• Sonuç bulunamadı

A Uniqueness the Theorem for Singular Sturm-Liouville Problem = Singüler Sturm-Liouville Problemi için Teklik Teoremi

N/A
N/A
Protected

Academic year: 2021

Share "A Uniqueness the Theorem for Singular Sturm-Liouville Problem = Singüler Sturm-Liouville Problemi için Teklik Teoremi"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

C.Ü. Fen-Edebiyat Fakültesi

Fen Bilimleri Dergisi (2003)Cilt 24 Sayı 2

A Uniqueness the Theorem for Singular Sturm-Liouville Problem

Etibar S. PANAKHOVand Hikmet KOYUNBAKAN

Firat University , Department of Mathematics 23119 Elazığ / TURKEY E-mail: epenahov@hotmail.com, hkb63@yahoo.com

Received:09.03.2004, Accepted: 16.03.2004

Abstract. In this paper, we show that If q(x) is prescribed on the

(

π 2,π

]

then the one spectrum suffices to determine q(x) on the interval

(

.The potential function q(x) in a Sturm Liouville problem is uniquely determined with one spectra by using the Hochstadt and Lieberman’s method [2].

)

0,π 2 Key Words: Sturm-Liouville problem, Spectrum

Singüler Sturm-Liouville Problemi için Teklik Teoremi

Özet: Bu makalede gösterdi ki q(x)

(

π 2,π

]

aralığında tanımlanmış ise

(

aralığı üzerinde q(x) fonksiyonunu belirlemek için bir spektrum yeterlidir. Sturm-Liouville probleminde q(x) potansiyel fonksiyonu Hochstadt ve Lieberman metodu kullanılarak bir spektruma göre tek olarak belirlenir.

)

0,π 2

Anahtar Kelimeler: Sturm-Liouville problem, Spectrum Introduction.

In this paper, we shall be concerned with an inverse Sturm-Liouville operator. We consider the operator

y y x x q y Ly ν =λ      + − + ′′ − = ( ) 2 21/4 (1)

(2)

with the boundary conditions ) 1 ( 2 1 ) , ( lim 1/2 0 − = Γ + → ν λ ν ν x x y x , (2) . (3) 0

]

}

sin ) , ( cos ) , (π λ β+ y′π λ β = y

The operator L is Self-Adjoint on the and with (2)–(3) boundary conditions has a discret spectrum

{

. If condition (3) is replaced by

[

0,π 2 L n λ . (4) 0 sin ) , ( cos ) , (π λ γ + y′π λ γ = y

So, we obtain a new spectrum

{ }

λ′n .

In this paper, we will consider a variation of the above inverse problem in that we will not require any information about a second spectrum but rather suppose q(x) is known almost everywhere on

    π π , 2 .

This information together with the spectrum

{

of the problem (1)–(3) will be shown to determine q(x) uniquely on

(

.

}

n

λ

]

0,π

Theorem : We get the operator (1) with the boundary conditions (2) and (3). Let be the spectrum of L with (2) and (3). Consider a second operator

{ }

λn y y x x q y y L ν =λ      + − + ′′ − = ~( ) 2 21/4 ~ (5)

where q~

( )

x is summable on the interval

(

0,π

]

and

( )

x q x q( )=~ (6) on the interval     π π , 2

( )

x

. Suppose that the spectrum of with the (2)–(3) is also . Then almost everywhere on .

L~

{ }

λn

q x

q( )=~

(

0,π

]

Proof : Before proving the theorem we will first mention some results which will be need later. We take the following problems

y y x x q y Ly ν =λ      + − + ′′ − = ( ) 2 21/4 (7) ) 1 ( 2 1 ) , ( lim 1/2 0 − = Γ + → ν λ ν ν x x y x (8)

(3)

y y x x q y y L ν =λ      − + + ′′ − = ~( ) 2 21/4 ~ (9) ) 1 ( 2 1 ) , ( ~ lim 1/2 0 − = Γ + → ν λ ν ν x x y x (10)

As known [6], the Bessel’s functions of the first kind of order ν is following asymptotic relations:

( )

            +     = x O x x x J 1 4 2 cos 2 νπ π π ν , (11)

( )

( )

      +     − = ′ 1 4 2 sin 2 O x x x J νπ π π ν . (12)

It addition , It can be shown [5] that there exist a kernel H(x,t) continuous on such that every solution of (7) and (8) can be expressed in the form

[ ] [

0,π × 0,π

]

( )

( )

x J

( )

x H x t

( )

t J

( )

tdt x y x

+ = 0 ) , ( , λ λ λ λ λ ν ν ν ν (13)

Where the kernel H ,

(

x t

)

is solution of following problem

) , ( ) ( 4 / 1 ) , ( ) , ( 4 / 1 ) , ( 2 2 2 2 2 2 2 2 t x H t q t t t x H t x H x x t x H       + − + ∂ ∂ = − + ∂ ∂ ν ν , ) ( ) , ( 2 q x dx t x dH = , . 0 ) 0 , (x = H

Analogous results to (13) hold for in terms of a kernel which has similar properties of the . Using equation (13) and Its for we find that

) , ( ~y x λ H ,~

(

x t ) λ

)

)

(

x t H , ~ xy( ,

( )

(

)

( ) ( )

( )

(

) ( )

( )

( )

( )

( )

( )

(

)

2 2 2 0 0 0 , , , , . x x x xt x y y J x H x t H x t J x J t dt x x H x t J t dt H x s J s ds ν ν ν ν ν ν ν ν λ λ λ λ λ λ λ λ   = + + ×

% % % ν λ +

)

)

(14)

If the range of and is extended respect to the second argument and some straightforward computations , we rewrite (14) as

(

x t

(4)

( )

( )

                        + = x x

x Hx d y y 0 2 1 cos2 2 4 , cos2 2 4 2 1 ~ λ νπ π τ λτ νπ π τ λ ν , (15) where

( )

(

)

(

)

        + + − + − + − =

− + − ≈ ds s x H s x H ds s x H s x H x x H x x H t x H x x x x τ τ τ τ τ τ 2 , ~ ) , ( 2 , ~ ) , ( ) 2 , ( ~ ) 2 , ( 2 , 2 2 . (16)

Now, we define the function

β λ π β λ π λ Ω( )= y( , )cos +y′( , )sin . (17) The zeros of Ω are the eigenvalues of or subject to (2)-(3) and if the asymptotic results of y and are considered the is a entire function of order

( )

λ L

(

λ L~ y′

)

21 of . λ

If we multiply (7) by and (9) by y and subtract we obtain , after integration , y′

(

yy′− yy

)

+

x

(

qq

)

yydx= 0 0 ~ ~ 0 ~ ~ π . (18) Using (6) - (8) - (10) , we obtain

[

~

(

,

) (

' ,

) (

,

) (

~' ,

)

]

2

(

~

)

0 0 0 + − = −y y

q qdx y y π π λ π λ π λ π λ π . (19) Now , (20) q q Q= ~− and dx y y x Q K =

2 0 ~ ) ( ) ( π λ . (21)

If the properties of y and are considered , the function is a entire function and for λ = , since the first term of (19) is zero ,

y~ K

( )

λ n λ . (22)

( )

n =0 K λ

In addition using (13) and (21) for 0< x≤π ,

( )

ν

λ

λ) 1 2

( M

(5)

where M is constant. Now ,

( )

( )

λ Ω λ λ Ψ( )= K , (24)

( )

λ

Ψ is a entire function. Asymptotic form of Ω(λ) and with (23)

( )

1 2 1 O ν λ λ +     Ψ =     . So , From the Liouville Theorem for all λ

( )

λ Ψ =0 (25) or 0 . (26) ) (λ = K

From now on , substituting (15) into (21)

( )

( , ) 2 2 4 0 ~~ 4 2 2 1 ) ( 2 1 0 2 2 0 =               +             +

Q x x Cos x H x Cos d dx x τ π νπ τ λ τ π νπ λ λ ν π . (27)

This can be written as

( )

( )

 =         +       + 2 0 2 2 2 0 2 ( , ) 0 ~~ ) ( ) ( 4 2 2 ) ( π π τ ν π ν τ τ τ π νπ τ λ λ τ λ Q x dx Cos Q Q x H x dx d x .

Letting λ→∞ for real , we see from Riemann -Lebesque Lemma that we must have λ

2 = 0 0 ) ( π dx x Q (29) and

=           +       2 0 2 0 ) , ( ~~ ) ( ) ( 4 2 2 π π τ τ τ τ π νπ τ λ Q Q x H x dx d Cos (30)

But from the completeness of the functions Cos , we see that

= < < + 2 2 0 , 0 ) , ( ~~ ) ( ) ( π τ π τ τ τ Q x H x dx Q (31)

(6)

) ( ~ ) (x q x q = almost everywhere. References

1. Gasymov, M.G., The Definition of Sturm-Liouville Operator from Two Spectra, DAN SSSR, Vol.161, No:2, 1965, 274-276

2. Hochstadt , H. and Lieberman , B., An Invers Sturm Liouville Problem with Mixed Given Data. Siam J. Appl. Math. , Vol.34 , No: 4 , 1978, 676-680

3. Levitan, B.M., On the Determination of the Sturm - Liouville Operator from One and Two Spectra, Math. USSR Izvestija, vol. 12 , 1978, 179-193

4. Panakhov , E . S. , The definition of differential operator with peculiarity in zero on two spectrum. VINITI , N 4407 - 8091980 , 1980 , 1-16

5. Volk, V.Y., On Inverse Formulas for a Differential Equation with a Singularity at

x=0, Usp.Mat.Nauk (N.S.) 8(56), 1953, 141-151

6. Watson, G., A Treatise on the Theory of Bessel Functions, Cambridge University

Referanslar

Benzer Belgeler

Lavman opakla kolon grafisi ve kolonoskopi: Kolonun iskemik hasar ından üüphelenildiùinde, hastada peritonit bulgular ı yoksa ve direkt batın filmlerinde aç ıklayıcı bir

“Ermeni Olayları Tarihi” adlı eserinde, Diyarbakır Vilayeti Polis Komiserliği’nin 8 Kasım 1895 tarihli telgrafına istinaden, Diyarbakır vilayetinde meydana

Bu çalışmada, mevcut ürünlerin katı modelleri kullanılarak gerçekleştirilmiş olan sonlu elemanlar sonuçlarından örnek- ler sunulmuş ve modern mühendislik

A) Öğrencilerin şekerin tadını çok sevmeleri B) Şekerin öğrencilerin susamasını önlemesi C) Şekerin öğrencilere uğur getirdiğine inanılması D) Öğrencilerin

Oldur ki medîne-i Harput sâkinlerinden Halil Beşe ve İsmail Beşe ibn-i Yusuf Bey nâm râciller mahfel-i kazâda Harput mukâtaʻasının sâbık emini olan Osman Bey

Yine Kongre kapsamında Hakemli Bilimsel değerlendirme sürecinden geçerek Kongrede sunulacak olan Sözel ve Poster Bildirilerde; El Hijyeni, Enfeksiyon Kontrolü, Hasta ve

Ayrıca halkla ilişkiler yönetiminde halkla ilişkiler uzmanlarının dikkate alması gereken hayati öneme sahip beş noktayı Yılmaz, Ledingham’ın (2000) aktarımı ile

Bu çalışmada Hollanda Birleşik Doğu Hindistan Şirketi öncesinde, Hollanda’daki ticari faaliyetler, Hollandalıların Protestanlığı seçmeleri üzerine, Katolik