• Sonuç bulunamadı

On Some Inequalities for Convex and s-Convex Functions

N/A
N/A
Protected

Academic year: 2021

Share "On Some Inequalities for Convex and s-Convex Functions"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

On Some Inequalities for Convex and s-Convex Functions

M. EMİN ÖZDEMİR 1 , MUSTAFA GÜRBÜZ2 AND MERVE AVCI ARDIÇ3

1 Uludağ University, Education Faculty, Department of Mathematics, 16100, Bursa, Turkey 2 Ağrı İbrahim Çeçen University, Faculty of Education, Department of Mathematics, 04100, Ağrı, Turkey

3 Adıyaman University, Faculty of Science and Letters, Department of Mathematics, 02100, Adıyaman, Turkey

Abstract

In this paper, we present some integral inequalities for convex and 𝑠 −convex functions and we give some remarks and propositions.

Keywords: Convex functions, Hermite-Hadamard

Inequality, s-convex functions. 1. Introduction

Let 𝑓 be defined from 𝐼 which is a subset of [0, ∞) to ℝ and a differantiable mapping on the interior of the interval 𝐼 ( 𝐼∘) such that 𝑓∈ 𝐿[𝑎, 𝑏] where 𝑎 and 𝑏 belongs to 𝐼 with 𝑎 is less than 𝑏. If |𝑓′| is bounded and its upper bound is 𝑀, then the inequality given below holds: |𝑓(𝑥) − 1 𝑏−𝑎∫ 𝑏 𝑎𝑓(𝑢)𝑑𝑢| ≤ 𝑀 𝑏−𝑎[ (𝑥−𝑎)2+(𝑏−𝑥)2 2 ]. (1.1)

This inequality is Ostrowski inequality which is well known in the literature (see [5]). One can check [6] to see some new results related to Ostrowski inequality. The function 𝑓 defined from [𝑎, 𝑏] interval which is a subset of ℝ to ℝ, is called to be convex if the inequality given below holds

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)

Received: 27.04.2018 Revised: 24.05.2018 Accepted:31.05.2018

Corresponding author: Mustafa GÜRBÜZ, PhD

Agri Ibrahim Cecen University, Faculty of Education, Department of Mathematics, Agrı Turkey

E-mail: mgurbuz@agri.edu.tr

Cite this article as: M. E. Özdemir, M. Gürbüz and M. Avcı Ardıç, On Some Inequalities for Convex and s-Convex Functions, Eastern Anatolian Journal of Science, Vol. 4, Issue 1, 37-44,2018.

for all 𝑥, 𝑦 ∈ [𝑎, 𝑏] and 𝜆 ∈ [0,1].. If (−𝑓) is convex then 𝑓 is called as concave.

In [3], Hudzik and Maligranda defined a new class of convex functions namely 𝑠 -convex in the second sense..

This class of functions are defined from 𝑅+ to 𝑅 and it is said to be s-convex in the second sense providing that the inequality

𝑓(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼𝑠 𝑓(𝑥) + 𝛽𝑠 𝑓(𝑦)

holds for 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1 with some fixed 𝑠 ∈ (0,1] and for all 𝑥, 𝑦 ∈ [0, ∞) . 𝐾𝑠2 is used to symbolise this class of functions.

For 𝑠 = 1 it is easy to see that, classical convexity is gathered from definition of 𝑠 -convexity defined on [0, ∞).

Alomari has handled the next equality to prove some theorems in [1].

Lemma 1 [1] Let 𝑓: [𝑎, 𝑏] → ℝ be a differentiable mapping on (𝑎, 𝑏). For 𝜆 ∈ [0,1], 𝑎 + 𝜆𝑏−𝑎

2 ≤ 𝑥 ≤

𝑎+𝑏

2 and the mapping 𝐾(𝑥, 𝑡) defined as.

𝐾(𝑥, 𝑡) = { 𝑡 − (𝑎 + 𝜆𝑏 − 𝑎 2 ), 𝑡 ∈ [𝑎, 𝑥] 𝑡 −𝑎 + 𝑏 2 , 𝑡 ∈ (𝑥, 𝑎 + 𝑏 − 𝑥] 𝑡 − (𝑏 − 𝜆𝑏 − 𝑎 2 ) , 𝑡 ∈ (𝑎 + 𝑏 − 𝑥, 𝑏] we have ∫𝑎𝑏𝐾(𝑥, 𝑡)𝑓′(𝑡)𝑑𝑡 = (𝑏 − 𝑎) [𝜆𝑓(𝑎)+𝑓(𝑏) 2 + (1 − 𝜆)𝑓(𝑥)+𝑓(𝑎+𝑏−𝑥) 2 ] − ∫ 𝑏 𝑎 𝑓(𝑡)𝑑𝑡.

(2)

Now we will give some theorems including Ostrowski type inequalities and also remarks and propositions by using previous lemma proved by Alomari .

2. Main Results

Theorem 1 Let 𝑓: 𝐼 ⊂ ℝ → ℝ be a differentiable and absolutely continuous mapping on 𝐼 where 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If |𝑓| is convex on [𝑎, 𝑏] and 𝑓∈ 𝐿[𝑎, 𝑏] we have

|(𝑏 − 𝑎) [𝜆𝑓(𝑎)+𝑓(𝑏) 2 + (1 − 𝜆) 𝑓(𝑥)+𝑓(𝑎+𝑏−𝑥) 2 ] − ∫ 𝑏 𝑎𝑓(𝑡)𝑑𝑡| ≤ [𝜆3(𝑏−𝑎)3 24(𝑥−𝑎) + (𝑥−𝑎)2 3 − 𝜆(𝑏−𝑎)(𝑥−𝑎) 4 + (𝑎+𝑏−2𝑥)2 8 ] × [|𝑓′(𝑥)| + |𝑓(𝑎 + 𝑏 − 2𝑥)|] + [(2𝑥−2𝑎−2𝜆(𝑏−𝑎)) 3 24(𝑥−𝑎) + (𝑥−𝑎)2 3 + (2𝑎−2𝑥+𝜆(𝑏−𝑎))(𝑥−𝑎) 4 ] × [|𝑓′(𝑎)| + |𝑓(𝑏)|] for all 𝜆 ∈ [0,1] and 𝑎 + 𝜆𝑏−𝑎

2 ≤ 𝑥 ≤

𝑎+𝑏 2 .

Proof. From Lemma 1 and using the properties of the modulus, we have |𝑀| = |(𝑏 − 𝑎) [𝜆𝑓(𝑎)+𝑓(𝑏) 2 + (1 − 𝜆) 𝑓(𝑥)+𝑓(𝑎+𝑏−𝑥) 2 ] − ∫ 𝑏 𝑎𝑓(𝑡)𝑑𝑡| ≤ ∫𝑎𝑏|𝐾(𝑥, 𝑡)||𝑓′(𝑡)|𝑑𝑡 = ∫𝑎𝑥|𝑡 − (𝑎 + 𝜆𝑏−𝑎 2 )| |𝑓 ′(𝑡)|𝑑𝑡 + ∫𝑎+𝑏−𝑥 𝑥 |𝑡 − 𝑎+𝑏 2 | |𝑓 ′(𝑡)|𝑑𝑡 + ∫𝑎+𝑏−𝑥𝑏 |𝑡 − (𝑏 − 𝜆𝑏−𝑎 2 )| |𝑓 ′(𝑡)|𝑑𝑡.

Since |𝑓′| is convex on [𝑎, 𝑏] = [𝑎, 𝑥] ∪ (𝑥, 𝑎 + 𝑏 − 𝑥] ∪ (𝑎 + 𝑏 − 𝑥, 𝑏], we have |𝑓′(𝑡)| ≤𝑡−𝑎 𝑥−𝑎|𝑓 ′(𝑥)| +𝑥−𝑡 𝑥−𝑎|𝑓 ′(𝑎)|, 𝑡 ∈ 𝑎, 𝑥]; |𝑓′(𝑡)| ≤ 𝑡−𝑥 𝑎+𝑏−2𝑥|𝑓 ′(𝑎 + 𝑏 − 𝑥)| +𝑎+𝑏−𝑥−𝑡 𝑎+𝑏−2𝑥 |𝑓 ′(𝑥)|, 𝑡 ∈ (𝑥, 𝑎 + 𝑏 − 𝑥]; and |𝑓′(𝑡)| ≤𝑡−𝑎−𝑏+𝑥 𝑥−𝑎 |𝑓 ′(𝑏)| +𝑏−𝑡 𝑥−𝑎|𝑓 ′(𝑎 + 𝑏 − 𝑥)|, 𝑡 ∈ (𝑎 + 𝑏 − 𝑥, 𝑏];

(3)

|𝑀| ≤ ∫𝑎𝑥|𝑡 − (𝑎 + 𝜆𝑏−𝑎 2 )| [ 𝑡−𝑎 𝑥−𝑎|𝑓 ′(𝑥)| +𝑥−𝑡 𝑥−𝑎|𝑓 ′(𝑎)|] 𝑑𝑡 + ∫𝑥𝑎+𝑏−𝑥|𝑡 −𝑎+𝑏 2 | [ 𝑡−𝑥 𝑎+𝑏−2𝑥|𝑓 ′(𝑎 + 𝑏 − 𝑥)| +𝑎+𝑏−𝑥−𝑡 𝑎+𝑏−2𝑥 |𝑓 ′(𝑥)|] 𝑑𝑡 + ∫𝑎+𝑏−𝑥𝑏 |𝑡 − (𝑏 − 𝜆𝑏−𝑎 2 )| [ 𝑡−𝑎−𝑏+𝑥 𝑥−𝑎 |𝑓 ′(𝑏)| +𝑏−𝑡 𝑥−𝑎|𝑓 ′(𝑎 + 𝑏 − 𝑥)|] 𝑑𝑡 = ∫𝑎+𝜆 𝑏−𝑎 2 𝑎 (𝑎 + 𝜆 𝑏−𝑎 2 − 𝑡) [ 𝑡−𝑎 𝑥−𝑎|𝑓 ′(𝑥)| +𝑥−𝑡 𝑥−𝑎|𝑓 ′(𝑎)|] 𝑑𝑡 + ∫𝑎+𝜆𝑥 𝑏−𝑎 2 (𝑡 − 𝑎 − 𝜆𝑏−𝑎 2 ) [ 𝑡−𝑎 𝑥−𝑎|𝑓 ′(𝑥)| +𝑥−𝑡 𝑥−𝑎|𝑓 ′(𝑎)|] 𝑑𝑡 + ∫ 𝑎+𝑏 2 𝑥 ( 𝑎+𝑏 2 − 𝑡) [ 𝑡−𝑥 𝑎+𝑏−2𝑥|𝑓 ′(𝑎 + 𝑏 − 𝑥)| +𝑎+𝑏−𝑥−𝑡 𝑎+𝑏−2𝑥 |𝑓 ′(𝑥)|] 𝑑𝑡 + ∫𝑎+𝑏𝑎+𝑏−𝑥 2 (𝑡 −𝑎+𝑏 2 ) [ 𝑡−𝑥 𝑎+𝑏−2𝑥|𝑓 ′(𝑎 + 𝑏 − 𝑥)| +𝑎+𝑏−𝑥−𝑡 𝑎+𝑏−2𝑥 |𝑓 ′(𝑥)|] 𝑑𝑡 + ∫𝑏−𝜆 𝑏−𝑎 2 𝑎+𝑏−𝑥 (𝑏 − 𝜆 𝑏−𝑎 2 − 𝑡) [ 𝑡−𝑎−𝑏+𝑥 𝑥−𝑎 |𝑓 ′(𝑏)| +𝑏−𝑡 𝑥−𝑎|𝑓 ′(𝑎 + 𝑏 − 𝑥)|] 𝑑𝑡 + ∫𝑏−𝜆𝑏 𝑏−𝑎 2 (𝑡 − 𝑏 + 𝜆𝑏−𝑎 2 ) [ 𝑡−𝑎−𝑏+𝑥 𝑥−𝑎 |𝑓 ′(𝑏)| +𝑏−𝑡 𝑥−𝑎|𝑓 ′(𝑎 + 𝑏 − 𝑥)|] 𝑑𝑡 = 1 24[3(𝑎 + 𝑏 − 2𝑥) 2+ 8(𝑎 − 𝑥)2− 6(𝑎 − 𝑏)(𝑎 − 𝑥)𝜆 +(𝑎−𝑏)3𝜆3 𝑎−𝑥 ] × (|𝑓′(𝑥)| + |𝑓(𝑎 + 𝑏 − 𝑥)|) +1 24[4(𝑎 − 𝑥) 2− 6(𝑎 − 𝑏)(𝑎 − 𝑥)𝜆 + 6(𝑎 − 𝑏)2𝜆2(𝑎−𝑏)3𝜆3 𝑎−𝑥 ] × (|𝑓′(𝑎)| + |𝑓(𝑏)|) where we use the facts

∫𝑎+𝜆 𝑏−𝑎 2 𝑎 (𝑎 + 𝜆 𝑏−𝑎 2 − 𝑡) (𝑡 − 𝑎)𝑑𝑡 = ∫ 𝑏 𝑏−𝜆𝑏−𝑎2 (𝑡 − 𝑏 + 𝜆 𝑏−𝑎 2 ) (𝑏 − 𝑡)𝑑𝑡 = 1 48𝜆 3(𝑏 − 𝑎)3, 𝑎+𝜆𝑥 𝑏−𝑎 2 (𝑡 − 𝑎 − 𝜆𝑏−𝑎 2 ) (𝑥 − 𝑡)𝑑𝑡 = ∫ 𝑏−𝜆𝑏−𝑎2 𝑎+𝑏−𝑥 (𝑏 − 𝜆 𝑏−𝑎 2 − 𝑡) (𝑡 − 𝑎 − 𝑏 + 𝑥)𝑑𝑡 = 1 48(2𝑥 − 2𝑎 + 𝑎𝜆 − 𝑏𝜆) 3, ∫ 𝑎+𝑏 2 𝑥 ( 𝑎+𝑏 2 − 𝑡) (𝑡 − 𝑥)𝑑𝑡 = ∫ 𝑎+𝑏−𝑥 𝑎+𝑏 2 (𝑡 −𝑎+𝑏 2 ) (𝑎 + 𝑏 − 𝑥 − 𝑡)𝑑𝑡 = 1 48(𝑎 + 𝑏 − 2𝑥) 3, ∫ 𝑎+𝑏 2 𝑥 ( 𝑎+𝑏 2 − 𝑡) (𝑎 + 𝑏 − 𝑥 − 𝑡)𝑑𝑡 = ∫ 𝑎+𝑏−𝑥 𝑎+𝑏 2 (𝑡 −𝑎+𝑏 2 ) (𝑡 − 𝑥)𝑑𝑡 = 5 48(𝑎 + 𝑏 − 2𝑥) 3, ∫𝑏−𝜆 𝑏−𝑎 2 𝑎+𝑏−𝑥 (𝑏 − 𝜆 𝑏−𝑎 2 − 𝑡) (𝑏 − 𝑡)𝑑𝑡 = ∫ 𝑥 𝑎+𝜆𝑏−𝑎2 (𝑡 − 𝑎 − 𝜆 𝑏−𝑎 2 ) (𝑡 − 𝑎)𝑑𝑡

(4)

= − 1 48(2𝑥 − 2𝑎 + 𝑎𝜆 − 𝑏𝜆) 2(4𝑎 − 4𝑥 + 𝜆𝑎 − 𝜆𝑏) and ∫𝑎+𝜆 𝑏−𝑎 2 𝑎 (𝑎 + 𝜆 𝑏−𝑎 2 − 𝑡) (𝑥 − 𝑡)𝑑𝑡 = ∫ 𝑏 𝑏−𝜆𝑏−𝑎 2 (𝑡 − 𝑏 + 𝜆𝑏−𝑎 2 ) (𝑡 − 𝑎 − 𝑏 + 𝑥)𝑑𝑡 = 1 48𝜆 2(𝑏 − 𝑎)2(6𝑥 − 6𝑎 + 𝜆𝑎 − 𝜆𝑏).

So, the proof is completed.

Remark 1 In Theorem 1, if we choose just 𝜆 = 0 and 𝜆 = 0 with 𝑥 =𝑎+𝑏

2 we have Theorem 5 and Corollary 2 − (2) respectively which were proved in [2].

Theorem 2 Let 𝑓: 𝐼 ⊂ ℝ → ℝ be a differentiable and absolutely continuous mapping on 𝐼 where 𝑎, 𝑏 ∈ 𝐼 with 𝑎 < 𝑏. If |𝑓| is 𝑠 −convex on [𝑎, 𝑏] and 𝑓∈ 𝐿[𝑎, 𝑏] we have

|(𝑏 − 𝑎) [𝜆𝑓(𝑎)+𝑓(𝑏) 2 + (1 − 𝜆) 𝑓(𝑥)+𝑓(𝑎+𝑏−𝑥) 2 ] − ∫ 𝑏 𝑎𝑓(𝑡)𝑑𝑡| ≤ [ 2 (𝑥−𝑎)𝑠(𝑠+1)(𝑠+2)(𝜆 𝑏−𝑎 2 ) 𝑠+2 +(𝑥−𝑎)2 𝑠+2 − (𝜆 𝑏−𝑎 2 ) (𝑥−𝑎) 𝑠+1 + 𝑠2𝑠+1 2𝑠+1(𝑠+1)(𝑠+2)(𝑎 + 𝑏 − 2𝑥) 2] [|𝑓(𝑥)| + |𝑓(𝑎 + 𝑏 − 2𝑥)|] + [(𝑥−𝑎)𝑠(𝑠+1)(𝑠+2)2 (𝑥 − 𝑎 − 𝜆𝑏−𝑎 2 ) 𝑠+2 +(𝑥−𝑎)2 𝑠+2 + (𝑎 + 𝜆𝑏−𝑎 2 − 𝑥) (𝑥−𝑎) 𝑠+1 ] [|𝑓 ′(𝑎)| + |𝑓(𝑏)|]

for all 𝜆 ∈ [0,1] and 𝑎 + 𝜆𝑏−𝑎

2 ≤ 𝑥 ≤

𝑎+𝑏 2 .

Proof. From Lemma 1 and using the properties of the modulus, we have |𝑀| = |(𝑏 − 𝑎) [𝜆𝑓(𝑎)+𝑓(𝑏) 2 + (1 − 𝜆) 𝑓(𝑥)+𝑓(𝑎+𝑏−𝑥) 2 ] − ∫ 𝑏 𝑎𝑓(𝑡)𝑑𝑡| ≤ ∫𝑎𝑏|𝐾(𝑥, 𝑡)||𝑓′(𝑡)|𝑑𝑡 = ∫𝑎𝑥|𝑡 − (𝑎 + 𝜆𝑏−𝑎 2 )| |𝑓 ′(𝑡)|𝑑𝑡 + ∫𝑎+𝑏−𝑥 𝑥 |𝑡 − 𝑎+𝑏 2 | |𝑓 ′(𝑡)|𝑑𝑡 + ∫𝑎+𝑏−𝑥𝑏 |𝑡 − (𝑏 − 𝜆𝑏−𝑎 2 )| |𝑓 ′(𝑡)|𝑑𝑡.

(5)

|𝑓′(𝑡)| ≤ (𝑡−𝑎 𝑥−𝑎) 𝑠 |𝑓′(𝑥)| + (𝑥−𝑡 𝑥−𝑎) 𝑠 |𝑓′(𝑎)|, 𝑡 ∈ 𝑎, 𝑥]; |𝑓′(𝑡)| ≤ ( 𝑡−𝑥 𝑎+𝑏−2𝑥) 𝑠 |𝑓′(𝑎 + 𝑏 − 𝑥)| + (𝑎+𝑏−𝑥−𝑡 𝑎+𝑏−2𝑥) 𝑠 |𝑓′(𝑥)|, 𝑡 ∈ (𝑥, 𝑎 + 𝑏 − 𝑥] and |𝑓′(𝑡)| ≤ (𝑡−𝑎−𝑏+𝑥 𝑥−𝑎 ) 𝑠 |𝑓′(𝑏)| + (𝑏−𝑡 𝑥−𝑎) 𝑠 |𝑓′(𝑎 + 𝑏 − 𝑥)|, 𝑡 ∈ (𝑎 + 𝑏 − 𝑥, 𝑏] which follows that

|𝑀| ≤ ∫𝑎𝑥|𝑡 − (𝑎 + 𝜆𝑏−𝑎 2 )| [( 𝑡−𝑎 𝑥−𝑎) 𝑠 |𝑓′(𝑥)| + (𝑥−𝑡 𝑥−𝑎) 𝑠 |𝑓′(𝑎)|] 𝑑𝑡 + ∫𝑥𝑎+𝑏−𝑥|𝑡 −𝑎+𝑏 2 | [( 𝑡−𝑥 𝑎+𝑏−2𝑥) 𝑠 |𝑓′(𝑎 + 𝑏 − 𝑥)| + (𝑎+𝑏−𝑥−𝑡 𝑎+𝑏−2𝑥) 𝑠 |𝑓′(𝑥)|] 𝑑𝑡 + ∫𝑎+𝑏−𝑥𝑏 |𝑡 − (𝑏 − 𝜆𝑏−𝑎 2 )| [( 𝑡−𝑎−𝑏+𝑥 𝑥−𝑎 ) 𝑠 |𝑓′(𝑏)| + (𝑏−𝑡 𝑥−𝑎) 𝑠 |𝑓′(𝑎 + 𝑏 − 𝑥)|] 𝑑𝑡 = ∫𝑎+𝜆 𝑏−𝑎 2 𝑎 (𝑎 + 𝜆 𝑏−𝑎 2 − 𝑡) [( 𝑡−𝑎 𝑥−𝑎) 𝑠 |𝑓′(𝑥)| + (𝑥−𝑡 𝑥−𝑎) 𝑠 |𝑓′(𝑎)|] 𝑑𝑡 + ∫𝑎+𝜆𝑥 𝑏−𝑎 2 (𝑡 − 𝑎 − 𝜆𝑏−𝑎 2 ) [( 𝑡−𝑎 𝑥−𝑎) 𝑠 |𝑓′(𝑥)| + (𝑥−𝑡 𝑥−𝑎) 𝑠 |𝑓′(𝑎)|] 𝑑𝑡 + ∫ 𝑎+𝑏 2 𝑥 ( 𝑎+𝑏 2 − 𝑡) [( 𝑡−𝑥 𝑎+𝑏−2𝑥) 𝑠 |𝑓′(𝑎 + 𝑏 − 𝑥)| + (𝑎+𝑏−𝑥−𝑡 𝑎+𝑏−2𝑥) 𝑠 |𝑓′(𝑥)|] 𝑑𝑡 + ∫𝑎+𝑏𝑎+𝑏−𝑥 2 (𝑡 −𝑎+𝑏 2 ) [( 𝑡−𝑥 𝑎+𝑏−2𝑥) 𝑠 |𝑓′(𝑎 + 𝑏 − 𝑥)| + (𝑎+𝑏−𝑥−𝑡 𝑎+𝑏−2𝑥) 𝑠 |𝑓′(𝑥)|] 𝑑𝑡 + ∫𝑏−𝜆 𝑏−𝑎 2 𝑎+𝑏−𝑥 (𝑏 − 𝜆 𝑏−𝑎 2 − 𝑡) [( 𝑡−𝑎−𝑏+𝑥 𝑥−𝑎 ) 𝑠 |𝑓′(𝑏)| + (𝑏−𝑡 𝑥−𝑎) 𝑠 |𝑓′(𝑎 + 𝑏 − 𝑥)|] 𝑑𝑡 + ∫𝑏−𝜆𝑏 𝑏−𝑎 2 (𝑡 − 𝑏 + 𝜆𝑏−𝑎 2 ) [( 𝑡−𝑎−𝑏+𝑥 𝑥−𝑎 ) 𝑠 |𝑓′(𝑏)| + (𝑏−𝑡 𝑥−𝑎) 𝑠 |𝑓′(𝑎 + 𝑏 − 𝑥)|] 𝑑𝑡 = [(𝑥−𝑎)𝑠(𝑠+1)(𝑠+2)2 (𝜆𝑏−𝑎 2 ) 𝑠+2 +(𝑥−𝑎)2 𝑠+2 − (𝜆 𝑏−𝑎 2 ) (𝑥−𝑎) 𝑠+1 + 𝑠2𝑠+1+1 2𝑠+1(𝑠+1)(𝑠+2)(𝑎 + 𝑏 − 2𝑥) 2] × [|𝑓(𝑥)| + |𝑓(𝑎 + 𝑏 − 2𝑥)|] + [(𝑥−𝑎)𝑠(𝑠+1)(𝑠+2)2 (𝑥 − 𝑎 − 𝜆𝑏−𝑎 2 ) 𝑠+2 +(𝑥−𝑎)2 𝑠+2 × + (𝑎 + 𝜆𝑏−𝑎 2 − 𝑥) (𝑥−𝑎) 𝑠+1 ] × [|𝑓 ′(𝑎)| + |𝑓(𝑏)|]

where we use the facts ∫𝑎+𝜆 𝑏−𝑎 2 𝑎 (𝑎 + 𝜆 𝑏−𝑎 2 − 𝑡) ( 𝑡−𝑎 𝑥−𝑎) 𝑠 𝑑𝑡 = ∫𝑏−𝜆𝑏 𝑏−𝑎 2 (𝑡 − 𝑏 + 𝜆𝑏−𝑎 2 ) ( 𝑏−𝑡 𝑥−𝑎) 𝑠 𝑑𝑡 =(𝑥−𝑎)𝑠(𝑠+1)(𝑠+2)1 (𝜆𝑏−𝑎 2 ) 𝑠+2 , ∫𝑎+𝜆𝑥 𝑏−𝑎 2 (𝑡 − 𝑎 − 𝜆𝑏−𝑎 2 ) ( 𝑥−𝑡 𝑥−𝑎) 𝑠 𝑑𝑡 = ∫𝑏−𝜆 𝑏−𝑎 2 𝑎+𝑏−𝑥 (𝑏 − 𝜆 𝑏−𝑎 2 − 𝑡) ( 𝑡−𝑎−𝑏+𝑥 𝑥−𝑎 ) 𝑠 𝑑𝑡 =(𝑥−𝑎)𝑠(𝑠+1)(𝑠+2)1 (𝑥 − 𝑎 − 𝜆𝑏−𝑎 2 ) 𝑠+2 ,

(6)

∫ 𝑎+𝑏 2 𝑥 ( 𝑎+𝑏 2 − 𝑡) ( 𝑡−𝑥 𝑎+𝑏−2𝑥) 𝑠 𝑑𝑡 = ∫𝑎+𝑏𝑎+𝑏−𝑥 2 (𝑡 −𝑎+𝑏 2 ) ( 𝑎+𝑏−𝑥−𝑡 𝑎+𝑏−2𝑥) 𝑠 𝑑𝑡 = 1 2𝑠+2(𝑠+1)(𝑠+2)(𝑎 + 𝑏 − 2𝑥) 2, ∫ 𝑎+𝑏 2 𝑥 ( 𝑎+𝑏 2 − 𝑡) ( 𝑎+𝑏−𝑥−𝑡 𝑎+𝑏−2𝑥) 𝑠 𝑑𝑡 = ∫𝑎+𝑏𝑎+𝑏−𝑥 2 (𝑡 −𝑎+𝑏 2 ) ( 𝑡−𝑥 𝑎+𝑏−2𝑥) 𝑠 𝑑𝑡 = 𝑠2𝑠+1+1 2𝑠+2(𝑠+1)(𝑠+2)(𝑎 + 𝑏 − 2𝑥) 2, ∫𝑏−𝜆 𝑏−𝑎 2 𝑎+𝑏−𝑥 (𝑏 − 𝜆 𝑏−𝑎 2 − 𝑡) ( 𝑏−𝑡 𝑥−𝑎) 𝑠 𝑑𝑡 = ∫𝑎+𝜆𝑥 𝑏−𝑎 2 (𝑡 − 𝑎 − 𝜆𝑏−𝑎 2 ) ( 𝑡−𝑎 𝑥−𝑎) 𝑠 𝑑𝑡 = 1 (𝑥−𝑎)𝑠[ (𝑥−𝑎)𝑠+2 𝑠+2 − 𝜆 𝑏−𝑎 2 (𝑥−𝑎)𝑠+1 𝑠+1 + 1 (𝑠+1)(𝑠+2)(𝜆 𝑏−𝑎 2 ) 𝑠+2 ] and ∫𝑎+𝜆 𝑏−𝑎 2 𝑎 (𝑎 + 𝜆 𝑏−𝑎 2 − 𝑡) ( 𝑥−𝑡 𝑥−𝑎) 𝑠 𝑑𝑡 = ∫𝑏−𝜆𝑏 𝑏−𝑎 2 (𝑡 − 𝑏 + 𝜆𝑏−𝑎 2 ) ( 𝑡−𝑎−𝑏+𝑥 𝑥−𝑎 ) 𝑠 𝑑𝑡 =(𝑥−𝑎)1 𝑠[(𝑥−𝑎)𝑠+2 𝑠+2 + (𝑎 + 𝜆 𝑏−𝑎 2 − 𝑥) (𝑥−𝑎)𝑠+1 𝑠+1 + 1 (𝑠+1)(𝑠+2)(𝑥 − 𝑎 − 𝜆 𝑏−𝑎 2 ) 𝑠+2 ].

Remark 2 In Theorem 2, if we choose 𝑠 = 1, Theorem 2 reduces to Theorem 1.

Remark 3 In Theorem 2, if we choose 𝜆 = 0, we obtain Theorem 4.10.1 which is proved in [4].

3. Applications to Some Special Means

We now consider the applications of our theorems to the following special means a) The arithmetic mean:

𝐴 = 𝐴(𝑎, 𝑏): =𝑎+𝑏

2 , 𝑎, 𝑏 ≥ 0,

b) The harmonic mean:

𝐻 = 𝐻(𝑎, 𝑏): =2𝑎𝑏

(7)

c) The logarithmic mean:

𝐿 = 𝐿(𝑎, 𝑏): = {𝑎 if𝑎 = 𝑏𝑏−𝑎 ln𝑏−ln𝑎 if𝑎 ≠ 𝑏

, 𝑎, 𝑏 ≥ 0

d) The 𝑝 −logarithmic mean:

𝐿𝑝= 𝐿𝑝(𝑎, 𝑏): = { 𝑎 if𝑎 = 𝑏 [𝑏𝑝+1−𝑎𝑝+1 (𝑝+1)(𝑏−𝑎)] 1 𝑝 if𝑎 ≠ 𝑏 , 𝑝 ∈ ℝ\{−1,0}; 𝑎, 𝑏 ≥ 0

We now derive some sophisticated bounds of the above means.

Proposition 1 For all 𝑎, 𝑏, 𝑥 > 0, 𝜆 ∈ [0,1] and 𝑎 + 𝜆𝑏−𝑎

2 ≤ 𝑥 ≤ 𝑎+𝑏 2 . we have |(𝑏 − 𝑎)[𝜆𝐴(𝑎𝑛, 𝑏𝑛) + (1 − 𝜆)𝐴(𝑥𝑛, (𝑎 + 𝑏 − 𝑥)𝑛)] − (𝑏 − 𝑎)𝐿 𝑛 𝑛(𝑎, 𝑏)| ≤ 𝐾 × 𝐴(𝑥𝑛−1, (𝑎 + 𝑏 − 𝑥)𝑛−1) + 𝐿 × 𝐴(𝑎𝑛−1, 𝑏𝑛−1) where 𝐾 = 𝑛 12[3(𝑎 + 𝑏 − 2𝑥) 2+ 8(𝑎 − 𝑥)2− 6(𝑎 − 𝑏)(𝑎 − 𝑥)𝜆 +(𝑎−𝑏)3𝜆3 𝑎−𝑥 ] 𝐿 = 𝑛 12[4(𝑎 − 𝑥) 2− 6(𝑎 − 𝑏)(𝑎 − 𝑥)𝜆 + 6(𝑎 − 𝑏)2𝜆2(𝑎−𝑏)3𝜆3 𝑎−𝑥 ].

Proof. By applying 𝑓(𝑥) = 𝑥𝑛 for 𝑛 ≥ 2 to Theorem 1, we get the result.

Proposition 2 For all 𝑎, 𝑏, 𝑥 > 0, 𝜆 ∈ [0,1] and 𝑎 + 𝜆𝑏−𝑎

2 ≤ 𝑥 ≤ 𝑎+𝑏 2 . we have |(𝑏 − 𝑎)[𝜆𝐻−1(𝑎, 𝑏) + (1 − 𝜆)𝐻−1(𝑥, 𝑎 + 𝑏 − 𝑥)] − (𝑏 − 𝑎)𝐿−1(𝑎, 𝑏)| ≤ 𝑀 × 𝐻−1(𝑥2, (𝑎 + 𝑏 − 𝑥)2) + 𝑁 × 𝐻−1(𝑎2, 𝑏2) where 𝑀 = 1 12[3(𝑎 + 𝑏 − 2𝑥) 2+ 8(𝑎 − 𝑥)2− 6(𝑎 − 𝑏)(𝑎 − 𝑥)𝜆 +(𝑎−𝑏)3𝜆3 𝑎−𝑥 ] 𝑁 = 1 12[4(𝑎 − 𝑥) 2− 6(𝑎 − 𝑏)(𝑎 − 𝑥)𝜆 + 6(𝑎 − 𝑏)2𝜆2(𝑎−𝑏)3𝜆3 𝑎−𝑥 ]. Proof. By applying 𝑓(𝑥) =1

(8)

Proposition 3 For all 𝑎, 𝑏 > 0, 𝑥,𝜆 ∈ [0,1], 𝑠 ∈ (0,1) and 𝑎 + 𝜆𝑏−𝑎 2 ≤ 𝑥 ≤ 𝑎+𝑏 2 . we have |(𝑏 − 𝑎)[𝜆𝐴(𝑎𝑠, 𝑏𝑠) + (1 − 𝜆)𝐴(𝑥𝑠, (𝑎 + 𝑏 − 𝑥)𝑠)] − (𝑏 − 𝑎)𝐿 𝑠 𝑠(𝑎, 𝑏)| ≤ 𝑃 × 𝐴(𝑥𝑠−1, (𝑎 + 𝑏 − 2𝑥)𝑠−1) + 𝑅 × 𝐴(𝑎𝑠−1, 𝑏𝑠−1) where 𝑃 =(𝑥−𝑎)𝑠(𝑠+1)(𝑠+2)2 (𝜆𝑏−𝑎 2 ) 𝑠+2 +(𝑥−𝑎)2 𝑠+2 − (𝜆 𝑏−𝑎 2 ) (𝑥−𝑎) 𝑠+1 + 𝑠2𝑠+1 2𝑠+1(𝑠+1)(𝑠+2)(𝑎 + 𝑏 − 2𝑥) 2 𝑅 =(𝑥−𝑎)𝑠(𝑠+1)(𝑠+2)2 (𝑥 − 𝑎 − 𝜆 𝑏−𝑎 2 ) 𝑠+2 +(𝑥−𝑎)2 𝑠+2 + (𝑎 + 𝜆 𝑏−𝑎 2 − 𝑥) (𝑥−𝑎) 𝑠+1

Proof. The assertation follows from Theorem 2 applied for 𝑓(𝑥) = 𝑥𝑠.

References

ALOMARI, M.W., A companion of Dragomir’s generalization of Ostrowski’s inequality and applications in numerical integration, RGMIA Res. Rep. Coll., Vol. 14, Article 50, 2011.

ALOMARI, M.W., ÖZDEMİR, M.E., AND KAVURMACI, H., On companion of Ostrowski inequality for mappings whose first derivatives absolute value are convex with applications, Miskolch Mathematical Notes, 13(2) (2012), 233-248.

HUDZIK, H., MALIGRANDA, L., Some remarks on s-convex functions, Aequationes Math. 48 (1994), 100–111.

KAVURMACI, H., Bazı farklı türden konveks fonksiyonlar için Ostrowski ve Hermite-Hadamard tipli integral eşitsizlikleri, Ph. D. Thesis, Atatürk University, 2012.

OSTROWSKI, A., Uber die Absolutabweichung einer

differentierbaren Funktion von ihren

Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227.

KASHURI, A., LIKO, R. and DU, T., Some New Ostrowski Type Inequalities Concerning Differentiable Generalized Relative Semi-(r; m, p, q, h1, h2)- Preinvex Mappings, Turkish Journal of Analysis and Number Theory, 6 (1) (2018), 16-29.

Referanslar

Benzer Belgeler

Description This course concentrates on building language awareness and teaching skills through a detailed study of techniques and stages of teaching listening, speaking, grammar and

Description Drama, history and background of applied drama, drama in ELT classroom, drama techniques and their implications in English language

Description A variety of different authentic listening texts and academic presentations are utilized to develop students’ receptive listening skills. This course includes

“neyin/kimin verilir neyin/kimin verilmez” olduğu (neyin/kimin yeterli olup, neyin/kimin yeterli olmadığı) konusunda yargı bildiren toplumsal söylem

Bu kapasite eğrileri ile yapıya gelen taban kesme kuvveti, yapının rijitliği, sünekliği, deprem yükü azaltma katsayısı ve enerji tüketim kapasiteleri

Araştırma sonunda, uzaktan eğitim ile gerçekleştirilen yabancı dil olarak Türkçe öğretimi sürecinde öğrencilerin Edmodo programı ile desteklenebileceği, öğrencilerin bu

Investigation of the mother in terms of thyroid diseases during pregnancy, recognition and appro- priate assessment of the required conditions, screening of all new- borns in the

We use the theory of Hilbert spaces of analytic functions on bounded symmetric domains in CN to obtain information on the 1/N + 1st power of the Bergman kernel of the ball.. This