• Sonuç bulunamadı

On the norms of Hankel matrices with the Motzkin numbers

N/A
N/A
Protected

Academic year: 2021

Share "On the norms of Hankel matrices with the Motzkin numbers"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selçuk J. Appl. Math. Selçuk Journal of Vol. 8. No. 1. pp. 9-14 , 2007 Applied Mathematics

On the norms of Hankel matrices with the Motzkin numbers Aynur Yalçıner and Necati Ta¸skara

Department of Mathematics, Selcuk University, 42031 (Campus) Konya, Turkey e-mail:ayalciner@ selcuk.edu.tr, ntaskara@ selcuk.edu.tr

Received: November 11, 2006

Summary:We give bounds for the norm of the Hadamard inverse of Hankel

matrices with Motzkin numbers.Furthermore, we determine an upper bound for the Hadamard product of these matrices.

Key words: Motzkin number; Hadamard inverse; Hankel matrix;  norm;

Euclidean norm. 1. Introduction

The Motzkin numbers are defined by the recursion

= −1+ X−2 =0

−2− 0= 1

with generating functions

 () =³1 −  −p1 − 2 − 322

The first few numbers are thus

 0 1 2 3 4 5 6 7

 1 1 2 4 9 21 51 127

It was shown in [1] that, for the Motzkin numbers, (i)  −1 ≤ +1  ( ≥ 1) (ii)  −1  3 ( ≥ 1) (iii) lim →∞  −1 = 3.

(2)

(1.1) = ⎡ ⎢ ⎢ ⎢ ⎣ 0 1 · · ·  1 2 · · · +1 .. .  +1 · · · 2 ⎤ ⎥ ⎥ ⎥ ⎦ and (1.2) = ⎡ ⎢ ⎢ ⎢ ⎣ 1 2 · · ·  2 3 · · · +1 .. .  +1 · · · 2−1 ⎤ ⎥ ⎥ ⎥ ⎦

and obtained following proposition: Proposition (i)det  = 1 for all ,

(ii) det  = 1, 0, −1 for  ≡ 0, 1 (mod 6),  ≡ 2, 5 (mod 6) and  ≡ 3, 4

(mod 6) respectively [1].

In this study, we have obtained an upper bound for the norm of the Hadamard

inverse of Hankel matrix in the following form:

(1.3) = ⎡ ⎢ ⎢ ⎢ ⎣ 2 3 · · · +1 3 4 · · · +2 .. . +1 +2 · · · 2 ⎤ ⎥ ⎥ ⎥ ⎦

and we have found an upper bound for the Euclidean norm of Hadamard product of these Hankel matrices.

Now, we start with some preliminaries. Let  = () and  = () be ×

matrices. The Hadamard product of  and  is defined by  ◦  = ()

The Hadamard inverse of  (with   0, 1 ≤  ≤ , 1 ≤  ≤ ) is defined by

◦(−1)=³ 1 

´ [6].

Let  be any  ×  matrix. The  norm of the matrix  is

kk= ⎛ ⎝  X =1  X =1 || ⎞ ⎠ 1 (1 ≤   ∞) If  = ∞ then kk= lim →∞kk= max || 

(3)

kk = ⎛ ⎝  X =1  X =1 ||2 ⎞ ⎠ 12

and also the spectral norm is kk2=

r max 

1≤≤

()

where  is  ×  and is the conjugate transpose of the matrix . A function  is called a Riemann-zeta function if

() = P∞

=1

1

 (  1)

2. Main Results

Theorem 1Let the matrix  be as in (1.3). Then

° ° °◦(−1) ° ° ° ≤  s () + 1 4 where 1    ∞.

Proof.From the definition of norm, we have

° ° °◦(−1) ° ° ° =  X =1  +1 + X−1 =1  −  ++1  For the first term, we have

(2.1)  X =1  +1   X =1 1 

Let us prove (2.1) by induction. For  = 1 inequality (2.1) is true. We shall assume the result is true for  − 1 ∈ N. Since  ∈ N and +1≥ 2 we have

 +1 

1 

Hence for  ∈ N inequality (2.1) is true. We consider the limit case as  → ∞ in (2.1)  P =1  +1  () On the other hand, for  ≥ 1, we write

(4)

(2.2) +1  ≥ 2

We can prove (2.2) by induction. For  = 1 inequality (2.2) is true. We shall assume that for  − 1 ∈ N, 

−1 ≥ 2 is true. Since  −1 ≤ +1   we have +1  ≥ 2

Consequently for  ∈ N inequality (2.2) is true. It is easy to see that for  ≥ 4

X−1 =1  −  ++1 ≤ 1 4

Using inequality (2.2), we have ++1 4+−3 and therefore, we write

−1 X =1  −  ++1  1 4 X−1 =1  −  +−3 = 1 4 µ  − 1 −2 +  − 2 −1 +  + 1 2−4 ¶ Since −1 −2  −2 −1    1 2−4  we obtain −1 X =1  −  ++1  1 4 ( − 1)2 −2  For  ≥ 5, since −2 ≥ ( − 1)2and 0 

(−1)2 −2  1 we have (2.3) X−1 =1  −  ++1 ≤ 1 4 Thus the proof is completed.

Corollary 1Let the matrix be as (1.1). Then

° ° °◦(−1) ° ° °≤  s 3 + () + 1 2 where 1    ∞.

Corollary 2Let the matrix be as (1.2). Then

° ° °◦(−1) ° ° °≤  s 1 + () + 1 3

(5)

where 1    ∞ .

Theorem 2Let  and  matrices as in (1.3) and (1.2), respectively.Then

° ° °◦ ◦(−1) ° ° ° ≤ 3

where k·k is the Euclidean norm.

Proof.From the definition of Euclidean norm, we have ° ° °◦ ◦(−1) ° ° °2 =  X =1  µ +1  ¶2 + −1 X =1 ( − ) µ ++1 + ¶2 since +1   3 ( ≥ 1), we obtain ° ° °◦ ◦(−1) ° ° °2 = 9  X =1  + 9 X−1 =1 ( − ) = 92 Hence, ° ° °◦ ◦(−1) ° ° ° ≤ 3

Example 1Let  = 2. For inequality (2.1) , we have the following values: n  P =1  +1  P =1 1  2 3 4 5 10 20 30 40 50 100 0.25000000 0.37500000 0.41203704 0.42110735 0.42348212 0.42348248 0.42348248 0.42348248 0.42348248 0.42348248 1.00000000 1.25000000 1.36111116 1.42361116 1.53976774 1.59366302 1.61103916 1.61961925 1.62473297 1.63488400

(6)

n P− =1 − ++1 1 4 2 3 4 5 6 7 8 9 10 11 12 0.01234568 0.00491962 0.00128699 0.00027983 0.00005435 0.00000978 0.00000166 0.00000027 0.00000004 0.00000001 0.00000000 0.01234568 0.01234568 0.01234568 0.01234568 0.01234568 0.01234568 0.01234568 0.01234568 0.01234568 0.01234568 0.01234568 References

1.M. Aigner, Motzkin numbers, Europ. J. Combinatorics 19(1998), 663-675. 2.A. Yalçıner, Hankel ve Circulant Matrislerin Terslerinin Normları Üzerine, (2006), Doktora Tezi,Fen Bilimleri Enstitüsü, Konya.

3. R. Donaghey, L.W. Shapiro, Motzkin numbers, Journal of Combinatorial Theory, Series A 23 (1977), 291-301.

4.R.Stanley, Enumerative Combinatorics, Vol II, Cambridge Univ. Press, 1999. 5.R.A.Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.

6. R.A.Horn, The Hadamard product, in: C.R. Johnson (Ed.), Proc. Appl. Math., vol. 40. American Mathematical Society, Providence, Rhode Island. (1990) 87-169.

Referanslar

Benzer Belgeler

3 shows the operation of the lateral force microscope: the lever is vibrated with sub-Angstrom oscillation amplitudes parallel to the sample surface at a frequency well below

 Üç çöktürücü kullanılarak yapılan kimyasal çöktürme ve her iki elektrot kullanılarak yapılan elektrokoagülasyon proseslerinde elde edilen KOİ ve

Şekil 6.10 Yıllar itibariyle Aksaray’a verilen hayvancılık destekleri ve ziyaret edilen süt işletmelerindeki mavi yakalı personel sayısı .... 151 Şekil 6.11

Bu bölümde dYSA, sGA ve aGA tahmin modelleri kullanılarak standart ve uyarlamalı iki yeni hibrit atmosferik kırılma tahmin modeli ortaya konmuştur.. Bu hibrit modeller ile,

Yapılan bu araştırma sonucunda genel olarak okulöncesi öğretmenliğinde okuyan öğretmen adaylarının büyük bir çoğunluğunun okulöncesi eğitimde bilgisayar

Türkiye Büyük Millet Meclisi 14 Mayıs 1950 seçimlerinden sonra yeni bir döneme girmiştir. Bu dönem ülkedeki insanların yeni oluşan meclisten çok şey beklediği bir dönme

Gelişim kavramı insanın bütün yönlerini ilgilendiren bir kavramdır. Dolayısıyla bireyin dînî algısıyla da ilişki içindedir. Bireyin dînî gelişimi hakkında bilgi

For cultured endothelial cells, E2 (1-100 nM), but not 17alpha-estradiol, inhibited the level of strain- induced ET-1 gene expression and also peptide secretion.. This