Y. Zhang33, Y. Zhang1, Y. H. Zhang1,a, Y. N. Zhang41, Y. T. Zhang46,a, Yu Zhang41, Z. H. Zhang6, Z. P. Zhang46,

43

Z. Y. Zhang51, G. Zhao1, J. W. Zhao1,a

, J. Y. Zhao1, J. Z. Zhao1,a

, Lei Zhao46,a, Ling Zhao1, M. G. Zhao30, Q. Zhao1,

44

Q. W. Zhao1, S. J. Zhao53, T. C. Zhao1, Y. B. Zhao1,a, Z. G. Zhao46,a, A. Zhemchugov23,c, B. Zheng47, J. P. Zheng1,a,

45

W. J. Zheng33, Y. H. Zheng41, B. Zhong28, L. Zhou1,a, X. Zhou51, X. K. Zhou46,a, X. R. Zhou46,a, X. Y. Zhou1, K. Zhu1,

46

K. J. Zhu1,a, S. Zhu1, S. H. Zhu45, X. L. Zhu39, Y. C. Zhu46,a

, Y. S. Zhu1, Z. A. Zhu1, J. Zhuang1,a

, L. Zotti49A,49C, 47 B. S. Zou1, J. H. Zou1 48 (BESIII Collaboration) 49

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China

50

2 Beihang University, Beijing 100191, People’s Republic of China

51

3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China

52

4 Bochum Ruhr-University, D-44780 Bochum, Germany

53

5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

54

6 Central China Normal University, Wuhan 430079, People’s Republic of China

55

7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China

56

8 COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan

57

9 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia

58

10GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany

59

11 Guangxi Normal University, Guilin 541004, People’s Republic of China

60

12 GuangXi University, Nanning 530004, People’s Republic of China

(3)

2

13 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China

62

14 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

63

15 Henan Normal University, Xinxiang 453007, People’s Republic of China

64

16 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China

65

17Huangshan College, Huangshan 245000, People’s Republic of China

66

18Hunan University, Changsha 410082, People’s Republic of China

67

19 Indiana University, Bloomington, Indiana 47405, USA

68

20(A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN and University of Perugia, I-06100, Perugia,

69

Italy

70

21 (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy

71

22Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

72

23 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

73

24 Justus Liebig University Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany

74

25 KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands

75

26Lanzhou University, Lanzhou 730000, People’s Republic of China

76

27Liaoning University, Shenyang 110036, People’s Republic of China

77

28 Nanjing Normal University, Nanjing 210023, People’s Republic of China

78

29 Nanjing University, Nanjing 210093, People’s Republic of China

79

30Nankai University, Tianjin 300071, People’s Republic of China

80

31 Peking University, Beijing 100871, People’s Republic of China

81

32Seoul National University, Seoul, 151-747 Korea

82

33Shandong University, Jinan 250100, People’s Republic of China

83

34Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China

84

35 Shanxi University, Taiyuan 030006, People’s Republic of China

85

36 Sichuan University, Chengdu 610064, People’s Republic of China

86

37 Soochow University, Suzhou 215006, People’s Republic of China

87

38Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China

88

39Tsinghua University, Beijing 100084, People’s Republic of China

89

40(A)Ankara University, 06100 Tandogan, Ankara, Turkey; (B)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey;

90

(C)Uludag University, 16059 Bursa, Turkey; (D)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey

91

41 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

92

42 University of Hawaii, Honolulu, Hawaii 96822, USA

93

43University of Minnesota, Minneapolis, Minnesota 55455, USA

94

44University of Rochester, Rochester, New York 14627, USA

95

45 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China

96

46 University of Science and Technology of China, Hefei 230026, People’s Republic of China

97

47 University of South China, Hengyang 421001, People’s Republic of China

98

48 University of the Punjab, Lahore-54590, Pakistan

99

49 (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN,

100

I-10125, Turin, Italy

101

50 Uppsala University, Box 516, SE-75120 Uppsala, Sweden

102

51Wuhan University, Wuhan 430072, People’s Republic of China

103

52Zhejiang University, Hangzhou 310027, People’s Republic of China

104

53Zhengzhou University, Zhengzhou 450001, People’s Republic of China

105

a Also at State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of

106

China

107

bAlso at Bogazici University, 34342 Istanbul, Turkey

108

c Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia

109

dAlso at the Functional Electronics Laboratory, Tomsk State University, Tomsk, 634050, Russia

110

e Also at the Novosibirsk State University, Novosibirsk, 630090, Russia

111

f Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia

112

g Also at University of Texas at Dallas, Richardson, Texas 75083, USA

113

hAlso at Istanbul Arel University, 34295 Istanbul, Turkey

114

1

115

1

116

We report the first measurement of absolute hadronic branching fractions of Λ+

c baryon at the

117

Λ+

cΛ−c production threshold, in the 30 years since the Λ+c discovery. In total, twelve Cabibbo-favored

118

Λ+

c hadronic decay modes are analyzed with a double-tag technique, based on a sample of 567 pb−1

119

of e+

e− collisions ats = 4.599 GeV recorded with the BESIII detector. A global least-squares

(4)

fitter is utilized to improve the measured precision. Among the measurements for twelve Λ+ c decay

121

modes, the branching fraction for Λ+

c → pK−π+ is determined to be (5.84 ± 0.27 ± 0.23)%, where

122

the first uncertainty is statistical and the second is systematic. In addition, the measurements of

123

the branching fractions of the other eleven Cabibbo-favored hadronic decay modes are significantly

124

improved.

125

PACS numbers: 14.20.Lq, 13.30.Eg, 13.66.Bc

126

Charmed baryon decays provide crucial information 127

for the study of both strong and weak interactions. 128

Hadronic decays of Λ+

c, the lightest charmed baryon

129

with quark configuration udc, provide important input 130

to Λb physics as Λb decays dominantly to Λ+c [1, 2].

131

Improved measurements of the Λ+

c hadronic decays can

132

be used to constrain fragmentation functions of charm 133

and bottom quarks by counting inclusive heavy flavor 134

baryons [3]. Most Λ+

c branching fractions (BF) have until

135

now been obtained by combining measurements of ratios 136

with a single branching fraction of the golden reference 137

mode Λ+

c → pK

π+, thus introducing strong

correla-138

tions and compounding uncertainties. The experimen-139 tally averaged BF, B(Λ+ c → pK − π+) = (5.0 ± 1.3)% [4], 140

has large uncertainty due to the introduction of mod-141

el assumptions on Λ+

c inclusive decays in these

mea-142

surements [5]. Recently, the Belle experiment reported 143 B(Λ+ c → pK −π+) = (6.84 ± 0.24+0.21 −0.27)% with a preci-144

sion improved by a factor of 5 over previous results [6]. 145

However, most hadronic BFs still have poor precision [4]. 146

In this Letter, we present the first simultaneous determi-147

nation of multiple Λ+

c absolute BFs.

148

Our analysis is based on a data sample with an in-149

tegrated luminosity of 567 pb−1 [7] collected with the 150

BESIII detector [8] at the center-of-mass energy of√s = 151

4.599 GeV. At this energy, no additional hadrons accom-152

panying the Λ+ cΛ

c pairs are produced. Previously, the

153

Mark III collaboration measured D hadronic BFs at the 154

D ¯D threshold using a double-tag technique, which re-155

lies on fully reconstructing both D and ¯D decays [9]. 156

This technique obviates the need for knowledge of the 157

luminosity or the production cross section. We em-158

ploy a similar technique [10] using BESIII data near 159

the Λ+ cΛ

c threshold, resulting in improved

measure-160

ments of charge-averaged BFs for twelve Cabibbo-favored 161

hadronic decay modes: Λ+

c → pKS0, pK − π+, pK0 Sπ0, 162 pK0 Sπ+π − , pK− π+π0, Λπ+, Λπ+π0, Λπ+π− π+, Σ0π+, 163

Σ+π0, Σ+π+π, and Σ+ω [11]. Throughout the Letter,

164

charge-conjugate modes are implicitly assumed, unless 165 otherwise stated. 166 To identify the Λ+ cΛ −

c signal candidates, we first

recon-167

struct one Λ−

c baryon [called a single tag (ST)] through

168

the final states of any of the twelve modes. For a given 169

decay mode j, the ST yield is determined to be 170

NjST= NΛ+

cΛ−c · Bj· εj, (1) where NΛ+

cΛ−c is the total number of produced Λ

+ cΛ

− c

171

pairs and εj is the corresponding efficiency. Then we

172

define double-tag (DT) events as those where the partner 173

Λ+

c recoiling against the Λ −

c is reconstructed in one of the

174

twelve modes. That is, in DT events, the Λ+ cΛ

c event is

175

fully reconstructed. The DT yield with Λ+c → i (signal

176 mode) and Λ− c → j (tagging mode) is 177 NijDT= NΛ+ cΛ−c · Bi· Bj· εij, (2) where εij is the efficiency for simultaneously

reconstruct-178

ing modes i and j. Hence, the ratio of the DT yield 179

(NDT

ij ) and ST yield (NjST) provides an absolute

mea-180 surement of the BF: 181 Bi= NDT ij NST j εj εij . (3)

Because of the large acceptance of the BESIII detec-182

tor and the low multiplicities of Λc hadronic decays,

183

εij ≈ εiεj. Hence, the ratio εj/εij is insensitive to most

184

systematic effects associated with the decay mode j, and 185

a signal BF Bi obtained using this procedure is

near-186

ly independent of the efficiency of the tagging mode. 187

Therefore, Bi is sensitive to the signal mode efficiency

188

(εi), whose uncertainties dominate the contribution to

189

the systematic error from the efficiencies. According to 190

Eqs. (1) and (2), the total DT yield with Λ+

c → i (signal

191

mode) over the twelve ST modes is determined to be 192 Ni−DT= NΛ+ cΛ−c · X j Bi· Bj· εDTi− , (4) where εDT i− ≡ P jP(Bj·εij)

jBj is the average DT efficiency 193

weighted over the twelve modes. 194

The BESIII detector is an approximately cylindrically 195

symmetric detector with 93% coverage of the solid an-196

gle around the e+e

interaction point (IP). The com-197

ponents of the apparatus, ordered by distance from the 198

IP, are a 43-layer small-cell main drift chamber (MDC), 199

a time-of-flight (TOF) system based on plastic scintilla-200

tors with two layers in the barrel region and one layer 201

in the end-cap region, a 6240-cell CsI(Tl) crystal electro-202

magnetic calorimeter (EMC), a superconducting solenoid 203

magnet providing a 1.0 T magnetic field aligned with the 204

beam axis, and resistive-plate muon-counter layers inter-205

leaved with steel. The momentum resolution for charged 206

tracks in the MDC is 0.5% for a transverse momen-207

tum of 1 GeV/c. The energy resolution in the EMC is 208

2.5% in the barrel region and 5.0% in the end-cap re-209

gion for 1 GeV photons. Particle identification (PID) for 210

charged tracks combines measurements of the energy de-211

posit dE/dx in MDC and flight time in TOF and forms 212

likelihoods L(h) (h = p, K, π) for a hadron h hypothe-213

sis. More details about the BESIII detector are provided 214

elsewhere [8]. 215

(5)

4 High-statistics Monte Carlo (MC) simulations of e+e

216

annihilations are used to understand backgrounds and to 217

estimate detection efficiencies. The simulation includes 218

the beam-energy spread and initial-state radiation (ISR) 219

of the e+e

collisions as simulated with KKMC [12]. 220

The inclusive MC sample consists of Λ+ cΛ

c events, D(s)

221

production [13], ISR return to lower-mass ψ states, and 222

continuum processes e+e

→ q¯q (q = u, d, s). Decay 223

modes as specified in the Particle Data Group summary 224

(PDG) [4] are modeled with EVTGEN [14]. For the MC 225

production of e+e

→ Λ+ cΛ

c, the observed cross

sec-226

tions are taken into account, and phase-space-generated 227

Λ+

c decays are reweighted according to the observed

be-228

haviors in data. All final tracks and photons are fed into 229

a GEANT4-based [15] detector simulation package. 230

Charged tracks detected in the MDC must satisfy 231

| cos θ| < 0.93 (where θ is the polar angle with respect 232

to the beam direction) and have a distance of closest ap-233

proach to the IP of less than 10 cm along the beam axis 234

and less than 1 cm in the perpendicular plane, except for 235

those used for reconstructing K0

S and Λ decays. Tracks

236

are identified as protons when the PID determines this 237

hypothesis to have the greatest likelihood (L(p) > L(K) 238

and L(p) > L(π)), while charged kaons and pions are dis-239

criminated based on comparing the likelihoods for these 240

two hypotheses (L(K) > L(π) or L(π) > L(K)). 241

Showers in the EMC not associated with any charged 242

track are identified as photon candidates after fulfill-243

ing the following requirements. The deposited ener-244

gy is required to be larger than 25 MeV in the bar-245

rel (| cos θ| < 0.8) region and 50 MeV in the end-cap 246

region(0.84 < | cos θ| < 0.92). To suppress electronic 247

noise and showers unrelated to the event, the EMC time 248

deviation from the event start time is required to be with-249

in (0, 700) ns. The π0 candidates are reconstructed from

250

photon pairs, and their invariant masses are required to 251

satisfy 115 < M (γγ) < 150 MeV/c2. To improve

momen-252

tum resolution, a mass-constrained fit to the π0nominal

253

mass is applied to the photon pairs and the resulting 254

energy and momentum of the π0 are used for further

255

analysis. 256

Candidates for K0

S and Λ are formed by combining

257

two oppositely charged tracks into the final states π+π

258

and pπ−. For these two tracks, their distances of

clos-259

est approaches to the IP must be within ±20 cm along 260

the beam direction. No distance constraints in the trans-261

verse plane are required. The charged π is not subject-262

ed to the PID requirements described above, while pro-263

ton PID is implemented in order to improve signal sig-264

nificance. The two daughter tracks are constrained to 265

originate from a common decay vertex by requiring the 266

χ2 of the vertex fit to be less than 100. Furthermore,

267

the decay vertex is required to be separated from the 268

IP by a distance of at least twice the fitted vertex res-269

olution. The fitted momenta of the π+π−

and pπ−

are 270

used in the further analysis. We impose requirements 271 487 < M (π+π− ) < 511 MeV/c2 and 1111 < M (pπ− ) < 272 1121 MeV/c2 to select K0

S and Λ signal candidates,

re-273 ) 2 c (GeV/ BC M 2c Events/2.0 MeV/ 2.26 2.28 2.3 1000 2000 3000 0 S pK 2.26 2.28 2.3 200 400 600 Λπ+ 2.26 2.28 2.3 100 200 300 0π0 S pK 2.26 2.28 2.3 100 200 0π+π -S pK 2.26 2.28 2.3 1000 2000 3000 -π+ pK 2.26 2.28 2.3 200 400 600 Λπ+π0 2.26 2.28 2.3 100 200 300 + π -π + π Λ 2.26 2.28 2.3 100 200 Σ+π0 2.26 2.28 2.3 1000 2000 3000 0 π + π -pK 2.26 2.28 2.3 200 400 600 Σ+π+π -2.26 2.28 2.3 100 200 300 + π 0 Σ 2.26 2.28 2.3 100 200 Σ+ω

FIG. 1. Fits to the ST MBC distributions in data for the

different decay modes. Points with error bars are data, solid lines are the sum of the fit functions, and dashed lines are the background shapes.

spectively, which are within about 3 standard deviations 274

from their nominal masses. To form Σ0, Σ+ and ω

can-275

didates, requirements on the invariant masses of 1179 < 276

M (Λγ) < 1203 MeV/c2, 1176 < M (pπ0) < 1200 MeV/c2

277

and 760 < M (π+ππ0) < 800 MeV/c2, are imposed.

278

When we reconstruct the decay modes pK0 Sπ0, 279 pK0 Sπ+π − and Σ+π+π

, possible backgrounds from Λ → 280

pπ− in the final states are rejected by requiring M (pπ)

281

outside the range (1110, 1120) MeV/c2. In addition, for

282

the mode pK0

Sπ0, candidate events within the range

283

1170 < M (pπ0) < 1200 MeV/c2are excluded to suppress

284

Σ+backgrounds. To remove K0

Scandidates in the modes

285

Λπ+ππ+, Σ+π0 and Σ+π+π, masses of any pairs of

286

π+πand π0π0 are not allowed to fall in the range (480,

287

520) MeV/c2.

288

To discriminate Λc candidates from background, two

289

variables reflecting energy and momentum conservation 290

are used. First, we calculate the energy difference, 291

∆E ≡ E − Ebeam, where E is the total measured

en-292

ergy of the Λc candidate and Ebeam is the average value

293

of the e+ and e

beam energies. For each tag mode, 294

candidates are rejected if they fail the ∆E requirements 295

in Table I, which correspond to about 3 times the reso-296

lutions. Second, we define the beam-constrained mass 297

MBC of the Λc candidates by substituting the

beam-298

energy Ebeam for the energy E of the Λc candidates,

299

MBCc2 ≡ pEbeam2 − p2c2, where p is the measured Λc

300

momentum in the center-of-mass system of the e+e

col-301

lision. Figure 1 shows the MBCdistributions for the ST

302

samples, where evident Λcsignals peak at the nominal Λc

303

mass position (2286.46±0.14) MeV/c2[4]. The MC

sim-304

ulations show that peaking backgrounds and cross feeds 305

among the twelve ST modes are negligible. 306

(6)

TABLE I. Requirement on ∆E, ST yields, DT yields and detection efficiencies for each of the decay modes. The un-certainties are statistical only. The quoted efficiencies do not include any subleading BFs.

Mode ∆E (MeV) NjST εj(%) Ni−DT εDTi−(%)

pKS0 (−20, 20) 1243 ± 37 55.9 97 ± 10 16.6 pK−π+ (−20, 20) 6308 ± 88 51.2 420 ± 22 14.1 pKS0π 0 (−30, 20) 558 ± 33 20.6 47 ± 8 6.8 pK0 Sπ+π− (−20, 20) 485 ± 29 21.4 34 ± 6 6.4 pK−π+π0 (−30, 20) 1849 ± 71 19.6 176 ± 14 7.6 Λπ+ (−20, 20) 706 ± 27 42.2 60 ± 8 12.7 Λπ+ π0 (−30, 20) 1497 ± 52 15.7 101 ± 13 5.4 Λπ+ π−π+ (−20, 20) 609 ± 31 12.0 53 ± 7 3.6 Σ0π+ (−20, 20) 522 ± 27 29.9 38 ± 6 9.9 Σ+ π0 (−50, 30) 309 ± 24 23.8 25 ± 5 8.0 Σ+ π+π− (−30, 20) 1156 ± 49 24.2 80 ± 9 8.1 Σ+ ω (−30, 20) 157 ± 22 9.9 13 ± 3 3.8

We perform unbinned extended maximum likelihood 307

fits to the MBC distributions to obtain the ST yields,

308

as illustrated in Fig. 1. In each fit, the signal shape 309

is derived from MC simulations of the signal ST modes 310

convolved with a Gaussian function to account for imper-311

fect modeling of the detector resolution and beam-energy 312

spread. The parameters of the Gaussians are allowed to 313

vary in the fits. Backgrounds for each mode are described 314

with the ARGUS function [16]. The resultant ST yields 315

in the signal region 2276 < MBC< 2300 MeV/c2and the

316

corresponding detection efficiencies are listed in Table I. 317

In the signal candidates of the twelve ST modes, a spe-318

cific mode Λ+

c → i is formed from the remaining tracks

319

and showers recoiling against the ST Λ−

c. We combine

320

the DT signal candidates over the twelve ST modes and 321

plot the distributions of the MBCvariable in Fig. 2. We

322

follow the same fit strategy as in the ST samples to es-323

timate the total DT yield NDT

i− in Eq. (4), except that

324

the DT signal shapes are derived from the DT signal MC 325

samples and convolved with the Gaussian function. The 326

parameters of the Gaussians are also allowed to vary in 327

the fits. The extracted DT yields are listed in Table I. 328

The 12 × 12 DT efficiencies εij are evaluated based on

329

the DT signal MC samples, in order to extract the BFs. 330

Main sources of systematic uncertainties related to the 331

measurement of BFs include tracking, PID, reconstruc-332

tion of intermediate states and intermediate BFs. For 333

the ∆E and MBC requirements, the uncertainties are

334

negligible, as we correct resolutions in MC samples to 335

accord with those in data. Uncertainties associated with 336

the efficiencies of the tracking and PID of charged par-337

ticles are estimated by studying a set of control sam-338

ples of e+e

→ π+π+ππ, K+Kπ+πand p¯+π

339

based on data taken at energies above √s = 4.0 GeV. 340

An uncertainty of 1.0% is assigned to each π0due to the

341

reconstruction efficiency. The uncertainties of detecting 342

K0

S and Λ are determined to be 1.2% and 2.5%,

respec-343 ) 2 c (GeV/ BC M 2c Events/1.0 MeV/ 2.26 2.28 2.3 50 100 pK0S 2.26 2.28 2.3 10 20 Λπ+ 2.26 2.28 2.3 5 10 15 20 0π0 S pK sig_mBC_3 2.26 2.28 2.3 5 10 15 -π + π 0 S pK 2.26 2.28 2.3 50 100 π+ -pK 2.26 2.28 2.3 10 20 Λπ+π0 2.26 2.28 2.3 5 10 15 20 + π -π + π Λ sig_mBC_62 2.26 2.28 2.3 5 10 15 0 π + Σ 2.26 2.28 2.3 50 100 pK-π+π0 2.26 2.28 2.3 10 20 Σ+π+π -2.26 2.28 2.3 5 10 15 20 + π 0 Σ sig_mBC_64 2.26 2.28 2.3 5 10 15 ω + Σ

FIG. 2. Fits to the DT MBCdistributions in data for different

signal modes. Points with error bars are data, solid lines are the sum of fit functions, and dashed lines are background shapes.

TABLE II. Summary of systematic uncertainties, in percent. The total numbers are derived from the least-squares fit, by taking into account correlations among different modes.

Source Tracking PID K0 S Λ π0 Signal MC Quoted Total model stat. BFs pK0 S 1.3 0.3 1.2 0.2 0.4 0.1 2.0 pK−π+ 2.5 3.2 0.2 3.9 pKS0π 0 1.1 1.6 1.2 1.0 1.0 0.5 0.1 2.7 pK0 Sπ+π− 2.8 5.4 1.2 0.5 0.5 0.1 5.9 pK−π+π0 3.3 5.8 1.0 2.0 0.5 6.6 Λπ+ 1.0 1.0 2.5 0.5 0.5 0.8 2.4 Λπ+π0 1.0 1.0 2.5 1.0 0.6 0.6 0.8 2.7 Λπ+ π−π+ 3.0 3.0 2.5 0.8 0.8 0.8 4.7 Σ0 π+ 1.0 1.0 2.5 1.7 0.7 0.8 2.4 Σ+π0 1.3 0.3 2.0 1.7 0.8 0.1 2.5 Σ+ π+π− 3.0 3.7 1.0 0.8 0.4 0.1 4.7 Σ+ ω 3.0 3.2 2.0 7.1 1.0 0.8 4.5

tively. Reweighting factors for the twelve signal models 344

are varied within their statistical uncertainties obtained 345

from the ST data samples. Deviations of the resultant ef-346

ficiencies are taken into account in systematic uncertain-347

ties. Systematic uncertainties due to limited statistics in 348

MC samples are included. Uncertainties on the BFs of 349

intermediate state decays from the PDG [4] are also in-350

cluded. A summary of systematic uncertainties are given 351

in Table II. 352

We use a least-squares fitter, which considers statistical 353

and systematic correlations among the different hadronic 354

modes, to obtain the BFs of the twelve Λ+

c decay modes

355

globally. Details of this fitter are discussed in Ref. [17]. In 356

the fitter, the precisions of the twelve BFs are constrained 357

to a common variable, NΛ+

cΛ−c, according to Eqs. (1) and 358

(7)

6

TABLE III. Comparison of the measured BFs in this work with previous results from PDG [4]. For our results, the first uncertainties are statistical and the second are systematic.

Mode This work (%) PDG (%)

pKS0 1.52 ± 0.08 ± 0.03 1.15 ± 0.30 pK−π+ 5.84 ± 0.27 ± 0.23 5.0 ± 1.3 pKS0π0 1.87 ± 0.13 ± 0.05 1.65 ± 0.50 pKS0π + π− 1.53 ± 0.11 ± 0.09 1.30 ± 0.35 pK−π+π0 4.53 ± 0.23 ± 0.30 3.4 ± 1.0 Λπ+ 1.24 ± 0.07 ± 0.03 1.07 ± 0.28 Λπ+ π0 7.01 ± 0.37 ± 0.19 3.6 ± 1.3 Λπ+ π−π+ 3.81 ± 0.24 ± 0.18 2.6 ± 0.7 Σ0 π+ 1.27 ± 0.08 ± 0.03 1.05 ± 0.28 Σ+π0 1.18 ± 0.10 ± 0.03 1.00 ± 0.34 Σ+π+π4.25 ± 0.24 ± 0.20 3.6 ± 1.0 Σ+ ω 1.56 ± 0.20 ± 0.07 2.7 ± 1.0

(4). In total, there are thirteen free parameters (twelve Bi

359

and NΛ+

cΛ−c) to be estimated. As peaking backgrounds in 360

ST modes and cross feeds among the twelve ST modes are 361

suppressed to a negligible level, they are not considered 362

in the fit. 363

The extracted BFs of Λ+

c are listed in Table III;

364

the correlation matrix is available in the Supplemental 365

Material [18]. The total number of Λ+cΛ − c pairs produced 366 is obtained to be NΛ+ cΛ−c = (105.9 ± 4.8 ± 0.5) × 10 3. The 367 goodness-of-fit is evaluated as χ2/ndf = 9.9/(24 − 13) = 368 0.9. 369

To summarize, twelve Cabibbo-favored Λ+

c decay rates

370

are measured by employing a double-tag technique, based 371

on a sample of threshold data at √s = 4.599 GeV col-372

lected at BESIII. This is the first absolute measurement 373

of the Λ+

c decay branching fractions at the Λ+cΛ − c

pro-374

duction threshold, in the 30 years since the Λ+

c

discov-375

ery. A comparison with previous results is presented in 376

Table III. For the golden mode B(pK−π+), our result is

377

consistent with that in PDG, but lower than Belle’s with 378

a significance of about 2σ. For the branching fractions of 379

the other modes, the precisions are improved by factors 380

of 3 ∼ 6 compared to the world average values. 381

The BESIII collaboration thanks the staff of BEPCII 382

and the IHEP computing center for their strong 383

support. This work is supported in part by 384

National Key Basic Research Program of China under 385

Contract No. 2015CB856700; National Natural Science 386

Foundation of China (NSFC) under Contracts Nos. 387

11125525, 11235011, 11275266, 11322544, 11335008, 388

11425524; the Chinese Academy of Sciences (CAS) 389

Large-Scale Scientific Facility Program; the CAS 390

Center for Excellence in Particle Physics (CCEPP); 391

the Collaborative Innovation Center for Particles and 392

Interactions (CICPI); Joint Large-Scale Scientific Facility 393

Funds of the NSFC and CAS under Contracts Nos. 394

11179007, U1232201, U1332201; CAS under Contracts 395

Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents 396

Program of CAS; National 1000 Talents Program of 397

China; INPAC and Shanghai Key Laboratory for 398

Particle Physics and Cosmology; German Research 399

Foundation DFG under Contract No. Collaborative 400

Research Center CRC-1044; Istituto Nazionale di Fisica 401

Nucleare, Italy; Koninklijke Nederlandse Akademie van 402

Wetenschappen (KNAW) under Contract No. 530-403

4CDP03; Ministry of Development of Turkey under 404

Contract No. DPT2006K-120470; National Natural 405

Science Foundation of China (NSFC) under Contracts 406

Nos. 11405046, U1332103; Russian Foundation for 407

Basic Research under Contract No. 14-07-91152; 408

The Swedish Resarch Council; U. S. Department of 409

Energy under Contracts Nos. DE-FG02-04ER41291, 410

DE-FG02-05ER41374, DE-SC0012069, DESC0010118; 411

U.S. National Science Foundation; University of 412

Groningen (RuG) and the Helmholtzzentrum fuer 413

Schwerionenforschung GmbH (GSI), Darmstadt; WCU 414

Program of National Research Foundation of Korea un-415

der Contract No. R32-2008-000-10155-0. 416

[1] J. L. Rosner, Phys. Rev. D 86, 014017 (2012).

417

[2] S. A. Dytman et al. [CLEO Collaboration], Phys. Rev.

418

D 66, 091101 (2002).

419

[3] P. Abreu et al. [DELPHI Collaboration], Eur. Phys. J. C

420

12, 225 (2000); R. Barate et al. [ALEPH Collaboration],

421

Eur. Phys. J. C 16, 597 (2000); R. Aaij et al. [LHCb

422

Collaboration], Phys. Rev. D 85, 032008 (2012).

423

[4] K.A. Olive et al. [Particle Data Group], Chin. Phys. C

424

38, 090001 (2014).

425

[5] D. E. Jaffe et al. [CLEO Collaboration], Phys. Rev. D

426

62, 072005 (2000).

427

[6] A. Zupanc et al. [Belle Collaboration], Phys. Rev. Lett.

428

113, 042002 (2014).

429

[7] M. Ablikim et al. [BESIII Collaboration], Chin. Phys. C

430

39, no. 9, 093001 (2015)

431

[8] M. Ablikim et al. [BESIII Collaboration], Nucl. Instrum.

432

Meth. A 614, 345 (2010).

433

[9] R.M.Baltrusaitis et al. [MARK-III Collaboration], Phys.

434

Rev. Lett. 56, 2140 (1986); J.Adler et al. [MARK-III

435

Collaboration], Phys. Rev. Lett. 60, 89 (1988).

436

[10] M. Ablikim et al. [BESIII Collaboration], Phys. Rev.

437

Lett. 115, 221805 (2015).

438

[11] The Σ+

π+π−π0 mode suffers from huge combinatorial

439

backgrounds. We restrict π+

π−π0 from ω decays and

440

only measure the resonant component Σ+ω, where the

441

non-resonant final states Σ+

π+π−π0are negligible.

442

[12] S. Jadach et al., Phys. Rev. D 63, 113009 (2001).

443

[13] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).

444

[14] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001);

445

R. G. Ping, Chin. Phys. C 32, 599 (2008).

446

[15] S. Agostinelli et al. [GEANT Collaboration], Nucl.

447

Instrum. Meth. A 506, 250 (2003); J. Allison et al., IEEE

(8)

Trans. Nucl. Sci. 53, 270 (2006).

449

[16] H.Albrecht et al. [ARGUS Collaboration], Phys. Rev.

450

Lett. B 241, 278 (1990).

451

[17] Y. Guan, X. R. Lu, Y. Zheng and Y. S. Zhu, Chin. Phys.

452

C 37, 106201 (2013).

453

[18] See Supplemental Material at [URL will be inserted by

454

publisher] for the correlation matrix of the fit.

Şekil

FIG. 1. Fits to the ST M BC distributions in data for the
FIG. 2. Fits to the DT M BC distributions in data for different

Referanslar

Benzer Belgeler

Kuruluş ile hedef kitle arasında dengeli bir iletişimi benimseyen model Grunig ve Hunt‟ın mükemmel halkla ilişkiler teorisi için rehber niteliği

Buna göre Türk Hava Yollarında çalışanların cinsiyetlerine göre kurumsal bağlılık ve kurum içi iletişim düzeyleri arasında istatistiksel olarak anlamlı bir

Körüksüz açık park pozisyonlarında yolcu ve personel taşıma için kullanılan araçların yanı sıra, hava aracına yükleme-boşaltma yapmak için kullanılan

Bu bölümde yapılacak analizlerde, bagaj hizmet süreçleri memnuniyet (Check-İn (Bagaj Kabul İşlemleri), Bagaj Alım, Kayıp ve Bulunan Eşya Ofisleri, Çağrı

Kiraya veren ve kiracının, kiralama işlemini yenilemek yerine, 7-12 numaralı Paragraflarda yer verilen kriterlere göre ilgili kiralamayı kiralama sözleşmesinin

Düşük Maliyetli Havayolu İşletmeleri: Düşük maliyetli havayolu işletmeleri geleneksel havayolu işletmelerinin benimsediği bazı hizmetlerden vazgeçerek

Bu çalışmanın amacı mobil uygulama tercihinde tüketicilerin kişilik özelliklerinin mobil uygulama kullanımı ile ilişkisini belirlemek, kullanıcıların mobil

Conclusions: PHA surgery performed according to specific principles in the treatment of Neer type IV proximal humeral fractures particularly of fractures in patients who are