• Sonuç bulunamadı

Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy

N/A
N/A
Protected

Academic year: 2021

Share "Wear and mechanical properties of Al6061/SiC/B4C hybrid composites produced with powder metallurgy"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

w w w . j m r t . c o m . b r

Availableonlineatwww.sciencedirect.com

Original

Article

Highly

efficient

photocatalytic

performance

of

Cu

2

O@TiO

2

nanocomposite:

influence

of

various

inorganic

oxidants

and

inorganic

anions

Wagih

A.

Sadik

a

,

Abdel-Ghaffar

M.

El-Demerdash

a

,

Adel

W.

Nashed

a

,

Amr

A.

Mostafa

a

,

Hesham

A.

Hamad

b,∗

aMaterialsScienceDepartment,InstituteofGraduateStudiesandResearch(IGSR),AlexandriaUniversity,Alexandria,Egypt

bFabricationTechnologyDepartment,AdvancedTechnologyandNewMaterialsResearchInstitute(ATNMRI),CityofScientificResearch

andTechnologicalApplications(SRTA-City),NewBorgEl-ArabCity,21934,Alexandria,Egypt

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received15August2019 Accepted3September2019 Availableonline26September2019

Keywords:

Photocatalyticoxidation Cu2O@TiO2nanocomposite

Inorganicoxidants AR8dyedegradation Electricalenergyperorder.

a

b

s

t

r

a

c

t

ThisworkoffersthefacilesynthesisofCu2O@TiO2nanocompositesbysolidstatereaction

towardstheeliminationofAcid-Red8(AR8)dyeasatargetpollutantmodelthroughthe photocatalyticoxidationsystem.Anothergoalistoassessthecapacityofvariousinorganic oxidantsthatactasalternativeelectronacceptorforCu2O@TiO2mediatedphotocatalytic

oxidation.Thepreparednanocompositewasanalyzedbyvariousanalysisinstruments,and theirphotocatalyticperformancewassystemicallyassessedwithrespecttotheremovalof AR8dye.Uponirradiation,comparedtopureCu2OandpureTiO2alone,theCu2O@TiO2has

exhibitedahigherphotocatalyticperformancewhichshowthatthecombiningTiO2(n-type)

withCu2O(p-type)hasbeenimprovedtheelectronmobilityandsubsequentlydecreasing

therateofelectron-holerecombination.Akineticstudyisconfirmedthatthedegradation ofAR8hasbeenobeyedthepseudo-first-ordermodel.Theperfectionofthephotocatalytic activityisachievedbyusingvariousinorganicoxidantssuchas;H2O2,Na2S2O8andNaIO4

soastoproduceanelectronscavenger.Also,theapparentrateconstant(kapp)and

appar-entquantumyield(Qapp)arehigherforalloxidantsthanwithoutoxidants,whileislower

intermsofelectricalenergyperorder(EEO)andhalf-lifetime(t0.5).Periodateionhas

con-sideredthemostefficientoxidantwhencomparedwithotheroxidantsforenhancingthe photocatalyticactivityviatheformationofvariousreactiveoxygenspecies.Thedegradation efficiencyofthesecatalyticsystemscouldbearrangedinanascendingorder:Cu2O@TiO2/

NaIO4>Cu2O@TiO2/Na2S2O8>Cu2O@TiO2/H2O2>Cu2O>TiO2.

©2019TheAuthors.PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:heshamaterials@hotmail.com(H.A.Hamad).

1.

Introduction

Recently, the shortage of water is becoming more severe problemduetoanenvironmentalpollution,rapidindustrial growth,uncontrolledgroundwaterprogressandreducingthe water resources. Hence, the fixing of these problems and

https://doi.org/10.1016/j.jmrt.2019.09.007

2238-7854/©2019 The Authors. Publishedby Elsevier B.V. This isan open access articleunder the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

theprogressivegrowthofthewaterpollution.Amongthem, heterogeneousphotocatalysisisesteemedamotivating tech-niquewithtoday’schallengingdemandsespeciallyforclean watertechnology[11,12].

Nanostructured TiO2 is considered as a well-known

photocatalystforthehighlyefficientperformancefor decom-positionoftextilepollutantsinwater[13].Thedestructionof organicpollutantsbytitaniainthepresenceofsuitablelight isasaresultofproductionofhydroxylradical,verystrong oxidant,thatarethekeyofusingthephotocatalystfor oxi-dationoforganic molecules.Also,there weremany efforts forimprovingthephotocatalyticactivitybycombinationwith otheroxidants[14].Greatchallengeshavebeenmadeinorder toimprovetheperformanceoftitania,mainlyjointwithother semiconductor,regardlesstheexcellentprospectofefficient photocatalyticmineralizationoftoxicdyesinwater[15].

Sensitizationofn-typesuchas;TiO2withp-typesuchas;

Cu2OisaneffectivepathforfabricationTiO2based

photocata-lystwithextendedabsorptionandsubsequentlyimprovedthe photocatalyticactivity.ThisisduetothelowbandgapofCu2O

(E0=1.9–2.2eV)andtheformationofheterostructurebetween

TiO2andCu2Othathelpstheseparationandtransportation

ofthephoto inducedchargecarriersinCu2O@TiO2

hetero-junctionnanocomposite,andhencedeclinestheopportunity ofrecombinationandimprovesthephotocatalyticproperties

[16].Also,thesynergisticeffectbetweenTiO2andCu2Oisvery

importantforimprovingthechargeseparationandleadsto muchhigherphotocatalyticactivitythanpureTiO2andCu2O

[17,18].

Manyresearchgroupsconcerned withthefabricationof Cu2O@TiO2inordertomakeaprogressinthedestructionof

organiccontaminantsfromwater.Thephotocatalyticactivity ofTiO2/zeolite(TZ)wasimprovedthephotocatalytic

degrada-tionofbisphenolA(BPA)byaddingCu2O[19].Mixedoxidesof

Cu2O-TiO2wassynthesizedonacoppersubstratefor

reduc-tionof2,2,4,4-tetrabromodiphenylether(BDE47) [20]. Also, themorphologyissignificantfactorforenhancingthe pho-tocatalytic activity. The Cu2O/TiO2 heterostructure hollow

spheres(Cu2O/TiO2HS)forremovalofRhodamineBasaresult

ofdesigntheheterojunctionbetweenTiO2andCu2O[21].The

degradationofreactiveblue49(RB49)dyeisobservedbyusing 4wt.%Cu2O-CuO/TiO2catalyst[22].

Todate,thereisnostudies concerningthevarious inor-ganic oxidants using Cu2O@TiO2 as a photocatalyst for

destructionoftoxicdyesinanaqueoussolution.Herein,itisin

Germany. CuCl2.2H2O, NaOH and glucose were purchased

fromAldrichchemicals,Germany.AcidRed8(AR8)(anionic dye) with molecular formula C18H14N2Na2O7S2, molecular

weight of 480.42g/mol, and ␭ max 508nm was purchased

from Fluka, Germany. All oxidants such as sodium perio-date(NaIO4),hydrogenperoxide(H2O2,30%w/v),andsodium

persulphate (Na2S2O8)wereobtainedfromFisherScientific,

Germany.

2.2. SynthesisofCu2OandCu2O@TiO2

NanoCu2Owasfabricatedbyco-precipitationmethod.Cu2O

@TiO2nanocompositewaspreparedbytwosteps;oneby

syn-thesisofCu2Onanoparticles,followedbyaddingit(10wt.%of

Cu2O)toDegussaP-25(90wt.%ofTiO2)forsynthesisofCu2O

@TiO2bysolidstatereaction.Thepowdershavebeenmixed

uniformlyandformedfinepowderbygrinding2h.The resul-tantpowdershavebeencalcinedat500◦Cfor3hinamuffle furnace.Theoverallprocedureforsynthesisofnanocomposite ispresentedinFig.1.

2.3. Physicochemicalcharacterization

The physicochemical properties of the synthesized Cu2O

@TiO2 nanocomposite was observed by scanning electron

microscope (SEM,JEOL,ModelJSM-6360 LA,Japan)[Priorto the investigation,the sampleswere coatedwithgoldusing sputteringcoater(model:S150B,EdwardsHighVacuumLtd., England)], and joint it with EnergyDispersive X-ray (EDX), X–raydiffraction(XRD,Bruker,D8ADVACE,Germany)[Cu(K␣) radiations of wavelength (␭=1.5406A◦) generated at 40Kv, 40mA], and Fourier Transform Infrared spectrophotometer (FTIR,Shimadzu-8400,Japan)[IRspectraweretakenfromthe testsamples,pressedintoKBr-supporteddiscsandscanned inthewavelengthrangefrom400to4000cm−1.

2.4. Evaluationofthephotocatalyticactivity

ThephotocatalyticperformanceofthepreparedCu2O@TiO2

nanocompositewasusedtoevaluatetheremovalefficiency ofAR8 dyeinan aqueoussolution usingbatchslurry pho-toreactor.Thecontents(TiO2/dye,Cu2O/dye,Cu2O@TiO2/dye

andCu2O@TiO2/dye/oxidant)oftheglasscontainerwere

agi-tated bya magneticstirrer and kept purged with air(rate 3000mlmin−1).Thedyesolutionwasagitatedwith

(3)

photocat-Fig.1–SchematicdiagramforsynthesisofCu2O@TiO2nanocomposites.

alystforadsorptionat30minbeforeirradiationwithUVto obtainequilibriumadsorption.

Irradiation was done with a tubular low-pressure mer-curylampwithpower43Wandwavelength254nm(Voltarc Tubes Inc.,USA). The total intensity reaching the solution wasestimated4mWcm−2.ThecolordisappearingofAR8dye wasanalyzedspectrophotometricallyatitsmaximum absorp-tionwavelengthof508nm,usingShimadzu model1601PC doublebeamspectrophotometer,Japan.Samplescontaining Cu2O@TiO2weretakenperiodicallyfromthephotoreactorand

measuredafterfiltrationusing0.2␮mpolyethersulfone mem-brane. The efficiency of the photocatalytic activity can be estimatedinEq.(1).

%Degradation=[Co–C]/Co×100%=[Ao–A]/Ao×100% (1) Where Co=initialconcentration of dyesolution (mg/L), C=concentrationofdyesolutionafterphotoirradiation(mg/L) attimet(minute).Aoisthevalueofabsorbanceofdye aque-oussolutionafteradsorptioninthedark,andAisthevalueof absorbanceofdyeaqueoussolutionafterreaction.

3.

Results

and

discussion

3.1. FormationpathwayofCu2O@TiO2nanocomposite

In this work, Cu2O@TiO2 nanocomposite was prepared by

two steps. Cu2O nanoparticles were firstly prepared using

co-precipitationmethod,andthenCu2Onanoparticleswere

depositedontheinsideandoutsidesurfaceofTiO2by

solid-statereaction,yieldingtheCu2O@TiO2nanocomposite(Fig.1).

Firstly,Cu2+ ionsand solventwerefirstlymixedtoform

bluesolution.Then,theadditionofNaOHandglucosethat supportsthereductionofCu2+toCu+ ions.Theadditionof

glucoseduringthesynthesisofCu2Oassociatestoreducethe

rateofagglomerationandalsoimprovethehomogeneityand thedistributionofthisparticleswithsmallgrainsize[23].After increasethetemperaturefromroomtemperatureto70◦C,a largenumberofCu2Owereformedatshorttime.Secondly,

Cu2OwasaddedtoDegussaP-25,theionsofCu+maybe

dif-fusedandadsorbedonthesurfaceofTiO2aswellasabsorbed

intotheinterstitialspaceinTiO2athighcalcination

tempera-ture,yieldingCu2O@TiO2nanocompositebecauseTiO2isused

asasubstratewithassociatedoflowamountofCu2O(10wt.%)

[19,24].

3.2. CharacterizationofCu2O@TiO2nanocomposite

Fig.2(a)showstheSEMofthepreparedCu2O@TiO2

nanocom-positewithhighhomogeneityanduniformityofaggregated semi-sphericalshape.Theaveragediameterofgrainsizeof 56nm.TheEDXofthepreparedCu2O@TiO2nanocomposite

statedthattheexistenceofconsiderableamountsofCu,Ti, andOwhichconfirmedthatthesuccessfulfabricationofhigh purityofCu2O@TiO2nanocompositewerenoticedbythe

exis-tenceofthedistinctiveenergypeaksforTiandCuwithoutany impurities(Fig.2b).ThespectrumshowsthestrongTisignal atabout4.5eVandaweaksignalatabout0.45eVwithatomic percentageof39.25%.Also,aweaksignalatabout0.45eVfor oxygenwasdetectedwithatomicpercentageof48.52%.The twoweaksignalsatabout0.94and 8.04eVforcopperwere detectedwithatomicpercentageof12.23%.

Fig. 2 (c) shows the XRD pattern of the fabricated Cu2O@TiO2 nanocomposite which displays the diffraction

peaksat2␪=25.23,27.31,35.42,36.02,37.82,38.66,47.97,48.73, 54.04,55.05and62.61,whichmatchtoanataseandrutile tita-nia(JCPDScardNo021-1272and021–1276),respectivelyand also purecubic Cu2O (JCPDS99-0041)[25,26]. Comparedto

DegussaP-25TiO2,Cu2O@TiO2nanocompositehasthree

addi-tionalXRDpeaksthatlocatedat36.02,62.61,and73.54which fitstothe(111),(220)and(311)andascribedtocupritephaseas wellasstatedthatCu2Oarereallyfoundontothesurfaceof

theP25TiO2[16].ItisindicatedthatthecombinationofCu2O

inthecrystalstructureofTiO2 whichhasnotanyeffecton

thestructureofDegussaP-25andthisstructureispreserved. Thesefindingsaredemonstratedthatatwo-phase composi-tionofTiO2andCu2OexistintheCu2O@TiO2heterostructure.

TheFTIRspectrumofCu2O@TiO2nanocomposite(Fig.2d)

showsabandat3471cm−1,whichisdistinctiveofthe non-hydrogen bonded surface hydroxyl groups. Also, the peak observedat1638cm1isascribedtothebendingmodeofthe

(4)

Fig.2–(a)SEM,(b)EDX,(c)XRD,and(d)FT-IRofCu2O@TiO2nanocomposite.[A:anatase,R:rutile,andC:cuprite].

inorganicCu Ohasbeendetectedat378cm−1whereasthe representativebandoftheinorganicTi Ohasbeenobserved at587cm−1[16].

3.3. Photocatalysisofacidred8dye 3.3.1. Degradationkinetics

Thedecomposition kineticsofAR8 dyebyTiO2, Cu2O,and

its composite Cu2O@TiO2 were assessed by following the

Langmuir-Hinshelwoodmodel[11].Whenthechemical con-centrationCoismillimolarsolutiontheintegratedformofEq.

(2)beanapparentfirstorderequation.

ln(Co/C)=kappt (2)

Where,kapprepresentstheapparentfirstorderrateconstant,

CoandCareconcentrationbeforeandphotocatalyticreaction,

respectively.Thehalf-lifetime(t0.5)ofthefirstorderreaction isthetimerequiredforthereactantstobedegradedtothehalf oftheirCo.Therelationshipbetweent0.5andkappisgivenby

Eq.(3).

t0.5=0.693/kapp (3)

3.3.2. ComparisonbetweenTiO2,Cu2Oanditscomposite Cu2O@TiO2

The decomposition ofAR8 dye asan organic contaminant modelhasbeenachievedbyphotocatalyticperformanceusing TiO2P-25,Cu2OanditsurfacemodifiedCu2O@TiO2

nanocom-positeasphotocatalystsatroomtemperature.Thedestruction ofAR8dyewasassessedbyreducingtheCoat␭max508nmdue

totheazobond(N N).TheAR8dyewascompletelydegraded ataround90minwithobeyedthepseudo-first-orderkinetic models (Figure not shown). In Table 1, the decomposition rate followsthe orderCu2O@TiO2>Cu2O>TiO2.Therateof

removalbypureCu2OwashigherthanthatofpureTiO2which

maybeduetothelowbandgapofCu2O.Themosteffective

catalyticsystemisobtainedbyusingcombined Cu2O@TiO2

systemwhichcanbeascribedtothemoreefficientseparation ofphotoinducedelectron-hole(e−/h+)pairs,andalsoimprove

thesurface-activesitesincomposite[17,20,29].

3.3.3. Influenceofvariousoxidationprocessesonthe degradationbyadditionofelectronacceptors

One of the significant drawbacks of the photocatalysis is the electron-hole recombination which signifies the major energy-wasting step and subsequently leads to the reduc-tionofthequantumyield.So,thedeferringofelectron-hole recombinationbyadditionofirreversibleelectronacceptorsin

(5)

Table1–Collectivedataofapparentrateconstants,half-lifetimes,andreactionordersfordegradationofAR8dye[conc. ofcatalyst0.1g/l].

Catalyticsystem Concentrationof oxidant(M)

kapp(min−1) t0.5(min) Apparent

reactionorder(n) UV/Cu2O – 124×10−4 5.6 – UV/TiO2 84.0×10−4 8.3 UV/Cu2O@TiO2 150×10−4 4.6 UV/Cu2O@TiO2/H2O2 2×10−3 182×10−4 3.8 0.4 4×10−3 278×10−4 2.5 12×10−3 375×10−4 1.8 14×10−2 531×10−4 1.3 28×10−2 1257×10−4 0.6 45×10−2 1834×10−4 0.4 UV/Cu2O@TiO2/S2O82− 1×10−3 302×10−4 2.3 1.2 2×10−3 455×10−4 1.5 4×10−3 983×10−4 0.7 UO 8×10−3 3651×10−4 0.2 1.2

UV/Cu2O@TiO2/IO4− 4.0×10−5 1297×10−4 0.50 0.2

7.4×10−4 2001×10−4 0.30 1.0×10−3 2846×10−4 0.20 21×10−3 3664×10−4 0.18 48×10−3 4881×10−4 0.14 11×10−2 7229×10−4 0.10

ordertoincreasetherateofphotocatalysis,especiallyinhigh concentrationoftoxicdyes.Theobserveddrastically accel-eratedthe decompositionwere attributedtotheimproving theelectronscavengingfromtheaddedinorganicoxidants. Themeritsofadditionofelectronacceptorsistoavoidthe recombinationvia (i) increasethe number oftrapped elec-trons; (ii) generation of more radicals and other oxidizing species;(iii)increasingtheoxidationrateofthe intermedi-atecompoundsand(iv)avoidingtheproblemsoflowoxygen concentration[28–30].Hence,variousconcentrationsof oxi-dants(H2O2,Na2S2O8andNaIO4)wereaddedtotheAR8dye

solutioninthepresenceofthecombinedCu2O@TiO2system

thatillustrated inFig. 3.Theintroduction ofinorganic oxi-dantsisutilizedforenhancingtherateofdegradationofAR8 dyethroughbetterscavengetheejectedelectronsofTiO2and

hencethesurvivaltimeh+ atCu

2Owillbehigherand

sub-sequentlyreacts effectivelywithAR8dye.Theeffectofthe concentrationofvariousoxidantsisdescribedwellasfollow;

(a)H2O2

TheUV/Cu2O@TiO2/H2O2systemisusedtotrapthe

elec-tronsatconductionbandandformationofmore䊉OHradicals from generation for superoxide anion radicals (䊉O2−) and

homolyticcleavageofbondsoftwohydroxylgroupsduring the photolysis,which enhancing therate ofphotocatalytic reaction.H2O2isusedasanelectronacceptorthanoxygenin

othermechanismsandsubsequentlytherateof recombina-tionwilldecrease[11].Also,H2O2ismoreelectropositivethan

O2 thatresultfromtwohydrogen atomsbondedtooxygen

atoms(H O O H).

Todeepthe illustrationofintotheeffectivereactivityof H2O2/Cu2O@TiO2 systemonthedecompositionofAR8dye

was studiedatvarious concentration ofH2O2 inFig. 3 (a).

Ithasbeenstatedthattheenhancedphoto-destructionrate withincreasingthedoseofH2O2.Also,thekappwasincreased

from182×10−4to1834×10−4min−1whentheconcentration ofH2O2wasrangedfrom2×10−3to45×10−2M(Table1).The

effectofratedeterminingspeciesisexpressedbyapowerlaw relation

kapp=K[H2O2]n (4)

WherekappandKaretheapparentandthetruerate

con-stants,respectively.Thenistheorderofthephotocatalytic reaction.FromFig.3(b),thevalueofnwas0.4(Table1).The rateofAR8dyedegradationusingUV/Cu2O@TiO2/H2O2

sys-temisbetterwhencomparedtoUV/Cu2O@TiO2alone.This

maybeascribedto(i)trapofthephotogeneratedconduction bandelectronsofCu2O@TiO2byH2O2,whichismoreefficient

thantrappingbyO2,accordingtothefollowingreaction[31].

H2O2+e−(cb)→−OH+䊉OH (5)

(ii) generate other oxidizing species (䊉OH), which can contributetotheoxidativedecayprocess;and(iii)after illu-mination,substantialphotolysisoftheH2O2wouldproduce

morehydroxylradicals(Eq.6)[32].

H2O2+h␯→2䊉OH (6)

Insummary,theincreasingtheH2O2concentrationsleads

to an increase in both electron scavenging action, and hydroxylradicals,whichoxidizethedyeandleadtoahigher rateofdecomposition.

(b)PeroxydisulphateionsS2O82−

Fig.3(c)displaysthe influenceofaddingS2O82− to

com-bined Cu2O@TiO2 system onthe destruction ofAR8dye.It

wasfoundthattherateofremovalwasenhancedwiththe addition of a low concentration of the S2O82− (1×10−3M)

to UV/Cu2O@TiO2 system. Accordingto afirst-order model

for dye destruction, it has been found that the enhanced photodegradationrateisresultfromtheincreasingthe con-centration of S2O82−. Also, the kapp was increased from

(6)

Fig.3–(a,c,e)Changeofln(C/Co)withtimeatdifferentconcentrationsofH2O2,S2O82−,andIO4−,respectively,and(b,d,f)

(7)

Table2–Collectivedataofapparentrateconstants,electricalenergyperorderandapparentquantumyieldfor degradationofacidred8dye[conc.ofcatalyst0.1g/l].

Catalyticsystem Concentrationof oxidant(M)

kapp(min−1) EEO(kWh/m3) Qapp%

(mol/Einstein) UV/Cu2O – 124×10−4 526.3 1.07 UV/TiO2 84.0×10−4 769.2 0.73 UV/Cu2O@TiO2 150×10−4 333.3 1.3 UV/Cu2O@TiO2/H2O2 2×10−3 182×10−4 357.1 1.58 4×10−3 278×10−4 238.1 2.41 12×10−3 375×10−4 175.4 3.25 14×10−2 531×10−4 125 4.60 28×10−2 1257×10−4 52.6 11.0 45×10−2 1834×10−4 36 16.0 UV/Cu2O@TiO2/S2O82− 1×10−3 302×10−4 217.4 2.62 2×10−3 455×10−4 145 4.0 4×10−3 983×10−4 67.1 8.52 UV/CuO@TiO/SO 8×10−3 3651×10−4 18.1 31.6 UV/Cu2O@TiO2/IO4− 4.0×10−6 1297×10−4 51 11.2

7.4×10−4 2001×10−4 33 17.3 1.0×10−3 2846×10−4 23.2 24.7 21×10−3 3664×10−4 18.1 31.8 48×10−3 4881×10−4 13.5 42.3 11×10−2 7229×10−4 9.1 62.7

S2O82−wasrangedfrom1×10−3to8×10−3M(Table1).The

completedecompositionofthedyeinashorttime(20min)at conc.8×10−3MofS2O82−.Therateorder ofphotocatalytic

reaction withrespect toS2O82−, which was obtainedfrom

Fig.3(d),wasfoundtobe1.2(Table1).

TheadditionofS2O82−ionscouldhaveincreasedthe

pho-tocatalyticperformanceduetotheinteractionwithlightand its interaction with Cu2O@TiO2. The photolysis of

persul-fateleadstotheformationofsulphateradicalswhoseredox potential 2.5–3.1V/NHE is higher than that of S2O82− ions

(1.96V/NHE) [32]. TheS2O82− anionscan traptheelectrons

thatformedfromtheconduction bandofCu2O@TiO2 more

thantheelectronsfromO2,andthus formedotheroxidant

SO4䊉−(Eq.7)[33]

S2O82−+e−(cb)→SO42−+SO4䊉− (7)

Uponirradiation,theSO4•−isalsogeneratedandcan

con-tributeinthephotocatalyticreactionwithwaterforformation of•OH,accordingtoEqs.(8and9).

S2O82−+h␯→2SO4䊉− (8)

SO4䊉−+H2O→䊉OH+SO42−+H+ (9)

So, the increased concentrations of the S2O82− have

increasedthetrappingoftheelectronsfromtheconduction bandsofCu2O@TiO2andtheproductionofSO4䊉− and䊉OH.

Thesetwofactorsareresponsibleforhigherrateof photode-compositionofAR8dye.

(c)PeriodateionIO4−

Oxyhalogenshaveatomofoxygen and anotheratomof halogen as a central atom. The difference in polarization between oxygen and halogen leads to the capturing the ejectedelectron.Theeffectofoxyhalogensystemisextremely based on the differences in the electronegativity and the atomicradiusofthehalogen[34].Theelectropositive

halo-genoxidantisusedasastrongerelectronscavengerviathe generationofhVB+andformationof䊉OH.

Theincreasingoftheatomicradiusleadstothedecreasing oftheelectronegativitythatresultfromcapturingtheejected electronbyhalogen.Hence,theatomicradiusofIhashigher thanthatofClorBrandithasmorebondedwithoxygenthan ClorBr,and theabilityofelectronsoverphotocatalystwill behigher.So,theUV/Cu2O@TiO2/IO4䊉isthebestsystemfor

decompositionofAR8dyebytheoxyhalogenoxidant.

Fig. 3(e) showstheinfluenceofaddition ofvarious con-centration of periodate ions to UV/Cu2O@TiO2 system on

the destruction of AR8 dye.The addition ofvery low con-centrationsofIO4−(4.0×10−5M)toCu2O@TiO2hasresulted

in a higher decomposition rate than UV/Cu2O@TiO2 only.

Also,whenincreasingtheconcentrationoftheperiodateto (11×10−2M)hasresultedindyedestructionaftertheshortest time(18min).AccordingtotheIO4−,Thereactionrateorder

is0.2(Fig.3(f)andTable1).Thescavengingoftheelectronsby Cu2O@TiO2/IO4−systemleadstotheimprovementofthe

pho-tocatalyticdecompositionofAR8dye,whichismoreefficient thantrappingwithO2orS2O82−asfollows[35];

IO4−+8e−(cb)+8H+→4H2O+I− (10)

Also,uponirradiation,thephotolyticdecompositionofthe IO4−,involvestheformationofanumberofhighlyreactive

radical-andnon-radicalintermediates(IO3䊉,䊉OH,O䊉− and

IO4䊉)(Eqs.11–13)asfollows[35].

IO4−+h␯→IO3䊉+O•− (11)

O䊉−+H+↔䊉OH (12)

OH +IO4OH+IO4(13)

Theseintermediatesareresponsiblefortheenhancingthe decompositionoforganiccompounds[32].Increasingthe

(8)

con-teredandnotabsorbedbythedyesolution.Theredoesnot usuallyexistanypossibilitytodetermineexperimentallythe amount oflightabsorbed bythe photocatalyst. Inorder to bypassthe difficultyofdeterminingquantum yieldsin het-erogeneousphotocatalysis,anotherparameteroftenreported istheapparentquantumyield(Qapp)whichdefinedasshown

inEq.(14)[36,37]

Apparentquantumyield(Qapp,mol/Einstein)= Rateof

disappearanceofreactantmolecules/Rateofincident photonsinsidereactorcell=kappCo/I (14)

Wherekappistheapparentfirst-orderrateconstant,Cois

theinitialdyeconcentrationandIisthetotalintensityof inci-dentphotonsenteringthereactorcell.Itwasobservedfrom

Table2thatQappforUV/Cu2O@TiO2/IO4-systemishigherthan

those for UV/Cu2O@TiO2/H2O2 and UV/Cu2O@TiO2/S2O82−

systems. This may be due to the higher activity of perio-datewhencomparedtohydrogenperoxideandpersulfateas obtainedinthepreviousstudies[33,36].

3.3.5. Figureofmerit

Nowadays,theeconomicstudyofeachprocessisasignificant factorwhichitincludesthemajorfractionofoperatingcost. Hence,itisnecessarytostudytheelectricalenergy consump-tionoftheAOPsunderexperimentalconditions.Theelectrical energyperorder(EEO)isaninformativefactorforthe

photo-catalyticdegradationbecauseitobeysthefirstorderkinetic model[6].ThefiguresofmeritEEOallowsforarapid

deter-minationoftheelectricalenergycostandtheyindicatethe totalpowerrequired.Forcomparativepurpose,thetreatment efficienciesforthedifferentprocessesareevaluatedthrough the EEO values. The EEO is defined as the number of kWh

ofelectricalenergyrequiredtoreducetheconcentrationof pollutantbyoneorderofmagnitude(90%)in1m3of

contami-natedwater.Consideringfirst-orderdegradationkinetics,the UVdoseswerecalculatedforallAOPSusingEq.(15)[38].From theUVdoses,thesimplestformoftheestimationofEEOcan

alsobecalculatedusingEq.(16)[37].

UVDose=[Lamppower(kW)×Time(h)×1000]

/[Treatedvolume(L)] (15)

Fig.4–Changeoflog(Co/C)withUVdosefordegradation ofAR8dyeusing0.1gmofCu2O@TiO2withdifferent

concentrationsof(a)H2O2,(b)S2O82−,and(c)IO4−,

(9)

EEO= UVDose/[Log(Co/C)] (16)

FromEq.(16),theEEOvalueswereobtainedfromtheinverse

oftheslopeofaplotoflog(Co/C)versusUVdose(Fig.4).Itwas

foundthatthefigure-of-meritEEOisappropriateforestimating

theelectricalenergyefficiency.Itisnotonlyprovingthe reduc-tionintheneededelectricitybythephotocatalyticsystem,but alsoofferingtheconsiderableinfluenceoftheUVdoseonthe EEOintheprocess.TheEEOvalueswerefoundtobe

depen-dentontheconcentrationofH2O2,S2O82−,andIO4-.Also,the

EEO valuesofadditionaloxidants toUV/Cu2O@TiO2 system

islowerthan thatblankUV/Cu2O@TiO2 systemwhich

indi-catethatthelowerenergyconsumptionisduetothegreater appliedpotential and generation ofhighly reactive radical speciesatthehigherpotential.TheEEOvaluesshowthatthe

additionofperiodateexhibitedalsoalowenergyconsumption comparedtoperoxideandpersulfate(Table2).Insummary, thesefindingscanbeappliedfordesigningphotocatalytic sys-temwithlessconsumptionofelectricalenergy,higherrate constantandloweroperationcost.

3.3.6. Comparisonbetweenvariousoxidants

This study has presented that the three oxidants, perox-ide, persulfate and periodate, have enhanced the rate of UV-induced decomposition of AR8 dye in the presence of combined Cu2O@TiO2 system. This enhancement is as a

resultofthescavengingtheactivespeciesradicals,suchas hydroxyl radicals, and holes by the inorganic ions [29]. It can be seen that the addition of very low concentrations IO4− to Cu2O@TiO2 has resulted in a higher

decompo-sition rate than UV/Cu2O@TiO2, UV/Cu2O@TiO2/H2O2 and

UV/Cu2O@TiO2/S2O82−, thus indicating the effectiveness of

IO4−overH2O2andS2O82−asaresultofhigherofkapp,shorter

t0.5,higherQ

app,and lowerEEO.Thehighlyreactive radical

speciesinperiodate may directlyabstract H from AR8 dye molecules.So,theirradiatedIO4−solutioncanquicklyoxidize

theAR8molecules[39].

4.

Conclusions

In summary, we revealed that the facile and proficient approachfor the fabrication ofCu2O@TiO2 nanocomposite

via a solid-state approach. The formation ofthis compos-itewasrevealedbySEM-EDX,XRDandFT-IR.Thecombined Cu2O@TiO2 heterojunction system exhibited much higher

photocatalyticactivitythan thatofpristineCu2OandTiO2.

This is due to the transfer ofelectrons from Cu2O to the

conductionbandofTiO2isconcurrentlywiththe

photogen-eratedholes atthe valencebandofCu2O,whichfacilitates

theelectronandholeseparationandimprovesthe photocat-alyticactivityofCu2O@TiO2heterojunctionnanocomposite.

Itwas found that the heterogeneousphotocatalytic degra-dation, under UV illumination, using the following order: Cu2O@TiO2/NaIO4>Cu2O@TiO2/Na2S2O8>Cu2O@TiO2/H2O2

>Cu2O>TiO2.Thephotocatalyticactivityenhancementwas

attributedto the various reactive oxygen species like 䊉OH andIO4䊉.Thehigherdecolorizationandquantumefficiency

andlowerenergyperorderandenergyconsumptionof com-binedCu2O@TiO2systemwithoxidantsthanbareCu2O@TiO2.

ThecombinationofCu2O@TiO2nanocompositewithvarious

oxidantsmaybringanewinsightintohighlyefficient photo-catalyticapplicationsinthefuture.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

[1]LiY,WangP,HuangC,YaoW,WuQ,XuQ.Synthesisand photocatalyticactivityofultrafineAg3PO4nanoparticleson oxygenvacatedTiO2.ApplCatalBEnviron2017;205:489–97.

[2]LuoY,HuangJ.Hierarchical-structured

anatase-titania/cellulosecompositesheetwithhigh photocatalyticperformanceandantibacterialactivity.Chem EurJ2015;21:2568–75.

[3]OturanMA,AaronJJ.Advancedoxidationprocessesin water/wastewatertreatment:principlesandapplications.A review.CritRevEnvironSciTechnol2014;44:2577–641.

[4]ShalabyT,HamadH,IbrahimE,MahmoudO,Al-OufyA. Electrospunnanofibershybridcompositesmembranesfor highlyefficientantibacterialactivity.EcotoxicolEnvironSafe 2018;162:354–64.

[5]LauY-Y,WongY-S,TengT-T,MoradN,RafatullahM,Ong S-A.Coagulation-flocculationofazodyeAcidOrange7with greenrefinedlateritesoil.ChemEngJ2014;246:383–90.

[6]HamadH,BassyouniD,El-AshtoukhyE,AminN,El-LatifMA. Electrocatalyticdegradationandminimizationofspecific energyconsumptionofsyntheticazodyefromwastewater byanodicoxidationprocesswithanemphasisonenhancing economicefficiencyandreactionmechanism.Ecotoxicol EnvironSafe2018;148:501–12.

[7]El-AshtoukhyE-SZ,AminNK,El-LatifMMA,BassyouniDG, HamadHA.Newinsightsintotheanodicoxidationand electrocoagulationusingaselfgasstirredreactor:a comparativestudyforsyntheticC.IReactiveViolet2 wastewater.JCleanProd2017;167:432–46.

[8]YangK,YuJ,GuoQ,WangC,YangM,ZhangY,etal. Comparisonofmicropollutants’removalperformance betweenpre-ozonationandpost-ozonationusingapilot study.WaterRes2017;111:147–53.

[9]CuiY,LiuX-Y,ChungT-S,WeberM,StaudtC,MaletzkoC. Removaloforganicmicro-pollutants(phenol,anilineand nitrobenzene)viaforwardosmosis(FO)process:evaluation ofFOasanalternativemethodtoreverseosmosis(RO). WaterRes2016;91:104–14.

[10]ElkadyM,ShokryH,HamadH.Microwave-assistedsynthesis ofmagnetichydroxyapatiteforremovalofheavymetals fromgroundwater.ChemEngTechnol2018;41:553–62.

[11]HamadH,Bailón-GarcíaE,Maldonado-HódarFJ, Pérez-CadenasAF,Carrasco-MarínF,Morales-TorresS. SynthesisofTixOynanocrystalsinmildsynthesisconditions forthedegradationofpollutantsundersolarlight.Appl CatalBEnviron2019;241:385–92.

[12]HamadHA,SadikWA,AbdEl-latifMM,KashyoutAB,Feteha MY.Photocatalyticparametersandkineticstudyfor degradationofdichlorophenol-indophenol(DCPIP)dyeusing highlyactivemesoporousTiO2nanoparticles.JEnvironSci 2016;43:26–39.

[13]FujishimaA,RaoTN,TrykDA.Titaniumdioxide photocatalysis.JPhotochemPhotobiolC:PhotochemRev 2000;1:1–21.

(10)

2013;117:23848–57.

[18]FeiX,LiF,CaoL,JiaG,ZhangM.Adsorptionand photocatalyticperformanceofcuprousoxide/titania compositeinthedegradationofacidredB.MaterSci SemicondProcess2015;33:9–15.

[19]Ch-YKuo,Ch-HWu,LinaH-Y.SynergisticeffectsofTiO2and Cu2OinUV/TiO2/zeolite-basedsystemsonphotodegradation ofbisphenolA.EnvironTechnol2014;15:1851–7.

[20]HuZ,WangX,DongH,ShLi,LiX,LiL.Efficient

photocatalyticdegradationoftetrabromodiphenylethers andsimultaneoushydrogenproductionbyTiO2-Cu2O compositefilmsinN2atmosphere:influencingfactors, kineticsandmechanism.JHazardMater2017;340: 1–15.

[21]YinH,WangX,WangL,NieQ,ZhangYY,WuW.Cu2O/TiO2 heterostructuredhollowspherewithenhancedvisiblelight photocatalyticactivity.MaterResBull2015;72:176–83.

[22]AjmalA,MajeedI,MalikRN,IqbalM,NadeemMA,HussainI, etal.Photocatalyticdegradationoftextiledyeson

Cu2O-CuO/TiO2anatasepowders.JEnvironChemEng 2016;4:2138–46.

[23]Luevano-HipolitoE,Torres-MartınezLM,Sanchez-Martınez D,CruzMRA.Cu2Oprecipitation-assistedwithultrasound andmicrowaveradiationforphotocatalytichydrogen production.IntJHydrogEnergy2017;42:12997–3010.

[24]WangY,TaoJ,WangX,WangZ,ZhangM,HeG,etal.A uniqueCu2O/TiO2nanocompositewithenhanced photocatalyticperformanceundervisiblelightirradiation. CeramInt2017;43:4866–72.

[25]HamadH,El-latifMA,KashyoutA,SadikW,FetehaM. Optimizingthepreparationparametersofmesoporous nanocrystallinetitaniaanditsphotocatalyticactivityin water:physicalpropertiesandgrowthmechanisms.Process SafEnvironProt2015;98:390–8.

[26]WangX,DongH,HuZ,QiZ,LiL.Fabricationofa Cu2O/Au/TiO2compositefilmforefficientphotocatalytic hydrogenproductionfromaqueoussolutionofmethanol andglucose.MaterSciEngB2017;219:10–9.

variouswatermatrixcomponents.JPhotochemPhotobiolA: Chem2017;345:80–91.

[31]DougnaAA,GombertB,KodomT,Djaneye-BoundjouG, BoukariSOB,LeitnerNKV,etal.Photocatalyticremovalof phenolusingtitaniumdioxidedepositedondifferent substrates:effectofinorganicoxidants.JPhotochem PhotobiolA:Chem2015;305:67–77.

[32]NguyenAT,JuangR-SH.Photocatalyticdegradationof p-chlorophenolbyhybridH2O2andTiO2inaqueous suspensionsunderUVirradiation.JEnvironManage 2015;147:271–7.

[33]SadikWA.Effectofinorganicoxidantsin

photodecolourizationofanazodye.JPhotochemPhotobiol A:Chem2007;191:132–7.

[34]YunE-T,YooH-Y,KimW,KimH-E,KangG,LeeH,etal. Visible-light-inducedactivationofperiodatethatmimics dye-sensitizationofTiO2:simultaneousdecolorizationof dyesandproductionofoxidizingradicals.ApplCatalB Environ2017;203:475–84.

[35]ChenM,ChuW.Photo-oxidationofanendocrinedisrupting chemicalochloroanilinewiththeassistanceofTiO2and iodate:reactionparametersandkineticmodels.ChemEngJ 2014;248:273–9.

[36]IrmakS,KusvuranE,ErbaturO.Degradationof 4-chloro-2-methylphenolinaqueoussolutionbyUV irradiationinthepresenceoftitaniumdioxide.ApplCatalB Environ2004;54:85–91.

[37]DaneshvarN,AleboyehA,KhataeeAR.Theevaluationof electricalenergyperorder(EE/O)forphotooxidative decolorizationoffourtextiledyesolutionsbythekinetic model.Chemosphere2005;59:761–7.

[38]LamS-M,SinJ-C,AbdullahAZ,MohamedAR.Photocatalytic degradationofresorcinol,anendocrinedisrupter,byTiO2 andZnOsuspensions.EnvironTechnol2013;34:1097–106.

[39]QamarM,SaquibM,MuneerM.Photocatalyticdegradation oftwoselecteddyederivatives,chromotrope2Bandamido black10B,inaqueoussuspensionsoftitaniumdioxide.Dyes Pigm2005;65:1–9.

Referanslar

Benzer Belgeler

Kamu yararına çalışan dernek statü­ sündeki Sanat Kurumu, gelenek­ sel olarak sürdürdüğü plastik sa­ natlar dalındaki öd ü l dağıtım ı­ nın yanı sıra, bu

Problems such asWomen want to be in a comfortable zone (F1), Family burden is giving stress to women entrepreneurs (F2),Male domination society does not want to become women

Tarih geriye doğru götürülemeyeceği için de modern insan, kendi yazgısında barındırdığı (örneğin Dekalog - Jeden’de de geçen tanrı, ölüm, yaşam, öteki

Scopus to ORCID seçeneğini seçince de bizden izin istenmektedir. Onaylayınca adınız ve belki birkaç benzeşen isim görüntülenmektedir. Uygun olanları seçip Next

Re- fah devleti, muhtaç durumda kalan vatandaşlara en azından asgari yaşam sevi- yesi temin etmek ve sosyal adaleti sağlamak amacıyla devletin müdahalesini ge- rekli

In this study, we would like to explore (1) the difference in levels of cytokines and fibrinolytic activity between loculated and free-flowing pleural exudates; (2) the effect

This study aims to compare the information level of high- school students who were educated on addiction and per- ceived self-efficacy in protection from addiction using the

From the hospital records of the 183 patients, data related with age, type of surgery, disease stage, primary BOT lesion side, tumor diameter, tumor histology,