• Sonuç bulunamadı

Polymer-free electrospun nanofibers from sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD) inclusion complex with sulfisoxazole: fast-dissolving and enhanced water-solubility of sulfisoxazole

N/A
N/A
Protected

Academic year: 2021

Share "Polymer-free electrospun nanofibers from sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD) inclusion complex with sulfisoxazole: fast-dissolving and enhanced water-solubility of sulfisoxazole"

Copied!
9
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Polymer-free

electrospun

nano

fibers

from

sulfobutyl

ether

7

-beta-cyclodextrin

(SBE

7

-

b

-CD)

inclusion

complex

with

sul

fisoxazole:

Fast-dissolving

and

enhanced

water-solubility

of

sul

fisoxazole

Zehra

Irem

Yildiz,

Asli

Celebioglu,

Tamer

Uyar

*

InstituteofMaterialsScience&Nanotechnology,UNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey

ARTICLE INFO

Articlehistory:

Received27February2017

Receivedinrevisedform13April2017 Accepted20April2017

Availableonline23April2017 Keywords:

Electrospinning Electrospunnanofibers

Sulfobutylether7-beta-cyclodextrin

(Captisol1) Sulfisoxazole Inclusioncomplex Water-Solubility

ABSTRACT

In this study, our aim was to develop solid drug-cyclodextrin inclusion complex system having nanofibrousmorphologyinordertohave fast-dissolvingpropertyandenhancedwater-solubilityof poorly water-solubledrug.Here,we preparedahighly concentratedaqueoussolutionof inclusion complexbetweensulfisoxazoleandsulfobutylether7-beta-cyclodextrin(SBE7-b-CD,Captisol1),and

then,withoutusinganypolymericmatrix,theelectrospinningofsulfisoxazole/SBE7-b-CD-ICnanofibers

was performedinordertoobtainfree-standing andhandynanofibrousweb.As acontrolsample, nanofibersfrompureSBE7-b-CDwasalsoelectrospunandfree-standingnanofibrouswebwasobtained.

TheSEMimagingrevealedthatthebead-freeanduniformnanofibermorphologywiththeaveragefiber diameter(AFD)of650290nmforsulfisoxazole/SBE7-b-CD-ICNFand890415nmforpureSBE7-b-CD

NF was obtained. The inclusion complex formation between sulfisoxazole and SBE7-b-CD in

sulfisoxazole/SBE7-b-CD-ICNFsamplewasconfirmedby1HNMR,TGA,DSC,XRDandFTIRanalyses.

Due tothe combined advantageof cyclodextrininclusion complexation and high surface area of electrospun nanofibers, fast-dissolving property with enhanced water-solubility was successfully achievedforsulfisoxazole/SBE7-b-CD-ICNF.Ourfindingssuggestthatelectrospunnanofibers/nanowebs

fromCD-ICofpoorlywater-solubledrugsmayofferapplicableapproachesforhighwater-solubilityand fast-dissolvingtabletformulationsfordrugdeliverysystems.

©2017ElsevierB.V.Allrightsreserved.

1.Introduction

Cyclodextrins(CDs)arecyclicoligosaccharideshavingeither6, 7,or8glucopyranoseunitslinkedby

a

-1,4linkagesinthecycleand arenamedas

a

-CD,

b

-CDand

g

-CD,respectively(Szejtli,1998).

CDshavetruncatedcone-shapedmolecularstructurewhichcan

formsupramolecular structures by forming non-covalent

host-guestinclusioncomplexeswithvarietyofmolecules(Szejtli, 1998). TheinnersideoftheCDisrelativelyhydrophobicandtheouter sideishydrophilicwhichmakesCDstoforminclusioncomplexes

with various hydrophobic molecules including drug molecules

(Ogawaetal.,2015).Oneofthemainproblemsinpharmaceutical

industry is low water-solubility of the drugs which result in

decreasein bioavailability; nevertheless, theinclusion complex formationofdrugswithcyclodextrinsovercomesthisproblemand

enhancesthebioavailabilityofthedrugsbyincreasingtheir water-solubility.But,nativecyclodextrins(

a

-CD,

b

-CDand

g

-CD)have lower water-solubility which sometimes restrictedtheir usein pharmaceuticalformulation. Yet,chemicallymodifiedCD deriv-ativessuchashydroxypropyl-CD,methylated-CD,sulfobutyl

ether-CD have much higher water solubility. Sulfobutyl

ether-beta-cyclodextrin (SBE7-

b

-CD, Captisol1) is sulfobutyl derivative of

b

-CD with a 6.6 average degree of substitution (Fig.1a). This

substitution decreases nephrotoxicity of cyclodextrin while

increases its aqueous solubility to a great extent (Beig et al., 2015).OneofthedistinctivefeaturesofSBE7-

b

-CDisextensionof

thecavityduetorepulsionofendgroups'negativechargeswhich providesstrongerbindingtothedrugmolecules(Beigetal.,2015). TheotherfeatureisthepresenceofnegativechargesinSBE7-

b

-CD

atphysiologicalpHwhichmakesbindingwithapositivelycharged drugmoleculepossible.Therefore,theinclusioncomplex forma-tionwithSBE7-

b

-CDhasadvantagesfordrugdeliverysystems.

TheapplicationofinclusioncomplexesofCDswithdrugmaybe

widen by the incorporation of such molecular complexation

*Correspondingauthor.

E-mailaddresses:tamer@unam.bilkent.edu.tr,tameruyar@gmail.com(T.Uyar).

http://dx.doi.org/10.1016/j.ijpharm.2017.04.047

0378-5173/©2017ElsevierB.V.Allrightsreserved.

InternationalJournalofPharmaceutics531(2017)550–558

ContentslistsavailableatScienceDirect

International

Journal

of

Pharmaceutics

(2)

systemsinto highlyporous nanofibrous carriermatrix.

Electro-spinning, being one of the versatile methods for nanofiber

production, enables us to produce nanofibers and nanofibrous

webshavinghighsurfaceareatovolumeratio,nano-scaleporosity anddesignflexibilityforchemical/physicalfunctionalization,etc.

Due to their exceptional properties, it has been shown that

electrospun nanofibers and their nanomats/nanowebs have

potential use in various application areas in biotechnology,

membranes/filters, food, agriculture, sensor, energy etc, (Aytac etal.,2015,2017;Noruzi,2016;Sahayetal.,2012;UyarandKny, 2017).Electrospunnanofiberscouldalsobeusedfordrugdelivery systemsfortargeteddeliveryand/orforinhibitionofdrugadverse side effects withcontrolledrelease (Aytacet al., 2015;Mendes etal.,2016;Wangetal.,2016).

Electrospun polymeric nanofibers incorporating drug-cyclo-dextrininclusioncomplexes(CD-ICs)haveshowntobepromising matrixfordrugreleasesystems(Aytacetal.,2015;AytacandUyar, 2017;Tonglairoumetal.,2013).Forinstance,Siafakaetal.(2016)

hasperformeda studyonthecomparisonofelectrospun

nano-fibersand cyclodextrinasdrug deliverysystem suggestingthat

both systems weregood for drug delivery and showed similar

efficiency. In our approach, we combine the efficiency of

cyclodextrin inclusion complexation and high surface area of

electrospunnanofibersfor effectivedrugdelivery system.Since

electrospinning of nanofibers from small molecules is quite a

challenge,mostlypolymericmatrixisneededtoobtainnanofibers (UyarandKny,2017;Wendorffetal.,2012).Nevertheless,inour recentstudiesweachievedtheelectrospinningofnanofibersfrom purecyclodextrintypes(nativeCDsandmodifiedCDs)(Celebioglu and Uyar, 2012, 2013; Celebioglu et al., 2014b) and CD-ICs (CelebiogluandUyar,2011;Celebiogluetal.,2014a,2016;Aytac etal.,2016a,b)withoutusingpolymericcarriermatrix.

Sulfonamidesaresyntheticdrugsknownbytheirantimicrobial effectsondifferentpathogenicmicroorganisms(Ta9cicetal.,2014). However,theuseofthesetypesofdrugsissometimeslimiteddue totheirpoorwater-solubility.Theoxazolesubtitutedsulfonamide iscalledassulfisoxazole(Fig.1a).Sulfisoxazoleisaweakacidand slightly soluble inwater. Inthis study, ouraimwas todevelop nanofibroussulfisoxazole-cyclodextrininclusioncomplexsystem (Fig.1a)inordertohavefast-dissolvingcharacterandenhancethe

water-solubility of sulfisoxazole. Here, we prepared a highly

concentrated aqueous solution of inclusion complex between

sulfisoxazole and SBE7-

b

-CD, and then, without using any

polymeric matrix, sulfisoxazole/SBE7-

b

-CD-IC was electrospun

into nanofibrous structure toobtaina free-standingand handy solidform(Fig.1b).Weobservedthatsulfisoxazole/SBE7-

b

-CD-IC

nanofibrous web was readily soluble in water and the

water-solubilityofsulfisoxazolewasenhancedsignificantly.Ourfindings

Fig.1.(a)ThechemicalstructureofsulfisoxazoleandSBE7-b-CDwithaschematicrepresentationofsulfisoxazole,SBE7-b-CDandtheirIC,(b)Schematicrepresentationof

(3)

suggestedthatsulfisoxazole/SBE7-

b

-CD-ICin theformof

nano-fibrous webs can be quite useful in fast-dissolving tablet

formulationsfordrugdelivery.

2.Materialsandmethods

Sulfisoxazole(99%)wasobtainedfromSigma-Aldrich commer-cially.SBE7-

b

-CD(Captisol1,averagedegreeofsubstitution=6.6)

waskindlydonatedbyCydexPharmaceuticalsInc.(Kansas,USA). Potassiumbromide(KBr,99%,FTIRgrade,Sigma-Aldrich), deuter-ateddimethylsulfoxide(d6-DMSO,deuterationdegreemin.99.8% forNMRspectroscopy,Merck)wereusedinthisstudy.Thewater

used wasfroma MilliporeMilli-Qultrapurewater system. The

materialswereusedas-receivedwithoutanyfurtherpurification process.

2.1.Preparationofsolutions

TheinclusioncomplexsolutionofsulfisoxazolewithSBE7-

b

-CD

was initiallyprepared by1:1 molarratioof sulfisoxazole:SBE7

-b

-CD.However,themolarratiowaschangedto1:2(sulfisoxazole: SBE7-

b

-CD)sinceelectrospinningofuniformnanofibercannotbe

obtainedfrom1:1complexsolution.Firstly,sulfisoxazolepowder wasdispersedinwaterthenSBE7-

b

-CD(200%(w/v))wasaddedto

thedispersion.Afterthat,thesolutionwasstirred24huntilclear

and homogenous solution was obtained. Besides, to make

comparison,highlyconcentratedSBE7-

b

-CD(200%(w/v))solution

withoutsulfisoxazolewasalsopreparedinwaterforthe electro-spinningofpureSBE7-

b

-CDnanofibers.Sulfisoxazole/SBE7-

b

-CD-ICwasalsoobtainedinthepowderforminordertocomparewith sulfisoxazole/SBE7-

b

-CD-ICNFintermsofthedissolvingrateand

watersolubility.Sulfisoxazolepowderwasdispersedinwaterand

then SBE7-

b

-CD was added with the molar ratio of 1:2

(sulfisoxazole:SBE7-

b

-CD). After 24h stirring, this inclusion

complex solutionwas frozenat 80C for two days and then

lyophilizedinafreeze-dryerfor24htoobtainsulfisoxazole/SBE7

-b

-CD-ICpowder.

2.2.Electrospinningofnanofibers

Sulfisoxazole/SBE7-

b

-CD-IC solutionwas loadedto the 1mL

syringefittedwitha0.4mminnerdiameterhavingneedle. The

syringe was placed horizontally on the syringe pump (KD

Scientific,KDS101) and thesolutionwas pumpedwithrate of

Fig.2. Phase solubilitydiagram of sulfisoxazole/SBE7-b-CD systemsin water

(n=3).

Fig.3.Photographsofelectrospun(a)SBE7-b-CDNF,(b)sulfisoxazole/SBE7-b-CD-ICNF,andSEMimagesof(c)SBE7-b-CDNF,(d)sulfisoxazole/SBE7-b-CD-ICNF.

(4)

0.5–1mL/h.Agroundedmetalcollectorcoveredbyaluminumfoil wasplacedat10–15cmfromthetipoftheneedleandtheapplied voltagewas10–15kV.TheelectrospinningofpristineSBE7-

b

-CD

NF was performed with the same conditions/parameters. The

electrospinning system was enclosed by Plexiglass box and

electrospinningwasperformedat25Cand30%relativehumidity.

2.3.Measurementsandcharacterizations

Phase solubilitymeasurement was carried out according to

Higuchi andConnors (1965). Anexcessamountofsulfisoxazole

was added to 5mL of aqueoussolutions containing increasing

concentration of SBE7-

b

-CD ranging from 0 to 7.4mM. The

Fig.4.1

HNMRspectraof(a)sulfisoxazolepowder,(b)SBE7-b-CDNFandSBE7-b-CDpowder,(c)sulfisoxazole/SBE7-b-CD-ICNF,(d)sulfisoxazole/SBE7-b-CD-ICpowder.

(5)

suspensionswereshakenfor48hatroomtemperaturetoreach

equilibrium. Then, all suspensions were filtered by a 0.45

m

m

membranefiltertoremoveundissolvedpartsandallsuspensions weredilutedwithwater.Sulfisoxazoleconcentrationwithrespect toincreasingSBE7-

b

-CDconcentrationwasdeterminedbyUV–vis

spectroscopy(Varian,Cary 100)at 260nm. The resultof phase

solubility was given as a plot of the molar concentration of

sulfisoxazole versus molar concentration of SBE7-

b

-CD. The

apparent stability constant (Ks) of sulfisoxazole/SBE7-

b

-CD-IC

werecalculatedfromthephasesolubilitydiagramaccordingtothe followingequation:

Ks=slope/S0(1-slope) (1)

whereS0istheintrinsicsolubilityofsulfisoxazole.

The samples of electrospun nanofibers (SBE7-

b

-CD NF and

sulfisoxazole/SBE7-

b

-CD-ICNF)wereinvestigated

morphological-lybyscanningelectronmicroscopy(SEM,FEI-Quanta200FEG).

Nanofibers weresputtered with 5nm Au/Pd layer to minimize

charging by PECS-682. Average fiber diameter (AFD) for both

nanofibrouswebwascalculatedfromSEMimagesof100fibers. Theprotonnuclearmagneticresonance(1HNMR,BrukerD

PX-400) system was used to determine molar ratio between

sulfisoxazole and SBE7-

b

-CD. In addition, SBE7-

b

-CD powder

wasalsoanalyzedby1HNMRtoseeifthereisanychangedueto degradation in chemical structure of SBE7-

b

-CD after

electro-spinning process. 30gL1 concentration of pure sulfisoxazole, SBE7-

b

-CDpowder,SBE7-

b

-CDNF,sulfisoxazole/SBE7-

b

-CD-ICNF

and sulfisoxazole/SBE7-

b

-CD-IC powder was dissolved in

d6-DMSO separately for the preparation of solution for 1H NMR

measurements.

Thermogravimetricanalysis(TGA,TAQ500,USA)wascarried outtodeterminethethermal properties ofsulfisoxazole, SBE7

-b

-CDNFandsulfisoxazole/SBE7-

b

-CD-ICNF.Thesestudiesofthe

sampleswereperformedfrom25to600Cwithaheatingrateof

20C/minundernitrogengasflow.

Differential scanning calorimetry(DSC, TAQ2000, USA) was

usedtoanalyzeinclusioncomplex formationbetweensul

fisox-azole and SBE7-

b

-CD. DSC measurement was performed for

sulfisoxazole,SBE7-

b

-CDNF,sulfisoxazole/SBE7-

b

-CD-ICNF and

sulfisoxazole/SBE7-

b

-CD-IC powder under N2. Samples were

equilibratedat50Candheatedto220Cwitharateof10C/min.

X-raydiffraction(XRD)(PANalyticalX’Pertpowder diffractom-eter)measurementsofpuresulfisoxazole,SBE7-

b

-CDNF,sul

fisox-azole/SBE7-

b

-CD-IC NF and sulfisoxazole/SBE7-

b

-CD-IC powder

wererecordedbyapplyingCuK

a

radiationinarangeof2

u

=5–30

todeterminethecrystallinestructureofthesamples.

Fourier transform infrared spectrometry (FTIR, Bruker-VER-TEX70)wasusedtoobtaintheinfraredspectraofthesamples.The samplesweremixedwithpotassiumbromide(KBr)andpressedas pellets.64scanswererecordedbetween4000and400cm1ata resolutionof4cm1.

Thewater solubilityofsulfisoxazoleis quite limited(Gladys etal.,2003).Here,excessamountofsulfisoxazole(1.3mgmL1), andsulfisoxazole/SBE7-

b

-CD-ICNFandsulfisoxazole/SBE7-

b

-CD-ICpowderhavingthesameamountofsulfisoxazolewereaddedto thewaterandstirredovernight.Tomakecomparison,thesolution ofsulfisoxazolewithconcentrationofitswatersolubility(about 0.2mgmL1)wasalsopreparedandstirredovernight.Afterthat,

allsampleswerefilteredthrougha0.45

m

mmembrane filterto

Fig.6. DSCthermogramofsulfisoxazole,SBE7-b-CDNF,sulfisoxazole/SBE7-b

-CD-ICNFandsulfisoxazole/SBE7-b-CD-ICpowder.

Fig.7. XRDpatternsofsulfisoxazole,SBE7-b-CDNFsulfisoxazole/SBE7-b-CD-ICNF

andsulfisoxazole/SBE7-b-CD-ICpowder.

Fig.8. FTIRspectraofsulfisoxazole,SBE7-b-CDNFandsulfisoxazole/SBE7-b-CD-IC

NF.

(6)

remove undissolved sulfisoxazole. Then, absorbance versus

wavelength plots of four samples was obtained from UV–vis

spectroscopy(Varian, Cary 100). In addition, toshow the fast-dissolvingcharacterandwater-solubilityenhancementofthedrug visually, the water is directlyadded to solid sulfisoxazole, and sulfisoxazole/SBE7-

b

-CD-IC NF and sulfisoxazole/SBE7-

b

-CD-IC

powder samples. The videos and pictures have been taken in

which,sulfisoxazolepowderandthesulfisoxazole/SBE7-

b

-CD-IC

NFwereplacedintopetridishesseparatelyandthen,5mLofwater wasaddedtopetridishes.Then,tomakecomparisonsulfisoxazole/ SBE7-

b

-CD-ICpowderwerealsoplacedintoapetridishandthen,

5mLofwaterwasadded.

3.Resultsanddiscussion 3.1.Phasesolubilitystudies

Phasesolubilitydiagramplottedbysulfisoxazoleconcentration

versus SBE7-

b

-CD concentration was given in Fig. 2 which

corresponds that with increase in SBE7-

b

-CD concentration,

sulfisoxazoleconcentrationalsoincreases.Thecomplexshowed

linear trend (AL-type) demonstrating 1:1 complex formation

tendencyofsulfisoxazoleandSBE7-

b

-CDmolecules.Thestability

constant (Ks) was calculated as 880M1 from the diagram

according to Eqn. (1) and this value indicates better stability whencomparedtothepreviouslydonestudyonHP

b

CDbyGladys etal.(2003).

3.2.ElectrospinningofSBE7-

b

-CDNFandSulfisoxazole/SBE7-

b

-CD-IC

NF

Sincethephasesolubilitystudiesindicated1:1(sulfisoxazole: SBE7-

b

-CD)complexformation tendency betweensulfisoxazole

and SBE7-

b

-CD, first, we prepared 1:1 molar ratio inclusion

complexbetween sulfisoxazole and SBE7-

b

-CDby usinghighly

concentrated SBE7-

b

-CD (200% (w/v))aqueoussolution for the

complexation.However,theelectrospinningofuniformnanofibers

from1:1molarratioofsulfisoxazole/SBE7-

b

-CD-ICsystemwasnot

successful underthe appliedelectrospinning conditions/param-eters.Hence,weoptimizedtheCD-ICsolutionsandfoundoutthat sulfisoxazole/SBE7-

b

-CD-IC solution having 1:2 (sulfisoxazole:

SBE7-

b

-CD)molarratiowasmorefavorablefortheelectrospinning

ofuniformnanofibers.Asacontrolsample,pristineSBE7-

b

-CDNF

was also electrospun and we obtained bead-free and uniform

nanofibermorphology forthefree-standingnanofibrousweb of

SBE7-

b

-CD.Theoptimizedparametersfortheelectrospinningof

thebead-free nanofibers frompristine SBE7-

b

-CDand sul

fisox-azole/SBE7-

b

-CD-ICsystemsweregivenindetailinexperimental

section. The photos of free-standing and flexible electrospun

nanofibroussamples weregivenin Fig. 3a–b forpristine SBE7

-b

-CDNF andsulfisoxazole/SBE7-

b

-CD-ICNF.Therepresentative

SEMimagesoftheseSBE7-

b

-CDNFandsulfisoxazole/SBE7-

b

-CD-ICNFsamplesweregiveninFig.3c–d,respectively.FromtheSEM images,theaveragefiberdiameter(AFD)forsulfisoxazole/SBE7

-b

-CD-IC NF and pristine SBE7-

b

-CD NF was calculated as

650290nmand890415nm,respectively.

3.3.StructuralcharacterizationofSBE7-

b

-CDNFandSulfisoxazole/

SBE7-

b

-CD-ICNF

ThestructuralcharacterizationofSBE7-

b

-CDNF,sulfisoxazole/

SBE7-

b

-CD-ICNFandsulfisoxazole/SBE7-

b

-CD-ICpowdersamples

wasdonebyusingthedifferentmethods.1HNMRspectroscopy

wasusedtoobtainmolarratioofsulfisoxazoletoSBE7-

b

-CDinthe

sulfisoxazole/SBE7-

b

-CD-IC NF matrix and sulfisoxazole/SBE7

-b

-CD-IC powder. The 1H NMR spectra of sulfisoxazole, SBE

7

-b

-CDpowder,SBE7-

b

-CDNF,sulfisoxazole/SBE7-

b

-CD-ICNFand

sulfisoxazole/SBE7-

b

-CD-IC powder wereevaluated (Fig. 4a–d).

ProtonsofSBE7-

b

-CDNFandas-receivedpowderSBE7-

b

-CDwere

appearedintherangeof

d

1.5–5.8ppmwhichiscorrelatedwith previousliterature(Devasarietal.,2015;KulkarniandBelgamwar, 2017).Asshown in Fig.4b, the1H NMR spectra of SBE

7-

b

-CD

powderandSBE7-

b

-CDNFpresentthesamecharacteristicshifts

whichindicatedthattheelectrospinningprocessdidnotcauseany chemical degradationtothestructure ofSBE7-

b

-CD. Themolar

ratiowascalculatedfromintegrationofpeakratiobetweenpeakof sulfisoxazoleataround7.35(H-a)andSBE7-

b

-CDpeakataround

5.00ppm(H-1)as0.28:1.00forbothsulfisoxazole/SBE7-

b

-CD-IC

NF and sulfisoxazole/SBE7-

b

-CD-IC powder (Fig. 4c–d). This

suggeststhatmorethan50%(w/w)ofinitialsulfisoxazoleamount

waspreservedforbothnanofibrouswebandpowderform.

Thethermaldecompositionofsulfisoxazole,SBE7-

b

-CDNFand

sulfisoxazole/SBE7-

b

-CD-IC NF were investigated by thermal

gravimetric analysis (TGA) (Fig. 5). The weight losses below 100Cbelongtothewaterlossforallsamples.Puresulfisoxazole decompositionoccuredbetween190-400CwhileSBE7-

b

-CDNF

exhibitedmaindegredationbetween250and500C.Alongwith this, thermal decomposition of sulfisoxazole/SBE7-

b

-CD-IC NF

started at 220C and continued up to 500C. There are two

differencesbetweenSBE7-

b

-CDNFandsulfisoxazole/SBE7-

b

-CD-IC NFdegradation.First oneis thesmall stepstartingat 220C

whichpossiblybelongtothesulfisoxazole.Theshiftingofthermal decompositiononsetofsulfisoxazolefrom190Cto220Cshowed theICformationbetweensulfisoxazoleandSBE7-

b

-CD.Thesecond

differenceistheintensityofpeakat300Cwhichalsoprovesthe formationofinclusioncomplexes.

DSC is one of the widely used techniques to evaluate IC

formationbetweenCDandguestmoleculeinsuchawaythatthe meltingpointofguestmoleculesisnotobservedifguestmolecules fullycomplexedwithintheCDcavities(Uyaretal.,2006).TheDSC scans of pure sulfisoxazole, SBE7-

b

-CD NF, sulfisoxazole/SBE7

-b

-CD-ICNFandsulfisoxazole/SBE7-

b

-CD-ICpowderweregivenin Fig.6.ThepuresulfisoxazoleDSCscanexhibitedameltingpointat

Fig.9. Watersolubilitydiagramof*sulfisoxazolewithconcentrationofitswater

solubility (green),**excess amount of sulfisoxazole (pink), sulfisoxazole/SBE 7 -b-CD-ICNFhavingthesameexcessamountofsulfisoxazole(blue),sulfisoxazole/ SBE7-b-CD-ICpowderhavingthesameexcessamountofsulfisoxazole(purple).

(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

(7)

197C,whereasnomeltingpointwasobservedforsulfisoxazole

for thesamples of sulfisoxazole/SBE7-

b

-CD-IC NF and sul

fisox-azole/SBE7-

b

-CD-ICpowder.TheDSCresultsfurtherconfirmthat

thesulfisoxazolemoleculesarefullycomplexedwithSBE7-

b

-CDin

thesamplesofsulfisoxazole/SBE7-

b

-CD-ICNFandsulfisoxazole/

SBE7-

b

-CD-ICpowder.

Thecrystallinestructuresofpuresulfisoxazole,SBE7-

b

-CDNF,

sulfisoxazole/SBE7-

b

-CD-IC NF and sulfisoxazole/SBE7-

b

-CD-IC

powder wereinvestigated by XRD to show theevidence of IC

formationbetweensulfisoxazoleandSBE7-

b

-CD.Sulfisoxazoleisa

crystallinematerialhavingasharpdiffractionpeaksatdifferent2

u

values;however,theXRDpatternofSBE7-

b

-CDNF,sulfisoxazole/

SBE7-

b

-CD-ICNFandsulfisoxazole/SBE7-

b

-CD-ICpowderarevery

similarwhichhaveamorphousstructures.Thesulfisoxazole/SBE7

-b

-CD-ICNFandsulfisoxazole/SBE7-

b

-CD-ICpowderdonotshow

anydiffractionpeaksofsulfisoxazole(Fig.7).Inotherwords,XRD resultsrevealedtheICformationbetweensulfisoxazoleandSBE7

-b

-CD in the samples of sulfisoxazole/SBE7-

b

-CD-IC NF and

sulfisoxazole/SBE7-

b

-CD-ICpowder.TheXRDresultsuggeststhat

sulfisoxazolemoleculesareisolatedfromeachotherbyentering intoSBE7-

b

-CDcavitiesand cannot formany crystalline

aggre-gates. Since drugs in crystalline forms are more stable, their solubility decreases (Babu and Nangia, 2011); however, CD-IC

formationpreventcrystallizationofdrugs.Therefore,thesolubility of sulfisoxazole increasesby SBE7-

b

-CD-IC formation since the

crystallizationofsulfisoxazolewaspreventedasconfirmedbythe XRDpattern.

Thepresenceofguestmoleculeinstructureandtheformation

ofinclusioncomplexesbetweenhostandguestmoleculecanbe

provedbyFTIR analysis.The FTIRspectraofpuresulfisoxazole, SBE7-

b

-CDNFandsulfisoxazole/SBE7-

b

-CD-ICNFarerepresented

inFig.8.TheFTIRspectrumofsulfisoxazoledisplayedsalientpeaks at 876–688cm1 range (CH bending), at 1347cm1, (SO2

stretching); at 1326cm1 (aromatic ring stretching); at

1597cm1 (C¼C stretching); at 1632 cm1 (NH2 deformation

vibrations).TheFTIRspectrumofSBE7-

b

-CDshowedabroadpeak

at between3015and 3760cm1(OH stretchingvibration); a

peak at 2931cm1 (CH stretching vibrations); peaks at

1159cm1and1043cm1(CHandCOstretchingvibrations). SulfisoxazolepeakswereoverlappedbyCDpeakswhichmakesthe identificationof eachcompounds complicatedat thespectraof inclusioncomplexnanofibers.However,thesharpestabsorption peakofsulfisoxazoleatabout1597cm1correspondingtoCH stretchingvibrationcausesincreaseinintensityatthatwavelength

of inclusion complex nanofiber. This result suggested that

sulfisoxazoleispresentininclusioncomplexnanofibers.

Fig.10.Presentationofthesolubilitybehaviourofsulfisoxazole(representedby“SFO”),sulfisoxazole/SBE7-b-CD-ICNFandsulfisoxazole/SBE7-b-CD-ICpowderforafew

secondsofwaterexposure.ThepictureswerecapturedfromthevideoswhichweregivenasSupportinginformation. 556 Z.I.Yildizetal./InternationalJournalofPharmaceutics531(2017)550–558

(8)

3.4.Water-solubilityofSulfisoxazole/SBE7-

b

-CD-ICNF

As mentioned Section 2.3, excess amount of sulfisoxazole

(1.3mgmL1) and sulfisoxazole/SBE7-

b

-CD-IC NF and sul

fisox-azole/SBE7-

b

-CD-ICpowderhavingthesameamountofsul

fisox-azole were added to water. In order to make comparison, the

solutionofsulfisoxazolewithconcentrationofitswatersolubility (about 0.2mgmL1) was also prepared to see water-solubility

enhancement. The plot (Fig. 9) shows that the solutions of

sulfisoxazolewith0.2mgmL1concentrationandofsulfisoxazole

with1.3mgmL1demonstratedpeakatalmostthesame

absor-bance.Ontheotherhand,sulfisoxazole/SBE7-

b

-CD-ICNFsample

solution having 1.3mgmL1 of sulfisoxazole concentration

showed peak at 10 times higher absorbance. This shows that

the solubility of sulfisoxazole was increasedby 10 times with sulfisoxazole/SBE7-

b

-CD-IC NF formation. As seen from Fig. 9,

sulfisoxazole/SBE7-

b

-CD-ICpowderalsoenhanceswatersolubility

ofsulfisoxazoleduetoformationofCD-IC,howeversulfisoxazole/ SBE7-

b

-CD-IC NF shows higher absorbance than sulfisoxazole/

SBE7-

b

-CD-ICpowder.Thehighsurfaceareatovolumeratio,high

porosityofnanofibersstructurecontributetotheenhancementof watersolubilityofthedrug(Sebeetal.,2015);therefore,thewater solubilityenhancementinsulfisoxazole/SBE7-

b

-CD-ICNFbecome

highercomparedtosulfisoxazole/SBE7-

b

-CD-ICpowder.The

fast-dissolving property and water-solubility enhancement of the

sulfisoxazoleinsulfisoxazole/SBE7-

b

-CD-ICNFandsulfisoxazole/

SBE7-

b

-CD-ICpowderwerealsovisuallyproven(VideoS1,Video

S2andFig.10).Afteradditionof5mLwatertothepetridishes, whilesulfisoxazole/SBE7-

b

-CD-ICNFwasdissolvedimmediately,

thedissolutionofsulfisoxazole/SBE7-

b

-CD-ICpowdertookplacea

littlebitslower thansulfisoxazole/SBE7-

b

-CD-ICNF sampleand

thepuresulfisoxazoleremainundissolved.Thisclearlyshowedthe fast-dissolvingproperty of sulfisoxazole/SBE7-

b

-CD-IC NF along

withhighly-increased water-solubilityof sulfisoxazole by sul fi-soxazole/SBE7-

b

-CD-ICNFformation.

4.Conclusions

Inthisstudy,free-standingandeasilyhandlednanofibrousweb ofsulfisoxazole/SBE7-

b

-CD-ICwassuccessfullyproducedbyusing

electrospinning technique. The electrospun sulfisoxazole/SBE7

-b

-CD-ICnanofibrouswebhasshownthefast-dissolvingproperty aswellastheprovidingenhancedwater-solubilitytosulfisoxazole. Based onourresults, it is concluded that SBE7-

b

-CDis a good

candidate toform ICs withsulfisoxazole to increase its water-solubilitytoa great extent. Moreover,electrospinning of nano-fibersfromsulfisoxazole/SBE7-

b

-CD-ICsystemhavinghighsurface

area to volume ratio and nano-scale porosity provides

fast-dissolvingproperty.Inbrief,electrospinningofnano fibers/nano-websfromdrug/CD-ICssystemsmayprovidenovelapproachesfor enhancedwater-solubilityandfast-dissolvingtabletformulations fordrugdeliverysystems.

Acknowledgements

T. Uyar acknowledges The Turkish Academy of Sciences 

Outstanding Young Scientists Award Program

(TUBA-GEBIP)-Turkey for partial support of theresearch. Z. I. Yildiz thank to TUBITAK-BIDEBforthePh.D.scholarship.

AppendixA.Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in

the online version, at http://dx.doi.org/10.1016/j.

ijpharm.2017.04.047.

References

Aytac,Z.,Uyar,T.,2017.Core-shellnanofibersofcurcumin/cyclodextrininclusion complexandpolylacticacid:enhancedwatersolubilityandslowreleaseof curcumin.Int.J.Pharm.518,177–184.doi:http://dx.doi.org/10.1016/j. ijpharm.2016.12.061.

Aytac,Z.,Sen,H.S.,Durgun,E.,Uyar,T.,2015.Sulfisoxazole/cyclodextrininclusion complexincorporatedinelectrospunhydroxypropylcellulosenanofibersas drugdeliverysystem.ColloidsSurf.B:Biointerfaces128,331–338.doi:http:// dx.doi.org/10.1016/j.colsurfb.2015.02.019.

Aytac,Z.,Yildiz,Z.I.,Kayaci-Senirmak,F.,Keskin,N.O.S.,Kusku,S.I.,Durgun,E., Tekinay,T.,Uyar,T.,2016a.Fast-Dissolving,prolongedrelease,andantibacterial cyclodextrin/Limonene-Inclusioncomplexnanofibrouswebsviapolymer-free electrospinning.J.Agric.FoodChem.64,7325–7334.doi:http://dx.doi.org/ 10.1021/acs.jafc.6b02632.

Aytac,Z.,Yildiz,Z.I.,Kayaci-Senirmak,F.,Keskin,N.O.S.,Tekinay,T.,Uyar,T.,2016b. Electrospinningofpolymer-freecyclodextrin/geraniol–inclusioncomplex nanofibers:enhancedshelf-lifeofgeraniolwithantibacterialandantioxidant properties.RSCAdv.6,46089–46099.doi:http://dx.doi.org/10.1039/ c6ra07088d.

Aytac,Z.,Keskin,N.O.S.,Tekinay,T.,Uyar,T.,2017.Antioxidanta-tocopherol/

g-cyclodextrin-inclusioncomplexencapsulatedpoly(lacticacid)electrospun nanofibrouswebforfoodpackaging.J.Appl.Polym.Sci.134(21)doi:http://dx. doi.org/10.1002/app.44858.

Babu,N.J.,Nangia,A.,2011.Solubilityadvantageofamorphousdrugsand pharmaceuticalcocrystals.Cryst.GrowthDes.11,2662–2679.doi:http://dx.doi. org/10.1021/cg200492w.

Beig,A.,Agbaria,R.,Dahan,A.,2015.Theuseofcaptisol(SBE7-b-CD)inoral

solubility-enablingformulations:comparisontoHPbCDandthesolubility– permeabilityinterplay.Eur.J.Pharm.Sci.77,73–78.doi:http://dx.doi.org/ 10.1016/j.ejps.2015.05.024.

Celebioglu,A.,Uyar,T.,2011.Electrospinningofpolymer-freenanofibersfrom cyclodextrininclusioncomplexes.Langmuir27,6218–6226.doi:http://dx.doi. org/10.1021/la1050223.

Celebioglu,A.,Uyar,T.,2012.Electrospinningofnanofibersfromnon-polymeric systems:polymer-freenanofibersfromcyclodextrinderivatives.Nanoscale4, 621–631.doi:http://dx.doi.org/10.1039/c1nr11364j.

Celebioglu,A.,Uyar,T.,2013.Electrospinningofnanofibersfromnon-polymeric systems:electrospunnanofibersfromnativecyclodextrins.J.ColloidInterface Sci.404,1–7.doi:http://dx.doi.org/10.1016/j.jcis.2013.04.034.

Celebioglu,A.,Umu,O.C.,Tekinay,T.,Uyar,T.,2014a.Antibacterialelectrospun nanofibersfromtriclosan/cyclodextrininclusioncomplexes.ColloidsSurf.B: Biointerfaces116,612–619.doi:http://dx.doi.org/10.1016/j.

colsurfb.2013.10.029.

Celebioglu,A.,Vempati,S.,Ozgit-Akgun,C.,Biyikli,N.,Uyar,T.,2014b.Water-soluble non-polymericelectrospuncyclodextrinnanofibertemplateforthesynthesisof metaloxidetubesbyatomiclayerdeposition.RSCAdv.4,61698–61705.doi: http://dx.doi.org/10.1039/c4ra12073f.

Celebioglu,A.,Kayaci-Senirmak,F.,Ipek,S.,Durgun,E.,Uyar,T.,2016.Polymer-free nanofibersfromvanillin/cyclodextrininclusioncomplexes:highthermal stability,enhancedsolubilityandantioxidantproperty.FoodFunct.7,3141– 3153.doi:http://dx.doi.org/10.1039/c6fo00569a.

Devasari,N.,Dora,C.P.,Singh,C.,Paidi,S.R.,Kumar,V.,Sobhia,M.E.,Suresh,S.,2015. Inclusioncomplexoferlotinibwithsulfobutylether-b-cyclodextrin: preparation,characterization,insilico,invitroandinvivoevaluation. Carbohydr.Polym.134,547–556.doi:http://dx.doi.org/10.1016/j. carbpol.2015.08.012.

Gladys,G.,Claudia,G.,Marcela,L.,2003.TheeffectofpHandtriethanolamineon sulfisoxazolecomplexationwithhydroxypropyl-b-cyclodextrin.Eur.J.Pharm. Sci.20,285–293.doi:http://dx.doi.org/10.1016/s0928-0987(03)00202-1.

Higuchi,T.,Connors,A.K.,1965.Phase-solubilitytechniques.Adv.Anal.Chemistry andInstrum.4,117–212.

Kulkarni,A.D.,Belgamwar,V.S.,2017.Inclusioncomplexofchrysinwithsulfobutyl ether-b-cyclodextrin(Captisol1):Preparation,characterization,molecular modellingandinvitroanticanceractivity.J.Mol.Struct.1128,563–571.doi: http://dx.doi.org/10.1016/j.molstruc.2016.09.025.

Mendes,A.C.,Gorzelanny,C.,Halter,N.,Schneider,S.W.,Chronakis,I.S.,2016.Hybrid electrospunchitosan-phospholipidsnanofibersfortransdermaldrugdelivery. Int.J.Pharm.510,48–56.doi:http://dx.doi.org/10.1016/j.ijpharm.2016.06.016.

Noruzi,M.,2016.Electrospunnanofibresinagricultureandthefoodindustry:a review.J.Sci.FoodAgric.96,4663–4678.doi:http://dx.doi.org/10.1002/ jsfa.7737.

Ogawa,N.,Takahashi,C.,Yamamoto,H.,2015.Physicochemicalcharacterizationof cyclodextrin–druginteractionsinthesolidstateandtheeffectofwateronthese interactions.J.Pharm.Sci.104,942–954.doi:http://dx.doi.org/10.1002/ jps.24319.

Sahay,R.,Kumar,P.S.,Sridhar,R.,Sundaramurthy,J.,Venugopal,J.,Mhaisalkar,S.G., Ramakrishna,S.,2012.Electrospuncompositenanofibersandtheir multifacetedapplications.J.Mater.Chem.22,12953.doi:http://dx.doi.org/ 10.1039/c2jm30966a.

Sebe,I.,Szabó,P.,Kállai-Szabó,B.,Zelkó,R.,2015.Incorporatingsmallmoleculesor biologicsintonanofibersforoptimizeddrugrelease:areview.Int.J.Pharm.494 (1),516–530.

Siafaka,P.,Okur,N.Ü.,Mone,M.,Giannakopoulou,S.,Er,S.,Pavlidou,E.,Karavas,E., Bikiaris,D.,2016.Twodifferentapproachesfororaladministrationof

(9)

voriconazoleloadedformulations:electrospunfibersversusb-Cyclodextrin complexes.Int.J.Mol.Sci.17,282.doi:http://dx.doi.org/10.3390/ijms17030282.

Szejtli,J.,1998.Introductionandgeneraloverviewofcyclodextrinchemistry.Chem. Rev.98,1743–1754.doi:http://dx.doi.org/10.1021/cr970022c.

Ta9cic,A.,Savic,I.,Nikolic,V.,Savic,I.,Ilic-Stojanovic,S.,Ilic,D.,Petrovic,S.,Popsavin, M.,Kapor,A.,2014.Inclusioncomplexesofsulfanilamidewithb-cyclodextrin and2-hydroxypropyl-(-cyclodextrin.J.InclusionPhenom.MacrocyclicChem. 80,113–124.doi:http://dx.doi.org/10.1007/s10847-014-0410-x.

Tonglairoum,P.,Chuchote,T.,Ngawhirunpat,T.,Rojanarata,T.,Opanasopit,P.,2013. Encapsulationofplaioil/2-hydroxypropyl-b-cyclodextrininclusioncomplexes inpolyvinylpyrrolidone(PVP)electrospunnanofibersfortopicalapplication. Pharm.Dev.Technol.19,430–437.doi:http://dx.doi.org/10.3109/

10837450.2013.788659.

Uyar,T.,Kny,E.,2017.ElectrospunMaterialsforTissueEngineeringandBiomedical Applications,firsted.Elsevier,WoodheadPublishing(ISBN:9780081010228).

Uyar,T.,El-Shafei,A.,Wang,X.,Hacaloglu,J.,Tonelli,A.E.,2006.Thesolidchannel structureinclusioncomplexformedbetweengueststyreneandhost

g-cyclodextrin.J.InclusionPhenom.MacrocyclicChem.55(1),109–121.doi: http://dx.doi.org/10.1007/s10847-005-9026-5.

Wang,B.,Li,H.,Yao,Q.,Zhang,Y.,Zhu,X.,Xia,T.,Wang,J.,Li,G.,Li,X.,Ni,S.,2016. LocalinvitrodeliveryofrapamycinfromelectrospunPEO/PDLLAnanofibersfor glioblastomatreatment.Biomed.Pharmacother.83,1345–1352.doi:http://dx. doi.org/10.1016/j.biopha.2016.08.033.

Wendorff,J.H.,Agarwal,S.,Greiner,A.,2012.Electrospinning:Materials,Processing, andApplications.Wiley-VCH,Weinheim,Germany.

Şekil

Fig. 3. Photographs of electrospun (a) SBE 7 - b -CD NF, (b) sulfisoxazole/SBE 7 - b -CD-IC NF, and SEM images of (c) SBE 7 - b -CD NF, (d) sulfisoxazole/SBE 7 - b -CD-IC NF.
Fig. 5. (a) TGA thermograms and (b) their derivatives of sulfisoxazole, SBE 7 - b -CD NF and sulfisoxazole/SBE 7 - b -CD-IC NF.
Fig. 8. FTIR spectra of sulfisoxazole, SBE 7 - b -CD NF and sulfisoxazole/SBE 7 - b -CD-IC NF.
Fig. 10. Presentation of the solubility behaviour of sulfisoxazole (represented by “SFO”), sulfisoxazole/SBE 7 - b -CD-IC NF and sulfisoxazole/SBE 7 - b -CD-IC powder for a few seconds of water exposure

Referanslar

Benzer Belgeler

After melissopalynological analysis, it was clear that this honey sample should be declared as a multyfloral [23].Honey sample from Kopsuyu village contained a high

Apart from meeting the needs of learners with different learning style preferences and having the potential of improving different skills, another strength of the software is that

No Arcobacter was isolated when the de Boer method was used for minced meat samples but the same five meat samples were found positive for arcobacters when CAT-supplemented media

In this study, our population (F 1001) samples should be classified as a separate and new species called Veronica edremitense.. We believe that this work will

Recently, Gurler (1996) studied a non- parametric estimator for the bivariate distribution function when a component is subject to left truncation; this study..

yüzyılda Bizans devleti ve Kutsal Roma imparatorluğu arasında yarattığı siyasi krizlerden çok uzak olmanın ötesinde ve Chalkokondyles’in çağdaşı Dukas gibi

To the best of our knowledge, our study is the first to provide a mathematical programming formulation along with novel simulation-optimization approach and meta- heuristic

affects the Query Hit messages returned to Query messages, the popularity of the shared resources is another important factor that can affect the Query Hits, since popular resources