• Sonuç bulunamadı

Measurement of the Absolute Branching Fraction for Lambda(+)(c) -> Lambda e(+)nu(e)

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of the Absolute Branching Fraction for Lambda(+)(c) -> Lambda e(+)nu(e)"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

This is the accepted manuscript made available via CHORUS. The article has been

published as:

Measurement of the Absolute Branching Fraction for

Λ_{c}^{+}→Λe^{+}ν_{e}

M. Ablikim et al. (BESIII Collaboration)

Phys. Rev. Lett. 115, 221805 — Published 25 November 2015

DOI:

10.1103/PhysRevLett.115.221805

(2)

M. Ablikim1, M. N. Achasov9,f, X. C. Ai1, O. Albayrak5, M. Albrecht4, D. J. Ambrose44, A. Amoroso49A,49C, F. F. An1,

2

Q. An46,a, J. Z. Bai1, R. Baldini Ferroli20A, Y. Ban31, D. W. Bennett19, J. V. Bennett5, M. Bertani20A, D. Bettoni21A,

J. M. Bian43, F. Bianchi49A,49C, E. Boger23,d, I. Boyko23, R. A. Briere5, H. Cai51, X. Cai1,a, O. Cakir40A,b, A. Calcaterra20A,

4

G. F. Cao1, S. A. Cetin40B, J. F. Chang1,a, G. Chelkov23,d,e, G. Chen1, H. S. Chen1, H. Y. Chen2, J. C. Chen1,

M. L. Chen1,a, S. J. Chen29, X. Chen1,a, X. R. Chen26, Y. B. Chen1,a, H. P. Cheng17, X. K. Chu31, G. Cibinetto21A,

6

H. L. Dai1,a, J. P. Dai34, A. Dbeyssi14, D. Dedovich23, Z. Y. Deng1, A. Denig22, I. Denysenko23, M. Destefanis49A,49C,

F. De Mori49A,49C, Y. Ding27, C. Dong30, J. Dong1,a, L. Y. Dong1, M. Y. Dong1,a, Z. L. Dou29, S. X. Du53, P. F. Duan1,

8

J. Z. Fan39, J. Fang1,a, S. S. Fang1, X. Fang46,a, Y. Fang1, L. Fava49B,49C, O. Fedorov23, F. Feldbauer22, G. Felici20A,

C. Q. Feng46,a, E. Fioravanti21A, M. Fritsch14,22, C. D. Fu1, Q. Gao1, X. L. Gao46,a, X. Y. Gao2, Y. Gao39, Z. Gao46,a,

10

I. Garzia21A, K. Goetzen10, W. X. Gong1,a, W. Gradl22, M. Greco49A,49C, M. H. Gu1,a, Y. T. Gu12, Y. H. Guan1,

A. Q. Guo1, L. B. Guo28, Y. Guo1, Y. P. Guo22, Z. Haddadi25, A. Hafner22, S. Han51, X. Q. Hao15, F. A. Harris42, K. L. He1,

12

T. Held4, Y. K. Heng1,a, Z. L. Hou1, C. Hu28, H. M. Hu1, J. F. Hu49A,49C, T. Hu1,a, Y. Hu1, G. M. Huang6, G. S. Huang46,a,

J. S. Huang15, X. T. Huang33, Y. Huang29, T. Hussain48, Q. Ji1, Q. P. Ji30, X. B. Ji1, X. L. Ji1,a, L. W. Jiang51,

14

X. S. Jiang1,a, X. Y. Jiang30, J. B. Jiao33, Z. Jiao17, D. P. Jin1,a, S. Jin1, T. Johansson50, A. Julin43,

N. Kalantar-Nayestanaki25, X. L. Kang1, X. S. Kang30, M. Kavatsyuk25, B. C. Ke5, P. Kiese22, R. Kliemt14, B. Kloss22,

16

O. B. Kolcu40B,i, B. Kopf4, M. Kornicer42, W. Kuehn24, A. Kupsc50, J. S. Lange24, M. Lara19, P. Larin14, C. Leng49C,

C. Li50, Cheng Li46,a, D. M. Li53, F. Li1,a, F. Y. Li31, G. Li1, H. B. Li1, J. C. Li1, Jin Li32, K. Li13, K. Li33, Lei Li3,

18

P. R. Li41, T. Li33, W. D. Li1, W. G. Li1, X. L. Li33, X. M. Li12, X. N. Li1,a, X. Q. Li30, Z. B. Li38, H. Liang46,a,

Y. F. Liang36, Y. T. Liang24, G. R. Liao11, D. X. Lin14, B. J. Liu1, C. X. Liu1, D. Liu46,a, F. H. Liu35, Fang Liu1, Feng Liu6,

20

H. B. Liu12, H. H. Liu1, H. H. Liu16, H. M. Liu1, J. Liu1, J. B. Liu46,a, J. P. Liu51, J. Y. Liu1, K. Liu39, K. Y. Liu27,

L. D. Liu31, P. L. Liu1,a, Q. Liu41, S. B. Liu46,a, X. Liu26, Y. B. Liu30, Z. A. Liu1,a, Zhiqing Liu22, X. C. Lou1,a,h, H. J. Lu17,

22

J. G. Lu1,a, Y. Lu1, Y. P. Lu1,a, C. L. Luo28, M. X. Luo52, T. Luo42, X. L. Luo1,a, X. R. Lyu41, F. C. Ma27, H. L. Ma1,

L. L. Ma33, Q. M. Ma1, T. Ma1, X. N. Ma30, X. Y. Ma1,a, F. E. Maas14, M. Maggiora49A,49C, Y. J. Mao31, Z. P. Mao1,

24

S. Marcello49A,49C, J. G. Messchendorp25, J. Min1,a, R. E. Mitchell19, X. H. Mo1,a, Y. J. Mo6, C. Morales Morales14,

N. Yu. Muchnoi9,f, H. Muramatsu43, Y. Nefedov23, F. Nerling14, I. B. Nikolaev9,f, Z. Ning1,a, S. Nisar8, S. L. Niu1,a,

26

X. Y. Niu1, S. L. Olsen32, Q. Ouyang1,a, S. Pacetti20B, Y. Pan46,a, P. Patteri20A, M. Pelizaeus4, H. P. Peng46,a, K. Peters10, J. Pettersson50, J. L. Ping28, R. G. Ping1, R. Poling43, V. Prasad1, H. R. Qi2, M. Qi29, S. Qian1,a, C. F. Qiao41, L. Q. Qin33,

28

N. Qin51, X. S. Qin1, Z. H. Qin1,a, J. F. Qiu1, K. H. Rashid48, C. F. Redmer22, M. Ripka22, G. Rong1, Ch. Rosner14,

X. D. Ruan12, V. Santoro21A, A. Sarantsev23,g, M. Savri´e21B, K. Schoenning50, S. Schumann22, W. Shan31, M. Shao46,a,

30

C. P. Shen2, P. X. Shen30, X. Y. Shen1, H. Y. Sheng1, W. M. Song1, X. Y. Song1, S. Sosio49A,49C, S. Spataro49A,49C,

G. X. Sun1, J. F. Sun15, S. S. Sun1, Y. J. Sun46,a, Y. Z. Sun1, Z. J. Sun1,a, Z. T. Sun19, C. J. Tang36, X. Tang1, I. Tapan40C,

32

E. H. Thorndike44, M. Tiemens25, M. Ullrich24, I. Uman40B, G. S. Varner42, B. Wang30, B. L. Wang41, D. Wang31,

D. Y. Wang31, K. Wang1,a, L. L. Wang1, L. S. Wang1, M. Wang33, P. Wang1, P. L. Wang1, S. G. Wang31, W. Wang1,a,

34

W. P. Wang46,a, X. F. Wang39, Y. D. Wang14, Y. F. Wang1,a, Y. Q. Wang22, Z. Wang1,a, Z. G. Wang1,a, Z. H. Wang46,a,

Z. Y. Wang1, T. Weber22, D. H. Wei11, J. B. Wei31, P. Weidenkaff22, S. P. Wen1, U. Wiedner4, M. Wolke50, L. H. Wu1,

36

Z. Wu1,a, L. Xia46,a, L. G. Xia39, Y. Xia18, D. Xiao1, H. Xiao47, Z. J. Xiao28, Y. G. Xie1,a, Q. L. Xiu1,a, G. F. Xu1, L. Xu1,

Q. J. Xu13, Q. N. Xu41, X. P. Xu37, L. Yan49A,49C, W. B. Yan46,a, W. C. Yan46,a, Y. H. Yan18, H. J. Yang34, H. X. Yang1,

38

L. Yang51, Y. Yang6, Y. X. Yang11, M. Ye1,a, M. H. Ye7, J. H. Yin1, B. X. Yu1,a, C. X. Yu30, J. S. Yu26, C. Z. Yuan1,

W. L. Yuan29, Y. Yuan1, A. Yuncu40B,c, A. A. Zafar48, A. Zallo20A, Y. Zeng18, Z. Zeng46,a, B. X. Zhang1, B. Y. Zhang1,a,

40

C. Zhang29, C. C. Zhang1, D. H. Zhang1, H. H. Zhang38, H. Y. Zhang1,a, J. J. Zhang1, J. L. Zhang1, J. Q. Zhang1,

J. W. Zhang1,a, J. Y. Zhang1, J. Z. Zhang1, K. Zhang1, L. Zhang1, X. Y. Zhang33, Y. Zhang1, Y. H. Zhang1,a,

42

Y. N. Zhang41, Y. T. Zhang46,a, Yu Zhang41, Z. H. Zhang6, Z. P. Zhang46, Z. Y. Zhang51, G. Zhao1, J. W. Zhao1,a,

J. Y. Zhao1, J. Z. Zhao1,a, Lei Zhao46,a, Ling Zhao1, M. G. Zhao30, Q. Zhao1, Q. W. Zhao1, S. J. Zhao53, T. C. Zhao1,

44

Y. B. Zhao1,a, Z. G. Zhao46,a, A. Zhemchugov23,d, B. Zheng47, J. P. Zheng1,a, W. J. Zheng33, Y. H. Zheng41, B. Zhong28,

L. Zhou1,a, X. Zhou51, X. K. Zhou46,a, X. R. Zhou46,a, X. Y. Zhou1, K. Zhu1, K. J. Zhu1,a, S. Zhu1, S. H. Zhu45, X. L. Zhu39,

46

Y. C. Zhu46,a, Y. S. Zhu1, Z. A. Zhu1, J. Zhuang1,a, L. Zotti49A,49C, B. S. Zou1, J. H. Zou1

(BESIII Collaboration)

48

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China 2 Beihang University, Beijing 100191, People’s Republic of China

50

3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China 4 Bochum Ruhr-University, D-44780 Bochum, Germany

52

5

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

6 Central China Normal University, Wuhan 430079, People’s Republic of China

54

7 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China

8 COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan

56

9 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia 10 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany

58

11Guangxi Normal University, Guilin 541004, People’s Republic of China 12 GuangXi University, Nanning 530004, People’s Republic of China

60

(3)

2 14 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

62

15Henan Normal University, Xinxiang 453007, People’s Republic of China

16Henan University of Science and Technology, Luoyang 471003, People’s Republic of China

64

17 Huangshan College, Huangshan 245000, People’s Republic of China 18

Hunan University, Changsha 410082, People’s Republic of China

66

19 Indiana University, Bloomington, Indiana 47405, USA

20(A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN and University of Perugia, I-06100, Perugia,

68

Italy

21 (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy

70

22 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany 23 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

72

24 Justus Liebig University Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany 25KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands

74

26 Lanzhou University, Lanzhou 730000, People’s Republic of China 27 Liaoning University, Shenyang 110036, People’s Republic of China

76

28 Nanjing Normal University, Nanjing 210023, People’s Republic of China 29Nanjing University, Nanjing 210093, People’s Republic of China

78

30 Nankai University, Tianjin 300071, People’s Republic of China 31Peking University, Beijing 100871, People’s Republic of China

80

32 Seoul National University, Seoul, 151-747 Korea 33 Shandong University, Jinan 250100, People’s Republic of China

82

34 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China 35Shanxi University, Taiyuan 030006, People’s Republic of China

84

36Sichuan University, Chengdu 610064, People’s Republic of China 37 Soochow University, Suzhou 215006, People’s Republic of China

86

38 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China 39 Tsinghua University, Beijing 100084, People’s Republic of China

88

40 (A)Istanbul Aydin University, 34295 Sefakoy, Istanbul, Turkey; (B)Istanbul Bilgi University, 34060 Eyup, Istanbul,

Turkey; (C)Uludag University, 16059 Bursa, Turkey

90

41 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China 42

University of Hawaii, Honolulu, Hawaii 96822, USA

92

43 University of Minnesota, Minneapolis, Minnesota 55455, USA 44 University of Rochester, Rochester, New York 14627, USA

94

45

University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China

46 University of Science and Technology of China, Hefei 230026, People’s Republic of China

96

47University of South China, Hengyang 421001, People’s Republic of China 48University of the Punjab, Lahore-54590, Pakistan

98

49 (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN,

I-10125, Turin, Italy

100

50 Uppsala University, Box 516, SE-75120 Uppsala, Sweden 51 Wuhan University, Wuhan 430072, People’s Republic of China

102

52 Zhejiang University, Hangzhou 310027, People’s Republic of China 53 Zhengzhou University, Zhengzhou 450001, People’s Republic of China

104

aAlso at State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of

China

106

bAlso at Ankara University,06100 Tandogan, Ankara, Turkey c Also at Bogazici University, 34342 Istanbul, Turkey

108

dAlso at the Moscow Institute of Physics and Technology, Moscow 141700, Russia e Also at the Functional Electronics Laboratory, Tomsk State University, Tomsk, 634050, Russia

110

f Also at the Novosibirsk State University, Novosibirsk, 630090, Russia g Also at the NRC ”Kurchatov Institute”, PNPI, 188300, Gatchina, Russia

112

hAlso at University of Texas at Dallas, Richardson, Texas 75083, USA i Also at Istanbul Arel University, 34295 Istanbul, Turkey

114

We report the first measurement of the absolute branching fraction for Λ+

c → Λe+νe. This

measurement is based on 567 pb−1 of e+eannihilation data produced ats = 4.599 GeV,

116

which is just above the Λ+

cΛ¯−c threshold. The data were collected with the BESIII detector

at the BEPCII storage rings. The branching fraction is determined to be B(Λ+

c → Λe+νe) =

118

(3.63±0.38(stat)±0.20(syst))%, representing a significant improvement in precision over the current indirect determination. As the branching fraction for Λ+

c → Λe+νe is the benchmark for those of

120

other Λ+

c semileptonic channels, our result provides a unique test of different theoretical models,

which is the most stringent to date.

(4)

PACS numbers: 13.30.Ce, 14.20.Lq, 14.65.Dw

Semileptonic (SL) decays of the lightest charmed

bary-124

on, Λ+

c, provide a stringent test for non-perturbative

aspects of the theory of strong interaction. In

partic-126

ular, the decay rate of the most copious SL decay mode, Λ+

c → Λe+νe, serves as a normalization mode for all 128

other Λ+

c SL decay rates. The Λ+c → Λe+νe decay is

dominated by the Cabibbo-favored transition c → sl+ν l, 130

which occurs, to a good approximation, independently of the spin-zero spectator ud diquark. This leads to a

sim-132

pler theoretical description and greater predictive power in modeling the SL decays of the charmed baryons than

134

the case for mesons [1]. However, model development for semileptonic decays of charmed mesons is much more

136

advanced because of the availability of experimental da-ta with precision better than 5% [2]. An experimenda-tal

138

study of Λ+

c → Λe+νe is therefore desirable in order to

test different models in the charm baryon sector [3].

140

Since the first observation of the Λ+

c baryon in e+e−

annihilations at the Mark II experiment [4] in 1979, much

142

theoretical effort has been applied towards the study of its SL decay properties. However, predictions of the

144

branching fraction (BF) B(Λ+

c → Λe+νe) in different

theoretical models vary in a wide range from 1.4% to

146

9.2% [5–15], depending on the choice of various Λ+ c wave

function models and the nature of decay dynamics. In

ad-148

dition, theoretical calculations prove to be quite challeng-ing for lattice quantum chromodynamics (LQCD) due

150

to the complexity of form factors, which describes the hadronic part of the decay dynamics in Λ+

c → Λe+νe[16]. 152

Thus, an accurate measurement of B(Λ+

c → Λe+νe) is a

key ingredient in calibrating LQCD calculations, which,

154

in turn, will play an important role in understanding dif-ferent Λ+

c SL decays. 156

So far, experimental information for B(Λ+c → Λe+νe)

has come only from the ARGUS [17] and CLEO [18]

158

experiments in the 1990s. They measured the prod-uct cross section σ(e+e→ Λ+

cX) · B(Λ+c → Λe+νe) 160

at B ¯B threshold energies. Combined with the mea-sured B(Λ+c → pK−π+) = (6.84 ± 0.24

+0.21

−0.27)% [19] and 162

the Λ+

c lifetime, they evaluated B(Λ+c → Λe+νe) =

(2.9 ± 0.5)% [2]. Therefore, this is not a direct

deter-164

mination of B(Λ+

c → Λe+νe). In this Letter, we report

the first measurement of the absolute branching

frac-166

tion for Λ+

c → Λe+νe, B(Λ+c → Λe+νe), by analyzing

567 pb−1 [20] of data collected ats = 4.599 GeV by 168

the BESIII detector at the BEPCII collider. This is the largest Λ+

c data sample near the Λ+cΛ¯−c threshold, where 170

the Λ+

c is always produced in association with a ¯Λ−c

bary-on. Hence, B(Λ+

c → Λe+νe) can be accessed by measur-172

ing the relative probability of finding the SL decay when the ¯Λ−

c is reconstructed in a number of prolific decay 174

channels. This will provide a clean and straightforward BF measurement without requiring knowledge of the

to-176

tal number of Λ+

cΛ¯−c events produced.

BESIII [21] is a cylindrical spectrometer, which is

178

composed of a Helium-gas based main drift chamber (MDC), a plastic scintillator time-of-flight (TOF)

sys-180

tem, a CsI (Tl) electromagnetic calorimeter (EMC), a superconducting solenoid providing a 1.0 T magnetic field

182

and a muon counter. The charged particle momen-tum resolution is 0.5% at a transverse momenmomen-tum of

184

1 GeV/c and the photon energy resolution is 2.5% at 1 GeV. Particle identification (PID) system combines the

186

ionization energy loss (dE/dx) in MDC, the TOF and EMC information to identify particle types. More

de-188

tails about the design and performance of the detector are given in Ref. [21].

190

A GEANT4-based [22] Monte Carlo (MC) simulation package, which includes the geometric description of the

192

detector and the detector response, is used to determine the detection efficiency and to estimate the potential

194

backgrounds. Signal MC samples of a Λc baryon

de-caying only to Λeνetogether with a ¯Λc decaying only to 196

the studied tag modes are generated by the MC event generator KKMC [23] using EVTGEN [24], with

initial-198

state radiation (ISR) effects [25] and final-state radia-tion effects [26] included. For the simularadia-tion of the decay

200

Λ+

c → Λe+νe, we use the form factor predictions obtained

using Heavy Quark Effective Theory and QCD sum rules

202

of Ref. [13]. To study backgrounds, ‘inclusive’ MC sam-ples consisting of Λ+

cΛ¯−c events, D(s) production, ISR 204

return to the charmonium(-like) ψ states at lower masses and continuum processes are generated. All decay modes

206

of the Λc, ψ and D(s) as specified in the Particle Data

Group (PDG) [2] are simulated by the MC generator.

208

The unknown decays of the ψ states are generated with LUNDCHARM [27].

210

The technique for this analysis, which was first applied by the Mark III Collaboration [28] at SPEAR, relies on

212

the purity and kinematics of the Λ+

cΛ¯−c baryon pairs

pro-duced at√s = 4.599 GeV. First, we select a data sample

214

of ¯Λ−

c baryons by reconstructing exclusive hadronic

de-cays; we call this the single tag (ST) sample. Then, we

216

search for Λ+c → Λe+νe in the system recoiling against

the ST ¯Λ−

c baryons. The ST ¯Λ−c baryons are recon-218

structed using eleven hadronic decay modes: ¯Λ−

c → ¯pKS0, ¯ pK+π, ¯pK0 Sπ0, ¯pK+π−π0, ¯pKS0π+π−, ¯Λπ−, ¯Λπ−π0, 220 ¯

Λπ−π+π, ¯Σ0π, ¯Σπ0 and ¯Σπ+π, where the

inter-mediate particles K0

S, ¯Λ, ¯Σ0, ¯Σ− and π0are reconstruct-222

ed by their decays into KS0→ π+π−, ¯Λ → ¯pπ+, ¯Σ0→ γ ¯Λ

with ¯Λ → ¯pπ+, ¯Σ→ ¯0 and π0→ γγ, respectively. 224

Charged tracks are required to have polar angles with-in | cos θ| < 0.93, where θ is the polar angle of the charged

226

track with respect to the beam direction. Their distances of closest approach to the interaction point (IP) are

re-228

quired to be less than 10 cm along the beam direction and less than 1 cm in the perpendicular plane. Tracks

origi-230

nating from K0

S and Λ decays are not subjected to these

distance requirements. To discriminate pions from kaons,

232

(5)

prob-4

TABLE I. ∆E requirements and ST yields NΛ¯−

c in data. Mode ∆E(GeV) NΛ¯− c ¯ pK0 S [−0.025, 0.028] 1066 ± 33 ¯ pK+π[−0.019, 0.023] 5692 ± 88 ¯ pK0 Sπ 0 [−0.035, 0.049] 593 ± 41 ¯ pK+ππ0 [−0.044, 0.052] 1547 ± 61 ¯ pK0 Sπ+π− [−0.029, 0.032] 516 ± 34 ¯ Λπ− [−0.033, 0.035] 593 ± 25 ¯ Λπ−π0 [−0.037, 0.052] 1864 ± 56 ¯ Λπ−π+π[−0.028, 0.030] 674 ± 36 ¯ Σ0π[−0.029, 0.032] 532 ± 30 ¯ Σ−π0 [−0.038, 0.062] 329 ± 28 ¯ Σ−π+π[−0.049, 0.054] 1009 ± 57

abilities for the pion (Lπ) and kaon (LK) hypotheses. 234

Pion and kaon candidates are selected using Lπ > LK

and LK > Lπ, respectively. For proton identification, 236

information from dE/dx, TOF, and EMC are combined to calculate the PID probability L′, and a charged track 238

satisfying L′p > Lπ and Lp > LK is identified as a

proton candidate.

240

Photon candidates are reconstructed from isolated clusters in the EMC in the regions | cos θ| ≤ 0.80

(bar-242

rel) and 0.86 ≤ | cos θ| ≤ 0.92 (end cap). The deposited energy of a neutral cluster is required to be larger than

244

25 (50) MeV in barrel (end cap) region, and the angle between the photon candidate and the nearest charged

246

track must be larger than 10◦. To suppress electronic

noise and energy deposits unrelated to the events, the

248

difference between the EMC time and the event start time is required to be within (0, 700) ns. To reconstruct

250

π0candidates, the invariant mass of the accepted photon pairs is required to be within (0.110, 0.155) GeV/c2. A 252

kinematic fit is implemented to constrain the γγ invari-ant mass to the π0 nominal mass [2], and the χ2 of the 254

kinematic fit is required to be less than 20. The fitted momenta of the π0are used further in the analysis. 256

To reconstruct K0

S and ¯Λ, a secondary vertex fit

is applied, and the decay length is required to be

258

larger than zero. The invariant masses M (π+π),

M (¯pπ+), M (γ ¯Λ) and M (¯0) are required to be 260

within (0.485, 0.510) GeV/c2, (1.110, 1.121) GeV/c2,

(1.179, 1.205) GeV/c2and (1.173, 1.200) GeV/c2 to se-262

lect candidates for K0

S, ¯Λ, ¯Σ0and ¯Σ−, respectively.

For the ST mode of ¯pK0

Sπ0, ¯Λ and ¯Σ− back-264

grounds are rejected by vetoing any events with M (¯pπ+)

and M (¯pπ0) inside the regions (1.105, 1.125) GeV/c2 266

and (1.173, 1.200) GeV/c2, respectively. For the

ST modes of ¯Λπ+ππand ¯Σπ+π, K0 S back-268

grounds are suppressed by requiring M (π+π) outside

of (0.480, 0.520) GeV/c2, while Λ backgrounds are re-270

moved from decays to ¯pK0

Sπ+π− and ¯Σ−π+π− by

re-quiring M (¯pπ+) to be outside of (1.105, 1.125) GeV/c2. 272

The ST ¯Λ−

c signals are identified using the beam

con-100 200 300 100 200 300 S 0 K p 1000 2000 1000 2000 -π + K p 100 200 100 200 π0 S 0 K p 200 400 200 400 0 π -π + K p 100 200 100 200 -π + π S 0 K p 100 200 100 200Λπ -200 400 200 400 0 π -π Λ 100 200 100 200 -π + π -π Λ 2.26 2.28 2.30 100 200 2.26 2.28 2.30 100 200 -π 0 Σ 2.26 2.28 2.30 50 100 2.26 2.28 2.30 50 100 π0 -Σ 2.26 2.28 2.30 200 400 2.26 2.28 2.30 200 400 -π + π -Σ E v en ts / 0 .0 0 1 G eV / c 2 MBC (GeV/c2)

FIG. 1. Fits to the MBCdistributions for different ST modes.

The points with error bars are data, the (red) solid curves show the total fits and the (blue) dashed curves are the back-ground shapes. strained mass, MBC = q E2 beam− |−→pΛ¯− c| 2, where E beam 274

is the beam energy and −→pΛ¯−

c is the momentum of the ¯Λ − c

candidate. To improve the signal purity, the energy

dif-276

ference ∆E = Ebeam−EΛ¯−

c for each candidate is required

to be within approximately ±3σ∆Earound the ∆E peak, 278

where σ∆E is the ∆E resolution and EΛ¯−

c is the

recon-structed ¯Λ−

c energy. The explicit ∆E requirements for 280

different modes are listed in Table I.

The MBC distributions for the eleven ¯Λ−c ST modes 282

are shown in Fig. 1. The ST candidates are se-lected by further requiring their mass to be within

284

(2.280, 2.296) GeV/c2. To obtain the ST yields, we per-form unbinned maximum likelihood fits to the whole

286

mass spectra in Fig. 1, where we use the MC simulat-ed signal shape convolutsimulat-ed with a double-Gaussian

res-288

olution function to represent the signal shape and an ARGUS function [29] to describe the background shape.

290

The signal yield is estimated by integrating the fitted signal shape in the mass region (2.280, 2.296) GeV/c2. 292

Peaking backgrounds are evaluated to be (0.25 ± 0.04)%, according to MC simulations. These backgrounds are

294

subtracted from the fitted number of the singly tagged ¯

Λ−

c events. The numbers of background-subtracted sig-296

nal events are used as the ST yields, as listed in Table I. Finally, we obtain the total ST yield summed over all 11

298

modes to be Ntot ¯ Λ−

c = 14415 ± 159.

Candidate events for Λ+

c → Λe+νe are selected from

the remaining tracks recoiling against the ST ¯Λ− c

(6)

in the ST selection are applied. We further identify a charged track as an e+by requiring the probabilities

cal-culated with the dE/dx, TOF and EMC satisfying the criteria L′

e > 0.001 and L′e/(L′e+ L′π+ L′K) > 0.8. Its

energy loss due to bremsstrahlung photon(s) is partial-ly recovered by adding the showers that are within a 5◦

cone about the positron momentum. As the neutrino is not detected, we employ the kinematic variable

Umiss= Emiss− c|~pmiss|

to obtain information on the neutrino, where Emiss and 300

~

pmiss are the missing energy and momentum carried

by the neutrino, respectively. They are calculated by

302

Emiss= Ebeam− EΛ− Ee+ and ~pmiss= ~p Λ+ c − ~pΛ− ~pe +, where ~pΛ+ c is the momentum of Λ + c baryon, EΛ(~pΛ) and 304

Ee+ (~pe+) are the energies (momenta) of the Λ and the

positron, respectively. Here, the momentum ~pΛ+

c is given 306 by ~pΛ+ c = −ˆptag q E2 beam− m2Λ¯− c

, where ˆptag is the

di-rection of the momentum of the ST ¯Λ−

c and mΛ¯− c is the 308

nominal ¯Λ−

c mass [2]. For signal events, Umissis expected

to peak around zero.

310

Figure 2(a) shows a scatter plot of Mpπ− versus Umiss

for the Λ+

c → Λe+νe candidates in data. Most of the 312

events are located around the intersection of the Λ and Λe+ν

esignal regions. Requiring Mpπ−to be within the Λ 314

signal region, we project the scatter plot onto the Umiss

axis, as shown in Fig. 2(b). The Umiss distribution is 316

fitted with a signal function f plus a flat function to describe the background. The signal function f [30]

con-318

sists of a Gaussian function to model the core of the Umiss

distribution and two power law tails to account for the

320

effects of initial and final state radiation:

f (Umiss) =    p1(nα1 1 − α1+ t) −n1, t > α 1 e−t2/2, −α 2< t < α1 p2(nα22 − α2− t)−n2, t < −α2 (1) where t = (Umiss− Umean)/σUmiss, Umean and σUmiss are 322

the mean value and resolution of the Gaussian func-tion, respectively, p1 ≡ (n1/α1)n1e−α 2 1/2 and p 2 ≡ 324 (n2/α2)n2e−α 2 2/2. The parameters α 1, α2, n1 and n2are

fixed to the values obtained in the signal MC simulations.

326

From the fit, we obtain the number of SL signals to be 109.4 ± 10.9.

328

The backgrounds in Λ+

c → Λe+νe arise mostly from

misreconstructed SL decays with correctly

reconstruct-330

ed tags. There are two types of peaking backgrounds. The first comes from non-Λ SL decays, which are

stud-332

ied using data in the Λ sideband in Fig. 2. We obtain the number of events of the first type of backgrounds to

334

be 1.4 ± 0.8, after scaling to the Λ signal region. The second peaking background arises from Λ+

c → Λµ+νµ 336

and some hadronic decays, such as Λ+

c → Λπ+π0, Λπ+

and Σ0π+. Based on MC simulations, we determine the 338

number of background events of the second type to be 4.5 ± 0.5. After subtracting these background events,

340 -0.2 -0.1 0 0.1 0.2 1.1 1.12 1.14 (a) M p π − (G eV / c 2 ) Umiss(GeV) -0.2 -0.1 0 0.1 0.2 -1 10 1 10 -0.2 -0.1 0 0.1 0.2 -1 10 1 10 (b) E v en ts / 0 .0 1 0 G eV Umiss(GeV)

FIG. 2. (a) Scatter plot of Mpπ− versus Umiss for the

Λ+c → Λe +

νe candidates. The area between the dashed lines

denotes the Λ signal region and the hatched areas indicate the Λ sideband regions. (b) Fit to the Umissdistribution within

the Λ signal region. The points with error bars are data, the (red) solid curve shows the total fit and the (blue) dashed curve is the background shape.

we determine the net number of Λ+

c → Λe+νe to be

Nsemi= 103.5 ± 10.9, where the uncertainty is statistical. 342

The absolute BF for Λ+

c → Λe+νe is determined by B(Λ+ c → Λe+νe) = Nsemi Ntot ¯ Λ− c × ε semi× B(Λ → pπ−) , (2) where εsemi = (30.92 ± 0.26)%, which does not include 344

the BF for Λ → pπ−, is the overall efficiency for detecting

the Λ+

c → Λe+νe decay in ST events, weighted by the 346

ST yields of data for each tag. Inserting the values of Nsemi, NΛ¯tot−

c

, ǫsemiand B(Λ → pπ−) [2] in Eq. (2), we get 348

B(Λ+

c → Λe+νe) = (3.63 ± 0.38 ± 0.20)%, where the first

error is statistical and the second systematic.

350

The systematic error [31] is mainly due to the uncer-tainty in the efficiency of Λ reconstruction (2.5%), which

352

is studied with χcJ → Λ¯Λπ+π−, and the simulation of

the SL signal model (4.5%), estimated by changing the

354

default parameterization of form factor function to oth-er parametoth-ers in Refs. [13, 32] and by taking into

ac-356

count the q2 dependence observed in data. Other

rele-vant issues include the following uncertainties: the

elec-358

tron tracking (1.0%) and the electron PID (1.0%) which is studied with e+e→ (γ)e+e, the fit to the Umiss 360

distribution (0.8%) estimated by using alternative sig-nal shapes, the quoted BF for Λ → pπ− (0.8%), the MC 362

statistics (0.8%), the background subtraction (0.5%), the NΛ¯−

c (1.0%) evaluated by using alternative signal shapes 364

in the fits to the MBCspectra. The total systematic error

is estimated to be 5.6% by adding all these uncertainties

366

in quadrature.

In summary, we report the first measurement of the

ab-368

solute BF for Λ+

c → Λe+νe, B(Λ+c → Λe+νe) = (3.63 ±

0.38 ± 0.20)%, based on 567 pb−1 data taken ats = 370

4.599 GeV. This work improves the precision of the world average value more than twofold. As the theoretical

pre-372

dictions on this rate vary in a large range of 1.4−9.2% [5– 15], our result thus provide a stringent test on these

(7)

6 perturbative models. At a confidence level of 95%, this

measurement disfavors the predictions in Refs. [5–9].

376

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong

sup-378

port. This work is supported in part by National Key Basic Research Program of China under Contract No.

380

2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11125525,

382

11235011, 11275266, 11322544, 11322544, 11335008, 11425524, 11505010; the Chinese Academy of Sciences

384

(CAS) Large-Scale Scientific Facility Program; the CAS Center for Excellence in Particle Physics (CCEPP);

386

the Collaborative Innovation Center for Particles and Interactions (CICPI); Joint Large-Scale Scientific Facility

388

Funds of the NSFC and CAS under Contracts Nos. 11179007, U1232201, U1332201; CAS under Contracts

390

Nos. KJCX2-YW-N29, KJCX2-YW-N45; 100 Talents Program of CAS; National 1000 Talents Program of

392

China; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation

394

DFG under Contract No. Collaborative Research Center CRC-1044; Istituto Nazionale di Fisica Nucleare, Italy;

396

Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) under Contract No. 530-4CDP03; Ministry of

398

Development of Turkey under Contract No. DPT2006K-120470; Russian Foundation for Basic Research

un-400

der Contract No. 14-07-91152; The Swedish Resarch Council; U. S. Department of Energy under Contracts

402

Nos. DE-FG02-04ER41291, DE-FG02-05ER41374, DE-SC0012069, DESC0010118; U.S. National Science

404

Foundation; University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH

406

(GSI), Darmstadt; WCU Program of National Research Foundation of Korea under Contract No.

R32-2008-000-408

10155-0.

[1] J. D. Richman and P. R. Burchat, Rev. Mod. Phys. 67,

410

893 (1995); E. Eichten and B. Hill, Phys. Lett. B 234, 511 (1990); M. Neubert, Phys. Rep. 245, 259 (1994).

412

[2] K. A. Olive et al. [Particle Data Group], Chin. Phys. C 38, 090001 (2014) and 2015 update.

414

[3] Throughout the text, the inclusion of charge conjugated processes is always implied.

416

[4] G. S. Abrams et al. [Mark II Collaboration], Phys. Rev. Lett. 44, 10 (1980).

418

[5] R. Perez-Marcial, R. Huerta, A. Garcia and M. Avila-Aoki, Phys. Rev. D 40, 2955 (1989).

420

[6] M. Avila-Aoki, A. Garcia, R. Huerta and R. Perez-Marcial, Phys. Rev. D 40, 2944 (1989).

422

[7] G. V. Efimov et al., Z. Phys. C 52, 149 (1991). [8] Robert Singleton, Phys. Rev. D 43, 2939 (1991).

424

[9] A. Garcia and R. Huerta, Phys. Rev. D 45, 3266 (1992). [10] H. Y. Cheng and B. Tseng, Phys. Rev. D 53, 1457 (1996).

426

[11] F. Hussain et al., Z. Phys. C 51, 607 (1991). [12] H. G. Dosch et al., Phys. Lett. B 431, 173 (1998).

428

[13] R. S. Marques de Carvalho et al., Phys. Rev. D 60, 034009 (1999).

430

[14] M. Pervin, W. Roberts and S. Capstick, Phys. Rev. C 72, 035201 (2005).

432

[15] Y. L. Liu, M. Q. Huang and D. W. Wang, Phys. Rev. D 80, 074011 (2009).

434

[16] J. L. Rosner, Phys. Rev. D 86, 014017 (2012).

[17] H. Albrecht et al. [ARGUS Collaboration], Phys. Lett.

436

B. 269, 234 (1991).

[18] T. Bergfeld et al. [CLEO Collaboration], Phys. Lett.

438

B. 323, 219 (1994); G. D. Crawford et al. [CLEO

Collaboration], Phys. Rev. Lett. 75, 624 (1995);

440

[19] A. Zupanc et al. [Belle Collaboration], Phys. Rev. Lett. 113, 042002 (2014).

442

[20] M. Ablikim et al. [BESIII Collaboration], Chin. Phys. C 39, 093001 (2015).

444

[21] M. Ablikim et al. [BESIII Collaboration], Nucl. Instrum. Meth. A 614, 345 (2010).

446

[22] S. Agostinelli et al. [GEANT4 Collaboration], Nucl. Instrum. Meth. A 506, 250 (2003).

448

[23] S. Jadach, B. F. L. Ward and Z. Was, Comput. Phys. Commun. 130, 260 (2000); Phys. Rev. D 63, 113009

450

(2001).

[24] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001); R.

452

G. Ping, Chin. Phys. C 32, 599 (2008).

[25] E. A. Kurav and V. S. Fadin, Sov. J. Nucl. Phys. 41, 466

454

(1985).

[26] E. Richter-Was, Phys. Lett. B 303, 163 (1993).

456

[27] J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang, Y. S. Zhu, Phys. Rev. D 62, 034003 (2000).

458

[28] J. Adler et al. [Mark III Collaboration], Phys. Rev. Lett. 62, 1821 (1989).

460

[29] H. Albrecht et al. [ARGUS Collaboration], Phys. Lett. B. 241, 278 (1990).

462

[30] J. Y. Ge et al. [CLEO Collaboration], Phys. Rev. D 79, 052010 (2009).

464

[31] The percentages quoted for the systematic uncertainties in this paragraph are relative to the measured BF.

466

[32] J. W. Hinson et al. [CLEO Collaboration], Phys. Rev. Lett. 94, 191801 (2005).

Şekil

TABLE I. ∆E requirements and ST yields N Λ ¯ −
FIG. 2. (a) Scatter plot of M pπ − versus U miss for the

Referanslar

Benzer Belgeler

Bu noktadan hareketle “Bir Halkla İlişkiler Ortamı Olarak Televizyon Dizilerinde Kent İmajı” isimli bu araştırmanın ana varsayımlarından ilki “Televizyon dizileri

Haset ve Kıskançlık gibi duyguların karıştırılıyor olmasının bir diğer sebebi ise bu iki duygu durumunun genellikle aynı anda birlikte görülüyor olması ve

Bu çalışmanın amacı mobil uygulama tercihinde tüketicilerin kişilik özelliklerinin mobil uygulama kullanımı ile ilişkisini belirlemek, kullanıcıların mobil

 Hemiplejik hastalarda gövde kontrolü zayıf olan hastalarda gövde kontrolü kuvvetli olan hastalara göre üst ekstremite fonksiyonları ve yaşam kalitesi daha

Electricity generation from this waste heat using TPV does not only improve the process energy efficiency, but also act as an independent power supply, since many

implant sites in our case was deemed adequate, and good primary stabilization of implants was observed. Regions were prepared with copious irrigation and light

Halka açık şirket sayısı ve piyasa değerinin ülke potansiyelini yansıtır büyüklüğe ulaştığı, ulusal ve ulusla- rarası yatırımcıların en üst seviyede

tüm üniversitelerin değişkenlerinin analizleri bu değişkenlerin ortalamaları ve standart sap- maları yapılan anket sonucudan elde edilmiştir. Her iki şekilde de