• Sonuç bulunamadı

ON IDEMPOTENCY OF LlNEAR COMBINATIONS OF TWO COMMUTE IDEMPOTENT MATRICES

N/A
N/A
Protected

Academic year: 2021

Share "ON IDEMPOTENCY OF LlNEAR COMBINATIONS OF TWO COMMUTE IDEMPOTENT MATRICES"

Copied!
3
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

SAU Fen Bilinıleri Enstitüsü Dergisı

?.Cılt, 2.Sayı (Temn1uz 2003)

On ldempotency of Lineaı· Conıbinations ofTwo Commute ldemı•otcnt Matrices H.Özdcınir,A.İnci� M.Sarduvan

ON IDEMPOTENCY

OF

LlNEAR COMBINATIONS OF

TWO COMMUTE

IDEMPOTENT MATRICES

Halin1

ÖZDEMİR, Aydın

İNCi,

l\1urat

SARDUV

AN

••

O zet - komutatir ideınpotent

nıatrislerinin lineer koınbinasyonunun da bir

iden1potent matris oldu

ğ

u tünı durunılan

karakterize etme probleminin tanı bir çözün1ü ortaya konulmaktadır. Ayrıca, bu çahşm ada ele alınan idempotentlik probleminin bir istatistiksel ''orumu ' da verilmel<tedir·.

Analıtar kelinıeler- Köşegenleştirnıe., l\linimal polinom, Eğik izdüşüın, Or·togoııal izdüşünı,

l(uadratik fornı, Ki-kare dağıhmı

Abstract - A complete solution is established to the problcnı of ch a racterizing all situations, where a linear conıbination of t\VO comnıute

iden1potent n1atrices P1

and P2

is also

an

idcn1potent nıatrix. A statistical interpretation of the idempotency problem considered in this note is also pointed o ut.

K ey•vords­ polynomial, proje ctor,

distribution

Diagonalization, Oblique pro

j

ector,

Quadratic forn1,

I.INTRODUCTIO�

1\'linin1al Ortbogonal Chi-square

It is assun1ed throughout that c

1

, c? are any

nonzere elements of a field

.3

and P1 , P2 are

two

different noıızero commute idempotent

nıatrices over .3 . The syn1bols y 1 , y 2 and

Q1, Q2

are used instead of c1, c2 and P1,

P., when considerations are concerned with

-complex scalars and ınatrices.

H.Özdemir. A. İncj) M.Sarduvan; Depurtnıenı of 1'V1athematics, Sakarya Un iversüy, 54040 Sakarya, Turkey.

In fact, the nıain aim of this paper is to establish an

alten1ative proof of one part of theorem recently

obtained by Baksalary and Baksalary in

[6], which

deals wi1h the operation

of

coınbaning linearly P1 and

P2

preserves tlıc idempotency property. However, the

proof given should be of interest

b

ecause of th

e

fact

that character1stics roots and vectors, and polynomials

are useful in statistics. Three such situations are kno\vn in the litcratlıre, viz., if the combination is either the

sun1 P1 -i P2 or one of the differences P1- P2,

P 2 - P1 , and appropriate additional conditions are

fulfilled; cf. Theorem 5.1.2 and

5.1.3

in (4]. The solution obtained asserts that these three situations

cxhaust the lıst of all possibilities when attention is restric ted to conınıute idempotent matrıces, or complex

idcmpo te nt nıaLTices

Q 1

and

Q 2 ,

and y 1 and

y

2 comp lcx nun1bers such that

Q

1 -

Q 2

is Hermitian.

Quadratic fornıs wiıh ideınpotent matrices are used extensivcly in statistical theory. ::Jor this reason, the idenıpoteııcy problenı considered in this note adnrits a

stntistical interpretation

due to

the fact that it' a randonı

n:x: 1 veetar y has a 1nulti variate normal density with

covariance n1atrix equal to

I

, where I stands for thr: identity nıatrix, then the quadratic form

y'Ay

has a

noncentral chi-square density

if

and only if

A

is an

ideınpotcnt n1atTix; this is an impoı1ant res:ılt in the

analysis of variance; cf.

Theorem

5.1.1 in

[3]

or

Lcınn1a

9.1.2

ın [4]. (Also see in

[8]

for details.)

II.MAIN RESUL T

As alraedy pointed out the main result dcals with the

altemativc proof of the one part of the theorem in [6] using diagonalization of nıatrices. Beforc giving the

rnain res u lt w e no te that every i dempatent n1atrix is

diagonal izablc) and has only the e igenvalucs

1

and

O .

(2)

SA U Fen Bilimleri Enstitüsü Dergisi 7 .Cilt, 2.Sayı (Temmuz 2003)

Lemma. Let P1 and P 2 be two coınmute n.xrı

idempotent ınatrices and P be their l inear combination of the foı,n

\vİth nonzero s cal ar s c 1 and c2 . Then P is

diagonalizah le.

Pr·oof. First of all� no te that an ideınpotent rrıatrix

is diagonahzable. S ince P1 and P 2 are

idenıpotent and conunute, they are simultaneously

diagonalizable (see, e.g., [7], pp.52). I-Ience there

is a single siıni larity ınatrix S such that

A

== s-1P1S and M== s-1P2S are diagonal

ınatrices. In addition , their diagonal entries are

the eigenvalues of P1 and P2 with proper n1ultiplicities. Thus we get

(1)

and bence

This completes the proof.

Now let us give the thoerem.

Theorenı. Given two different nonzero comnıute idempotent matrices ·P1 and P 2 , I et P be the ir

linear combination of the form

p = c ı Pı

+· c

2 p 2 (2)

with noıızero scalars C1 and c2. Then there are exactly three situations, \Vhere P is an idempotent rnatrix:

(a)

c1 =1, c2 =1,

P1

P2

==O;

(b) c1

=1,

c2=-l,

P1P2 == P2;

(c)

c1 =-1, c2 =1, P1 P2 == P1.

Proof. Since

P1

and P2 commute, they are sim.ultaneously diagonaziable. Assun1e that S is invertible ınatı·ix, which siı11ultaneously

On Idempotency of Linear Combinations ofT

ldempot

M O

H.Ozdemir,A.Ina . -�

diagonalizes P1 and P2. Thus, we may write P1 and

P2

as in (1). So, we have

P=c1P1

+c2P2

==c1SAs-ı +c2SMs-ı

= sı:s -ı

'vhere 2:

== c

1 A +

c 2 M

. He nce, direct calculations

show that

P

of the forın (2) is idempotent if and only if

or, clearly

(

c1

Ai

+ C2f.li

)(c1Ai

+ c2�!;

-1) =O,

i = 1,2, .

.

. ) n,

(3)

'�'here

1�

i and J.l i are the diagonal entries of

A

and

M

, respectively. On the other hand, both

P1

and

2

have only the eigenvalues

1

and O since P1 and

P.,

are idempotent. Taking into account Lernma

assumtions of the theorem, it is seen from equations (1 that if P1 P2 ==0, then

(ApJ..L;)

attains eacb of the pairs

(0,0)

,

(0, 1)

and

(1,0)

at

least

once for at lea_q

one value of i. Hence, equations (3) are conmıonl_

fulfilled if and only if c 1 =

1

( implying c2 ==

1

)

.

\vhich is the situations (a). Furthermore, in wiew of the

assun1ption that

P1

=f:. P2, The equalities P1 P 2 = P1

and P1

P

2 ==

P

2 cannot h old simultaneous�y _

Consequently, under the last assuınptions, it is agam

seen fronı equations (

1)

that

(Ai,

J.l i

)

attains each

Ot-the pairs

(0,0), ( 1 ,0) and (1,1)

at least once for at

least one va

l

ue of i i.f

P1

P 2 = "P 2, and each ol the

pairs

(0,0), (0,1)

and

(1,1)

at least once for at

lea"'-one value of i if

P1

P? == P1. And therefore, it can e shown simply that equations (3) are comnıonly :fiılf.leri

if and only if c1 ==

1

(implying c2 =

-1)

for llle

former case, which i s the sirnations (b), and c1 =

-(inıplying c2 ==

1)

for the latter case, which is the

situation (c).

The proof i s completed.

H.enıark. As pointed out at Seetion 1, it is estab:isiı.eri

an alten1ati v e proof (having practical value in statistics

of one part of the theorem recently obtained b ·

Baksalary and Baksalary in

[ 6].

In that paper: a

con1plete solution was established to the problem of

characterizing

all

sirnations (including noncon n unrte

case). Morever, ]t \vas given two corollaries:

(3)

SAU Fen Bilimlerı Enstitüsü Dergisi

7.Ci1t, 2.Sayt {Temmuz 2003)

(1)

Under the assun1ptions (including

noncommute

cas

e)

of the

t

heorem, a necessary

condition for P = C1 P1 + c 2 P

2

to

be an

idempotent matrıx

i

s

that each of the products

P1 P

2

and P 2 P1 is

an idempotent

matrix; cf.

Corollary 1.

(2)

Given rn·o different

nonzeı-o

com

p

l

e

x

iden1poteııt matrices

Q

1 and

Q 2

such that the

difference Q 1

-

Q 2

is J-Iemıitian, let

Q

be their

linear con1bjnation of the fonn

Q

== Y

1 Q

1 + Y 2

Q

2 with

nonzer

o complcx

nnmbers y

1

and

y 2 . Then

there

are exactly three

situations�

where

Q

is also

iden1potent;

(i) Q = Qı

+

Q2 and

Q,Q2

:=:O==

Q2Q1,

(ii)Q=Ql

-Q2and Q1Q2

==

Q

2

==Q2Qı,

(iii)

Q

=

Q

2

-

Q

1 and

Q

1

Q

2

==

Q

1 ==

Q

2

Q

1 �

cf. C'orollary 2.

Other fu

n

cti

o

ns of i

de

mpoten

t

matrices

P1

and

P2 stud

i

ed

( quite

intensively) in the literature; cf.

Ref. [1,2,4,5,8].

The main theorem is now supplemented by

showing

that for the cas

es

(

a )-(c) the re exist

matT

i

c

e

s satisfying the required conditions:

Example for

the case (a) is provided by

-1 -1 -1 ı ı 1 ı ,

p2

== -ı ı ] ı o o 1 o -1 o o

Example for the case (b) is provided by

ı o o 1 o ı o )

p')

= o o o ı o ı 1 o -1 o ı

Example

for

the cas e (c) is pr

o

vided by

-1 1 1 -ı -1 ı ı o 1 o o ı o -ı 1 ı

On ldempotcncy of Li nca.- Combinations ofTwo Commute

ldempotent Matriccs H.Özdemir,A.ind, M.Sarduvan

REFERENCES

[1] J.K. Baksalary, Algebraic characterizations and statis

t

ical implic

a

ti

o

n

s

of t

he

coımnutativity of

o

rtb

og

o

n

al projectors, in: T. Pukkila, S. Puntanen

(E ds.),

Proceedings

of

the

Second International Tanıpere Conference

in

Statistics, Un

i

ver

s

ity

of

Tampere, Tampere,

Finland, 1987, pp. 113�142.

[2] J.

Gro�,

G. Tr

e

nkl

e

r, On the produ

c

t of oblique

proj ectors, Linear and

Multilİnear Algebra

44(1998) 247-259.

[3] A.M. Mathai� S.B. Prov

os

t

,

Quadratic Forıns in Randoın Variables: Theory and Applications,

Dekker, New York, 1992.

[4] C.R. Rao, S.K. Mitra,

Generalized

lnverse

of

Matrices and Its Applications, W

i

ll

e

y, New York,

1971.

[5] Y. Takane, H. Yana

i

,

On oblique

projectors, Linear

Algebra Appl., 289(1999) 297-310.

[6] J.K. BaksaJary, O.M. Baksalary, Idenıpotency of linear combinations

of two

i

d

e

ınpot

ent

matrices,

Linear Al

g

ebra Appl., 321(2000) 3-7.

[7] R.A.Hom, C.R.

Johnson, Matrix

Analysis, Cambridge University Press, Caınbridge, 1991.

[ 8] F .A. Grayb

i

ll

,

Introduction to

Matrices

with

A pplications in Statistics, Wadsworth

Publishing

C

o

m

pa

ny, lnc.,California, 1969.

Referanslar

Benzer Belgeler

Results: The mean age of women, characteristics of pregnancy and pregnancy outcome, antenatal corti- costeroid administration rate, rate of neonatal inten- sive care unit stay

Genel olarak, sekizinci ve onikinci sınıf öğrenciler ile kimya öğretmen adaylarının asit-baz konusuyla ilgili bilişsel yapılarının, çift yönlü ve çapraz

kullanımında ustalaşmak adına, oldukça çeşitli alıştırmalar üzerinde detaylı çalışmalar yapmıştır. Gündelik olarak her gün bu alıştırmaların, çalgı

Öğretmen adaylarının bilişim teknolojilerini kullanım davranışları ailelerinin gelir düzeylerine göre hiçbir faktör için anlamlı bir farklılık

Bu durum da, NAFLD’yi çocuklarda potansiyel olarak en yaygın görülecek karaciğer hastalığı yapmaktadır (2). Bu nedenle progresif seyreden ve ciddi etkileri olan

Çocuğun, ailenin bir üyesi olarak kişiliğini, toplumsal davranışlarını, değerlerini, ahlak yargılarını, aile içerisinde aldığı eğitim ve terbiye, kabul edilen

Yapılan çalışmada YSA’nın eğitim seti, 42’si FMS’li 19’si sağlıklı olmak üzere toplam 61 denekten alınan verilerle, test seti ise 15’i FMS’li 10’si

koşullarına ve bununla ilgili problemlere karşı yüksek dayanımlı, herhangi bir koruma veya boya uygulamasına gerek bırakmayan, ekolojik, yüksek enerji tasarrufu ve