• Sonuç bulunamadı

Measurement of eta ' -> pi(+)pi(-)e(+)e(-) and eta ' -> pi(+)pi(-)mu(+)mu(-)

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of eta ' -> pi(+)pi(-)e(+)e(-) and eta ' -> pi(+)pi(-)mu(+)mu(-)"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

arXiv:1303.7360v1 [hep-ex] 29 Mar 2013

Measurement of η

→ π

+

π

e

+

e

and η

→ π

+

π

µ

+

µ

− 1 M. Ablikim1 , M. N. Achasov6 , O. Albayrak3 , D. J. Ambrose39 , F. F. An1 , Q. An40 , J. Z. Bai1

, R. Baldini Ferroli17A,

2

Y. Ban26

, J. Becker2

, J. V. Bennett16

, M. Bertani17A, J. M. Bian38

, E. Boger19,a, O. Bondarenko20

, I. Boyko19 , 3 R. A. Briere3 , V. Bytev19 , H. Cai44 , X. Cai1

, O. Cakir34A, A. Calcaterra17A, G. F. Cao1

, S. A. Cetin34B, J. F. Chang1 ,

4

G. Chelkov19,a, G. Chen1

, H. S. Chen1 , J. C. Chen1 , M. L. Chen1 , S. J. Chen24 , X. Chen26 , Y. B. Chen1 , H. P. Cheng14 , 5 Y. P. Chu1 , D. Cronin-Hennessy38 , H. L. Dai1 , J. P. Dai1 , D. Dedovich19 , Z. Y. Deng1 , A. Denig18 , I. Denysenko19,b, 6

M. Destefanis43A,43C, W. M. Ding28, Y. Ding22, L. Y. Dong1, M. Y. Dong1, S. X. Du46, J. Fang1, S. S. Fang1, L. Fava43B,43C,

7

C. Q. Feng40

, P. Friedel2

, C. D. Fu1

, J. L. Fu24

, O. Fuks19,a, Y. Gao33

, C. Geng40 , K. Goetzen7 , W. X. Gong1 , W. Gradl18 , 8 M. Greco43A,43C, M. H. Gu1 , Y. T. Gu9 , Y. H. Guan36 , A. Q. Guo25 , L. B. Guo23 , T. Guo23 , Y. P. Guo25 , Y. L. Han1 , 9

F. A. Harris37, K. L. He1, M. He1, Z. Y. He25, T. Held2, Y. K. Heng1, Z. L. Hou1, C. Hu23, H. M. Hu1, J. F. Hu35, T. Hu1,

10 G. M. Huang4 , G. S. Huang40 , J. S. Huang12 , L. Huang1 , X. T. Huang28 , Y. Huang24 , Y. P. Huang1 , T. Hussain42 , C. S. Ji40 , 11 Q. Ji1 , Q. P. Ji25 , X. B. Ji1 , X. L. Ji1 , L. L. Jiang1 , X. S. Jiang1 , J. B. Jiao28 , Z. Jiao14 , D. P. Jin1 , S. Jin1 , F. F. Jing33 , 12 N. Kalantar-Nayestanaki20 , M. Kavatsyuk20 , B. Kopf2 , M. Kornicer37 , W. Kuehn35 , W. Lai1 , J. S. Lange35 , P. Larin11 , 13 M. Leyhe2 , C. H. Li1 , Cheng Li40 , Cui Li40 , D. M. Li46 , F. Li1 , G. Li1 , H. B. Li1 , J. C. Li1 , K. Li10 , Lei Li1 , Q. J. Li1 , 14 S. L. Li1 , W. D. Li1 , W. G. Li1 , X. L. Li28 , X. N. Li1 , X. Q. Li25 , X. R. Li27 , Z. B. Li32 , H. Liang40 , Y. F. Liang30 , 15 Y. T. Liang35 , G. R. Liao33 , X. T. Liao1 , D. Lin11 , B. J. Liu1 , C. L. Liu3 , C. X. Liu1 , F. H. Liu29 , Fang Liu1 , Feng Liu4 , 16 H. Liu1 , H. B. Liu9 , H. H. Liu13 , H. M. Liu1 , H. W. Liu1 , J. P. Liu44 , K. Liu33 , K. Y. Liu22 , Kai Liu36 , P. L. Liu28 , Q. Liu36 , 17 S. B. Liu40 , X. Liu21 , Y. B. Liu25 , Z. A. Liu1 , Zhiqiang Liu1 , Zhiqing Liu1 , H. Loehner20 , G. R. Lu12 , H. J. Lu14 , J. G. Lu1 , 18 Q. W. Lu29 , X. R. Lu36 , Y. P. Lu1 , C. L. Luo23 , M. X. Luo45 , T. Luo37 , X. L. Luo1 , M. Lv1 , C. L. Ma36 , F. C. Ma22 , 19

H. L. Ma1, Q. M. Ma1, S. Ma1, T. Ma1, X. Y. Ma1, F. E. Maas11, M. Maggiora43A,43C, Q. A. Malik42, Y. J. Mao26,

20 Z. P. Mao1 , J. G. Messchendorp20 , J. Min1 , T. J. Min1 , R. E. Mitchell16 , X. H. Mo1 , H. Moeini20 , C. Morales Morales11 , 21 K. Moriya16 , N. Yu. Muchnoi6 , H. Muramatsu39 , Y. Nefedov19 , C. Nicholson36 , I. B. Nikolaev6 , Z. Ning1 , S. L. Olsen27 , 22

Q. Ouyang1, S. Pacetti17B, J. W. Park27, M. Pelizaeus2, H. P. Peng40, K. Peters7, J. L. Ping23, R. G. Ping1, R. Poling38,

23 E. Prencipe18 , M. Qi24 , S. Qian1 , C. F. Qiao36 , L. Q. Qin28 , X. S. Qin1 , Y. Qin26 , Z. H. Qin1 , J. F. Qiu1 , K. H. Rashid42 , 24 G. Rong1 , X. D. Ruan9 , A. Sarantsev19,c, B. D. Schaefer16 , M. Shao40 , C. P. Shen37,d, X. Y. Shen1 , H. Y. Sheng1 , 25

M. R. Shepherd16, W. M. Song1, X. Y. Song1, S. Spataro43A,43C, B. Spruck35, D. H. Sun1, G. X. Sun1, J. F. Sun12, S. S. Sun1,

26 Y. J. Sun40 , Y. Z. Sun1 , Z. J. Sun1 , Z. T. Sun40 , C. J. Tang30 , X. Tang1 , I. Tapan34C, E. H. Thorndike39 , D. Toth38 , 27 M. Ullrich35 , I. Uman34B, G. S. Varner37 , B. Q. Wang26 , D. Wang26 , D. Y. Wang26 , K. Wang1 , L. L. Wang1 , L. S. Wang1 , 28

M. Wang28, P. Wang1, P. L. Wang1, Q. J. Wang1, S. G. Wang26, X. F. Wang33, X. L. Wang40, Y. D. Wang17A, Y. F. Wang1,

29

Y. Q. Wang18, Z. Wang1, Z. G. Wang1, Z. Y. Wang1, D. H. Wei8, J. B. Wei26, P. Weidenkaff18, Q. G. Wen40, S. P. Wen1,

30 M. Werner35 , U. Wiedner2 , L. H. Wu1 , N. Wu1 , S. X. Wu40 , W. Wu25 , Z. Wu1 , L. G. Xia33 , Y. X Xia15 , Z. J. Xiao23 , 31 Y. G. Xie1 , Q. L. Xiu1 , G. F. Xu1 , G. M. Xu26 , Q. J. Xu10 , Q. N. Xu36 , X. P. Xu31 , Z. R. Xu40 , F. Xue4 , Z. Xue1 , L. Yan40 , 32

W. B. Yan40, Y. H. Yan15, H. X. Yang1, Y. Yang4, Y. X. Yang8, H. Ye1, M. Ye1, M. H. Ye5, B. X. Yu1, C. X. Yu25,

33 H. W. Yu26 , J. S. Yu21 , S. P. Yu28 , C. Z. Yuan1 , Y. Yuan1 , A. A. Zafar42

, A. Zallo17A, S. L. Zang24

, Y. Zeng15 , B. X. Zhang1 , 34 B. Y. Zhang1 , C. Zhang24 , C. C. Zhang1 , D. H. Zhang1 , H. H. Zhang32 , H. Y. Zhang1 , J. Q. Zhang1 , J. W. Zhang1 , 35

J. Y. Zhang1, J. Z. Zhang1, LiLi Zhang15, R. Zhang36, S. H. Zhang1, X. J. Zhang1, X. Y. Zhang28, Y. Zhang1, Y. H. Zhang1,

36 Z. P. Zhang40 , Z. Y. Zhang44 , Zhenghao Zhang4 , G. Zhao1 , H. S. Zhao1 , J. W. Zhao1 , K. X. Zhao23 , Lei Zhao40 , Ling Zhao1 , 37 M. G. Zhao25 , Q. Zhao1 , S. J. Zhao46 , T. C. Zhao1 , X. H. Zhao24 , Y. B. Zhao1 , Z. G. Zhao40

, A. Zhemchugov19,a, B. Zheng41 ,

38

J. P. Zheng1, Y. H. Zheng36, B. Zhong23, L. Zhou1, X. Zhou44, X. K. Zhou36, X. R. Zhou40, C. Zhu1, K. Zhu1, K. J. Zhu1,

39 S. H. Zhu1 , X. L. Zhu33 , Y. C. Zhu40 , Y. M. Zhu25 , Y. S. Zhu1 , Z. A. Zhu1 , J. Zhuang1 , B. S. Zou1 , J. H. Zou1 40 (BESIII Collaboration) 41

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China

42

2

Bochum Ruhr-University, D-44780 Bochum, Germany

43

3

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

44

4

Central China Normal University, Wuhan 430079, People’s Republic of China

45

5 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China

46

6

G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia

47

7

GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany

48

8 Guangxi Normal University, Guilin 541004, People’s Republic of China

49

9

GuangXi University, Nanning 530004, People’s Republic of China

50

10

Hangzhou Normal University, Hangzhou 310036, People’s Republic of China

51

11 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

52

12

Henan Normal University, Xinxiang 453007, People’s Republic of China

53

13

Henan University of Science and Technology, Luoyang 471003, People’s Republic of China

54

14 Huangshan College, Huangshan 245000, People’s Republic of China

55

15 Hunan University, Changsha 410082, People’s Republic of China

56

16

Indiana University, Bloomington, Indiana 47405, USA

57

17

(A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati,

58

Italy; (B)INFN and University of Perugia, I-06100, Perugia, Italy

59

18

Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

60

19

Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

(2)

20

KVI, University of Groningen, NL-9747 AA Groningen, The Netherlands

62

21

Lanzhou University, Lanzhou 730000, People’s Republic of China

63

22 Liaoning University, Shenyang 110036, People’s Republic of China

64

23

Nanjing Normal University, Nanjing 210023, People’s Republic of China

65

24

Nanjing University, Nanjing 210093, People’s Republic of China

66

25 Nankai University, Tianjin 300071, People’s Republic of China

67

26

Peking University, Beijing 100871, People’s Republic of China

68

27

Seoul National University, Seoul, 151-747 Korea

69

28 Shandong University, Jinan 250100, People’s Republic of China

70

29 Shanxi University, Taiyuan 030006, People’s Republic of China

71

30

Sichuan University, Chengdu 610064, People’s Republic of China

72

31

Soochow University, Suzhou 215006, People’s Republic of China

73

32

Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China

74

33

Tsinghua University, Beijing 100084, People’s Republic of China

75

34

(A)Ankara University, Dogol Caddesi, 06100 Tandogan, Ankara, Turkey; (B)Dogus

76

University, 34722 Istanbul, Turkey; (C)Uludag University, 16059 Bursa, Turkey

77

35

Universitaet Giessen, D-35392 Giessen, Germany

78

36

University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

79

37 University of Hawaii, Honolulu, Hawaii 96822, USA

80

38

University of Minnesota, Minneapolis, Minnesota 55455, USA

81

39

University of Rochester, Rochester, New York 14627, USA

82

40

University of Science and Technology of China, Hefei 230026, People’s Republic of China

83

41

University of South China, Hengyang 421001, People’s Republic of China

84

42

University of the Punjab, Lahore-54590, Pakistan

85

43

(A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern

86

Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy

87

44

Wuhan University, Wuhan 430072, People’s Republic of China

88

45

Zhejiang University, Hangzhou 310027, People’s Republic of China

89

46 Zhengzhou University, Zhengzhou 450001, People’s Republic of China

90

a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia

91

b On leave from the Bogolyubov Institute for Theoretical Physics, Kiev 03680, Ukraine

92

c Also at the PNPI, Gatchina 188300, Russia

93

d Present address: Nagoya University, Nagoya 464-8601, Japan

94

Based on a sample of 225.3 million J/ψ events accumulated with the BESIII detector at the BEPCII, the decays of η′

→ π+

π− l+

l−

are studied via J/ψ → γη′

. A clear η′ signal is observed in the π+ π− e+ e−

mass spectrum, and the branching fraction is measured to be B(η′

→ π+

π− e+

e− ) = (2.11 ± 0.12 (stat.) ± 0.15 (syst.)) × 10−3, which is in good agreement with theoretical predictions and the previous measurement, but is determined with much higher precision. No η′

signal is found in the π+

π− µ+

µ−

mass spectrum, and the upper limit is determined to be B(η′

→ π+

π− µ+

µ− ) < 2.9 × 10−5 at the 90% confidence level.

PACS numbers: 25.75.Gz, 14.40.Df, 12.38.Mh

95

I. INTRODUCTION

96

Since the η′

was discovered in 1964 [1, 2], there has

97

been considerable interest in its decay both theoretically

98

and experimentally because of its special role in low

en-99

ergy scale Quantum Chromodynamics (QCD) theory. Its

100

main decay modes, including hadronic and radiative

de-101

cays, have been well measured [3], but the study of η′

102

anomalous decays is still an open field.

103

Recently, using the radiative decay J/ψ → γη′

via

104

ψ(3686) → π+πJ/ψ as the source of ηmesons,

105

CLEO [4] reported the first observation of the

conver-106

sion decay η′

→ π+π−

e+e−

, which has been discussed

107

for many years based on the Vector Meson Dominance

108

(VMD) model and Chiral Perturbation Theory [5–7].

109

Theoretically this decay is expected to proceed via a

110

virtual photon intermediate state, η′ → π+πγ

111

π+π

e+e

, and provides a more stringent test of the

112

theories since it involves off-shell photons. In

accor-113

dance with theoretical predictions, the two prominent

114

features expected for this decay are a peak with a long

115

tail just above 2me in the e+e− (Me+e−) mass spec-116

trum, and a dominant ρ0contribution in M

π+π−. CLEO 117

with limited statistics was unable to explore these

dis-118

tributions, although their measured branching fraction,

119

B(η′ → π+πe+e) = (2.5+1.2

−0.9± 0.5) × 10−3 [4], was

120

consistent with predicted values around 2 × 10−3. In

121

addition, the search for η′

→ π+π−

µ+µ−

, which is

pre-122

dicted to be lower by two order of magnitude, was also

123

performed. No evident signal was observed, and the

up-124 per limit, B(η′ → π+π− µ+µ− ) < 2.4 × 10−4, at the 90% 125

confidence level (C.L.), was determined.

126

At BESIII a sample of (225.3±2.8)×106[8] J/ψ events,

127

corresponding to 1.2×106ηevents produced through the

(3)

radiative decay J/ψ → γη′

, was collected in 2009, and

of-129

fers a unique opportunity to study η′

decays. In addition

130

to η′ → π+πl+l, η→ γπ+πis also studied in order

131

to determine the ratio of B(η′ → π+πl+l) to B(η

132

γπ+π). The advantage of measuring B(η′→π+

π−l+

l−)

B(η′→γπ+π) 133

is that uncertainties due to the number of J/ψ events,

134

tracking efficiency from π±

and the radiative photon

de-135

tection efficiency cancel.

136

II. THE EXPERIMENT AND MONTE CARLO

137

SIMULATION

138

BEPCII is a double-ring e+e

collider designed for a

139

peak luminosity of 1033 cm−2s−1 at the center of mass

140

energy of 3770 MeV. The cylindrical core of the

BE-141

SIII detector consists of a helium-gas-based drift

cham-142

ber (MDC) for charged track and particle identification

143

(PID) by dE/dx, a plastic scintillator time-of-flight

sys-144

tem (TOF), and a 6240-crystal CsI(Tl) Electromagnetic

145

Calorimeter (EMC) for electron identification and

pho-146

ton detection. These components are all enclosed in a

su-147

perconducting solenoidal magnet providing a 1.0-T

mag-148

netic field. The solenoid is supported by an octagonal

149

flux-return yoke with resistive-plate-counter muon

detec-150

tor modules (MU) interleaved with steel. The

geometri-151

cal acceptance for charged tracks and photons is 93% of

152

4π, and the resolutions for charged track momentum and

153

photon energy at 1 GeV are 0.5% and 2.5%, respectively.

154

More details on the features and capabilities of BESIII

155

are provided in Ref. [9].

156

The estimation of backgrounds and the determinations

157

of detection efficiencies are performed through Monte

158

Carlo (MC) simulations. The BESIII detector is

mod-159

eled with the geant4 [10, 11]. The production of the

160

J/ψ resonance is implemented with MC event

genera-161

tor kkmc [12, 13], while the decays are performed with

162

evtgen [14]. The possible hadronic backgrounds are

163

studied using a sample of J/ψ inclusive events in which

164

the known decays of the J/ψ are modeled with

branch-165

ing fractions being set to the world average values in

166

PDG [3], while the unknown decays are generated with

167

the lundcharm model [15]. For η′→ π+πl+ldecays,

168

a model [16] based on theoretical calculations using the

169

vector meson dominant model with infinite-width

correc-170

tions and pseudoscalar meson mixing [7] was developed.

171 III. ANALYSIS 172 A. η′ → π+ π− l+ l− 173

The final state in this analysis is γπ+πl+l, with

174

l being an electron or a muon. The charged tracks in

175

the polar angle range | cos θ| < 0.93 are reconstructed

176

from hits in the MDC. Good charged tracks are required

177

to pass within ±10 cm of the interaction point in the

178

beam direction and ±1 cm in the plane perpendicular

179

to the beam. Photon candidates are reconstructed by

180

clustering the EMC crystal energies. The minimum

en-181

ergy is 25 MeV for barrel showers (| cos θ| < 0.8) and

182

50 MeV for end-cap showers (0.86 < | cos θ| < 0.92).

183

To eliminate the showers from charged particles, a

pho-184

ton must be separated by at least 15◦

from any good

185

charged track. An EMC timing requirement is used

186

to suppress noise and energy deposits unrelated to the

187

event. Candidate events are required to contain exactly

188

four good charged tracks with zero net charge and at

189

least one good photon. To determine the species of the

190

final state particles and select the best photon when

ad-191

ditional photons are found in an event, the combination

192

with the minimum value of χ2γπ+πl+l− is retained. Here 193 χ2 γπ+πl+l− = χ 2 4C+ P4

j=1χ2PID(j) is the sum of the

chi-194

square from the four-constraint (4C) kinematic fit, and

195

that from PID, formed by combining TOF and dE/dx

in-196

formation of each charged track for each particle

hypoth-197

esis (pion, electron, or muon). Events with χ2

4C < 75 are

198

kept as γπ+π

l+l

candidates. A 4C kinematic fit

un-199

der the hypothesis of γ2(π+π

) is also performed, and

200

χ2

γ2(π+π−) > χ2γπ+πl+l− is required to reject possible 201

background events from J/ψ → γ2(π+π

). 202 ) 2 ) (GeV/c -e + e + π M( 0.9 0.92 0.94 0.96 0.98 1 1.02 ) 2 Events / (2 MeV/c 0 50 100 150 200 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

(a)

) 2 ) (GeV/c + π M( 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ) 2 Events / (10 MeV/c 0 10 20 30 40 50 60 70 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

(b)

FIG. 1: Kinematical distributions for the η′

to π+π− e+e− decay: The invariant mass distributions of (a) π+

π− e+ e− and (b) π+ π−

. Dots with error bars represent the data; the shaded area is MC signal shape, the dashed histogram is the η′

→ γρ0

(π+ π−

) MC line shape, and the solid histogram is the sum

of MC signal and MC background from η′

→ γρ0 (π+

π− ). Both of these MC simulations are normalized to the yields found in Table I.

A very clear η′ signal is observed in the π+πe+e

203

invariant mass distribution, shown in Fig. 1(a) after

204

the above event selection. MC study shows that the

205

dominant background events come from J/ψ → γη′,

206

η′ → γπ+πwith the ηphoton subsequently converted

207

into an electron-positron pair; this background is

dis-208

played as the dashed histogram in Fig.1(a). The di-pion

209

invariant mass distribution, which is shown in Fig.1(b),

210

shows good agreement between data and MC

simula-211

tion. Figure 2 displays the e+emass spectrum after

212

requiring |M (π+πe+e) − m(η)| < 0.02 GeV/c2; the

213

background from γπ+π−

conversions can be easily

distin-214

guished. The enhancement close to e+e

mass threshold

215

corresponds to the signal from the η′

→ π+π

e+e

de-216

cay, and the clear peak around 0.015 GeV/c2comes from

(4)

) 2 ) (GeV/c -e + M(e 0 0.02 0.04 0.06 0.08 0.1 ) 2 Events / ( 1 MeV/c 0 20 40 60 80 100 120 FIG. 2: The e+ e−

invariant mass spectrum of data (dots with error bars) after all selection criteria are applied. The solid line represents the fit result, the dotted histogram is the MC signal shape and the shaded histogram is background obtained from η′

sideband events.

the background events of η′

→ γπ+π

where the photon

218

undergoes conversion to an e+e

pair and the electron

219

(positron)’s momentum is improperly reconstructed

as-220

suming that all the charged tracks are from the

inter-221

action point. The background contributions of J/ψ →

222

π+π

π0 and J/ψ → γπ+π

π0 are estimated from the

223

η′

sideband region (0.88 GeV/c2 < M (π+π

e+e− ) < 224 0.90 GeV/c2 or 1.02 GeV/c2 < M (π+πe+e) < 1.04 225 GeV/c2). 226

To extract the η′ → π+πe+eevents, a maximum

227

likelihood fit is performed on the observed e+e

invari-228

ant mass distribution with the signal shape described by

229

the MC generator specifically developed for this

analy-230

sis, the dominant background shape parameterized by a

231

smooth function describing the γ conversion events from

232

η′ → γπ+π, and the contribution (17 events) obtained

233

from η′

sideband fixed in the fit to account for the non-η′

234

background. The fit, shown in Fig. 2, yields 429 ± 24

235

π+π

e+e

events, and the detection efficiency obtained

236

from MC simulation is (16.94 ± 0.08)%; both are

summa-237

rized in TableI.

238

Figure 3 shows the π+πµ+µinvariant mass

spec-239

trum for candidates surviving all selection criteria. The

240

contribution from background events, mainly coming

241 from J/ψ → π0π+π− π+π− and J/ψ → γπ+π− π+π− 242

and estimated with the inclusive MC J/ψ events, is

243

shown as the dashed histogram. Although a few events

244

accumulate in the η′

mass region, they are not significant.

245

To determine the upper limit on the η′

signal, a series

246

of unbinned maximum likelihood fits is performed to the

247 mass spectrum of π+π− µ+µ− with an expected η′ signal. 248

In the fit, the line shape of the η′signal is determined by

249

MC simulation, and the background is represented with a

250

second-order Chebychev polynomial. The likelihood

dis-251

tributions of the fit are taken as the probability density

252

function (PDF) directly. The upper limit on the number

253

of signal events at the 90% C.L. is defined as NU.L,

corre-254 ) 2 ) (GeV/c + µ + π M( 0.9 0.95 1 1.05 ) 2 Events / ( 3 MeV/c 0 2 4 6 8 FIG. 3: The π+π− µ+µ

invariant mass distributions of data and MC simulation with all selection criteria applied. Dots with error bars represent the data, the solid histogram is MC signal, and the dashed line indicates inclusive MC.

sponding to the number of events at 90% of the integral

255

of the PDF. The fit-related uncertainties on NU.L are

256

estimated by using different fit ranges and different

or-257

ders of the background polynomial. The maximum one,

258

NU.L = 12, and the detection efficiency from MC

simu-259

lation, (35.47 ± 0.11)%, are used to evaluate the upper

260

limit on the branching fraction.

261 B. J/ψ → γη′ , η′ → γπ+π− 262 q FIG. 4: Scatter plot of M (γπ+

π−

) versus M (π+ π−

) for data. The final state is γγπ+π

for this mode. The charged

263

track and good photon selection are the same as those

264

described above, but no PID is applied in the event

se-265

lection. A 4C kinematic fit is performed under the

hy-266

pothesis of J/ψ → π+πγγ, and χ2

4C < 75 is required.

267

For events with more than two photon candidates, the

268

combination with the minimum χ2

4C is retained. To

re-269

ject background events with π0 in the final state, the

270

invariant mass of the two photons is required to satisfy

(5)

) 2 ) (GeV/c + π γ M( 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 ) 2 Events / (1MeV/c 0 2000 4000 6000 8000 10000 12000 ) 2 ) (GeV/c + π γ M( 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 ) 2 Events / (1MeV/c 0 2000 4000 6000 8000 10000 12000 FIG. 5: The γπ+ π−

invariant mass spectrum for data after all selection criteria are applied. The solid curve is the fit result, and the dashed line represents the background polynomial.

TABLE I: Numbers used in the branching fraction calcula-tions: the fitted signal yields, N (or 90% C.L. upper limit); the detection efficiency, ǫ.

η′ decay mode ǫ (%) N π+ π− e+ e− 16.94 ± 0.08 429 ± 24 π+ π− µ+ µ− 35.47 ± 0.11 < 12 γρ0 (π+ π− ) 45.39 ± 0.07 158916 ± 425

M (γγ) > 0.16 GeV/c2; this removes 94% background

272

while the efficiency loss is only 0.73%. The experimental

273 signature of J/ψ → γη′ (η′ → γπ+π− ) is given by the 274

radiative photon from J/ψ decays, that carries a unique

275

energy of 1.4 GeV. Consequently it is easy to distinguish

276

this photon from those from η′ decays. In this analysis,

277

the combination of γπ+πinvariant mass closest to the

278

η′

mass is chosen to reconstruct the η′

.

279

Figure 4 shows the scatter plot of M (γπ+π

) versus

280

M (π+π

) for the candidate events, where the distinct

281

η′

− ρ0 band corresponds to the decay η

→ γπ+π

. A

282

very clean η′

peak is observed in the M (γπ+π

)

distri-283

bution, as displayed in Fig. 5. The peak is fitted with

284

the MC simulated signal shape convolved with a

Gaus-285

sian mass resolution function to account for the difference

286

in mass resolution between data and MC simulations,

287

plus a second-order Chebychev polynomial background

288

shape. The fit, shown as the smooth curve in Fig. 5

289

gives 158916 ± 425 η′

→ γπ+π−

events, and the

detec-290

tion efficiency, (45.39 ± 0.07)%, is obtained from the MC

291

simulation; these are tabulated in Table I. In the

simu-292

lation of η′

→ γπ+π

, since the resonant contribution

293

from ρ0→ π+πis insufficient to describe the data, the

294

non-resonant contribution (known as the ”box anomaly”)

295

is also included using a decay rate formula [17] deduced

296

from the ones used in Refs. [18–20]. With the parameters

297

tuned with data, the comparison of the simulated dipion

298

mass spectrum to data in Fig.6 shows good agreement.

299 ) 2 ) (GeV/c + π M( 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ) 2 Events / (10 MeV/c 0 2000 4000 6000 8000

FIG. 6: The comparison of the simulated π+π

mass spec-trum with data. Dots with error bars are data within the η′

region ( [0.938, 0.978] GeV/c2

), the dashed histogram is background obtained from the η′

sideband, and the solid his-togram represents the MC simulation.

IV. SYSTEMATIC ERRORS

300

In the measurement of the ratio of the branching

frac-301

tions, the possible systematic error sources and the

cor-302

responding contributions are discussed in detail below.

303

• Form factor uncertainty. In the MC generator

304

used to determine the detection efficiency of η′

305

π+πl+l, the VMD factor defined for the

hid-306

den gauge model is introduced to account for the

307

contribution from the ρ0 meson. The detection

ef-308

ficiency dependence is evaluated by replacing the

309

factor above with the modified VMD factors

de-310

noted in Ref. [7]. The maximum change of the

311

detection efficiencies is assigned as the systematic

312

error, which is listed in TableII.

313

• MDC tracking efficiency. Since the systematic

er-314

rors for the two charged pions cancel by measuring

315

the relative branching fraction of η′

→ π+π

l+l

316

and η′

→ γπ+π

, only the systematic error caused

317

by the MDC tracking from the leptonic pairs need

318

be considered. As the momenta of the two charged

319

leptons are quite low, it is difficult to select a

320

pure sample from data. In this analysis the MDC

321

tracking uncertainty of charged pions at low

mo-322

mentum is determined and used to estimate that

323

of the leptons by reweighting in accordance with

324

their momenta. The data sample of J/ψ → γη′

,

325

η′

→ γπ+π

is used to evaluate the data-MC

dif-326

ference of pions at low momentum and finally the

327

MDC tracking uncertainty is estimated to be 2.1%

328

for electrons and 1.6% for muons, where the

domi-329

nant contribution is from the momentum region

be-330

low 200 MeV/c. Therefore 4.2% and 3.2% are taken

331

as the systematic errors on the tracking efficiency

332

for the channels with e+eand µ+µ, respectively,

(6)

in the final states.

334

• Photon detection efficiency. The photon

detec-335

tion efficiency is studied with three independent

336 decay modes, ψ(2S) → π+πJ/ψ (J/ψ → ρ0π0), 337 ψ(2S) → π+π− J/ψ (J/ψ → l+l− ) and J/ψ → 338

ρ0π0 [21]. The results indicate that the difference

339

between the detection efficiency of data and MC

340

simulation is within 1% for each photon. Since

341

the uncertainty from the radiative photons

can-342

cel by measuring the relative branching fraction of

343 η′ → π+π− l+l− and η′ → γπ+π− , 1% is taken 344

to be the systematic error from the photon in η′

345

decaying into γπ+π

.

346

• Particle ID. The study of the particle ID efficiency

347

of the pion is performed using the clean control

348

sample of J/ψ → π+π

π0, and indicates that the

349

pion particle ID efficiency for data agrees within 1%

350

of that of the MC simulation in the pion momentum

351

region. The particle ID efficiency of the electron

352

was checked with radiative Bhabha events, and the

353

difference between data and MC simulation is found

354

to be 1%. In this analysis, 4% is taken as the

sys-355

tematic error from the particle ID efficiency of the

356

four charged tracks in η′ decaying into π+πl+l.

357

• Kinematic fit. The clean sample J/ψ → φη (φ →

358

K+K

, η → π+π

π0) selected without a

kine-359

matic fit is used to estimate the systematic error

360

associated with the 4C kinematic fit. The

differ-361

ence between data and MC is determined to be

362

(0.47 ± 1.45)%, with χ2 < 75. In this paper, 1.9%

363

is taken to be the systematic error from the

kine-364

matic fit for the analyzed decays of J/ψ → γη′

365 (η′ → π+π− l+l− ). For J/ψ → γη′ , η′ → γπ+π− 366

channel, the 4C kinematic fit uncertainty is

esti-367

mated to be less than 0.7% using the control

sam-368

ple J/ψ → ρπ. Thus, the error from kinematic fit

369

is, 2.0%, the sum of them added in quadrature.

370

• Background uncertainty. Studies have shown that

371

the mass resolution of γπ+π

, as simulated by the

372

MC, is underestimated. To evaluate the systematic

373

effect associated with this, the invariant mass of

374

γπ+π

in the MC sample is smeared with a

Gaus-375

sian function, where the width of this Gaussian is

376

floated in the fit. The change of the result, 0.9%,

377

is assigned to be the systematic error.

378

• η′

mass window requirement. Another source

379

of systematic uncertainty is the requirement on

380

the η′

mass window selection |M (π+π

e+e

) −

381

m(η′)| < 0.02 GeV/c2. The uncertainty is

stud-382

ied using a looser requirement of 0.90 GeV/c2 <

383

M (π+π−

e+e−

) < 1.02 GeV/c2, and an uncertainty

384

of 2.0% is assigned for this item.

385

• Uncertainty of the number of η′

→ γπ+π

events

386

(Nη′→γπ+π−). The uncertainty from this item, 387

TABLE II: Impact (in %) of the systematic uncertainties on the measured branching fractions.

Sources η′ → π+ π− e+ e− η′ → π+ π− µ+ µ−

Form factor uncertainty 0.2 0.3

MDC tracking 4.2 3.2 Photon detection 1.0 1.0 PID 4.0 4.0 4C kinematic fit 2.0 2.0 Background uncertainty 0.9 – η′ mass window 2.0 – Nη′→γπ+π− 0.5 0.5 MC statistics 0.6 0.4 Total 6.6 5.6

0.5%, contains the error due to the π0 veto cut

388

(M (γγ) > 0.16 GeV/c2) and the fit-related error.

389

Except for the systematic uncertainties studied above,

390

a small uncertainty due to the statistical error of the

effi-391 ciencies in η′ → π+π− l+l− and η′ → γπ+π− is also con-392

sidered; all errors are summarized in TableII. The total

393

systematic error is the sum of them added in quadrature.

394

V. RESULTS

395

The ratio (upper limit) of B(η′ → π+πl+l) to

B(η′→ γπ+π) is calculated with B(η′ → π+π− l+l− ) B(η′→ γπ+π) = Nη′→π+πl+l−/ǫη′→π+πl+l− Nη′→γπ+π−/ǫη′→γπ+π− , where Nη′→π+πl+l− and Nη′→γπ+π− are the observed 396

events (or the 90% C.L. upper limit) of η′ → π+πl+l

397

and η′

→ γπ+π

, and ǫη′→π+π−l+l− and ǫη′→γπ+π− are 398

the corresponding detection efficiencies. With the

num-399

bers given in TableI, the ratio B(ηB(η′→′→π+γππ−+eπ+−e)−) is

deter-400

mined to be (7.2 ± 0.4 (stat.) ± 0.5 (syst.)) × 10−3, where

401

the first error is the statistical error from Nη′→π+πl+l− 402

and Nη′→γπ+π−. To calculate the upper limit, the sys-403

tematic error is taken into account by a factor of 1−δ1

syst.

404

Therefore the upper limit, 1.0 × 10−4, on the ratio

405

B(η′→π+

π−e+

e−)

B(η′→γπ+π−) is given at the 90% confidence level.

406 VI. SUMMARY 407 The measurements of η′ → π+π− l+l− , l± = (e± , µ± ) 408

are performed using the sample of 225.3 million J/ψ

409

events collected with the BESIII detector. A clear

410

signal is observed in the invariant mass spectrum of

411

π+π

e+e

, and the ratio B(ηB′(η→′→π+γππ−+eπ+−e)−) is determined 412

to be (7.2 ± 0.4 (stat.) ± 0.5 (syst.)) × 10−3. Using

413

the PDG world average of B(η′

→ γπ+π

) and its

un-414

certainty [3], the branching fraction is measured to be

415

B(η′→ π+πe+e) = (2.11±0.12 (stat.)±0.15 (syst.))×

(7)

10−3 which is consistent with the theoretical predictions

417

and previous measurement, but with the precision

im-418

proved significantly. The mass spectra of π+πand

419

e+eare also consistent with the theoretical predictions

420

that Mπ+π− is dominated by ρ0, and Me+e− has a peak 421

just above 2me with a long tail. No evidence for η′

422

decaying into π+π

µ+µ

is found, and an upper limit

423 of 1.0 × 10−4 on the ratio of B(η′π+ π−µ+ µ−) B(η′→γπ+π) is ob-424

tained at the 90% confidence level. The corresponding

425

branching fraction upper limit of η′

→ π+π− µ+µ− is 426 B(η′ → π+π− µ+µ− ) < 2.9 × 10−5. 427 VII. ACKNOWLEDGMENT 428

The BESIII collaboration thanks the staff of BEPCII

429

and the computing center for their hard efforts. This

430

work is supported in part by the Ministry of Science and

431

Technology of China under Contract No. 2009CB825200;

432

National Natural Science Foundation of China (NSFC)

433

under Contracts Nos. 10625524, 10821063, 10825524,

434

10835001, 10935007, 10979033, 10979012, 11175189,

435

11125525, 11235011; Joint Funds of the National

Nat-436

ural Science Foundation of China under Contracts Nos.

437

11079008, 11179007; the Chinese Academy of Sciences

438

(CAS) Large-Scale Scientific Facility Program; CAS

un-439

der Contracts Nos. KJCX2-YW-N29, KJCX2-YW-N45;

440

100 Talents Program of CAS; German Research

Foun-441

dation DFG under Contract No. Collaborative Research

442

Center CRC-1044; Istituto Nazionale di Fisica Nucleare,

443

Italy; Ministry of Development of Turkey under

Con-444

tract No. DPT2006K-120470; U. S. Department of

En-445

ergy under Contracts Nos. FG02-04ER41291,

DE-446

FG02-05ER41374, DE-FG02-94ER40823; U.S. National

447

Science Foundation; University of Groningen (RuG) and

448

the Helmholtzzentrum fuer Schwerionenforschung GmbH

449

(GSI), Darmstadt; WCU Program of National Research

450

Foundation of Korea under Contract No.

R32-2008-000-451

10155-0. This paper is also supported by the Natural

452

Science Foundation of Shandong Province, China under

453

Contracts Nos. 2009ZRB02465.

454

[1] G. R. Kalbfleisch et al., Phys. Rev. Lett. 12, 527 (1964).

455

[2] M. Goldberg et al., Phys. Rev. Lett. 12, 546 (1964).

456

[3] J. Beringer et al., Phys. Rev. D 86, 010001 (2012).

457

[4] P. Naik et al., Phys. Rev. Lett. 102, 061801 (2009).

458

[5] A. Faessler, C. Fuchs, M. I. Krivoruchenko, Phys. Rev.

459

C 61, 035206 (2000).

460

[6] B. Borasoy, R. Nissler, Eur. Phys. J. A 33, 95 (2007).

461

[7] T. Petri, arXiv:1010.2378 [nucl-th].

462

[8] M. Ablikim et al., Chin. Phys. C 36, 915 (2012).

463

[9] M. Ablikim et al., Nucl. Instrum. Meth. A 614, 345

464

(2010).

465

[10] S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250

466

(2003).

467

[11] J. Allison, K. Amako, J. Apostolakis, H. Araujo,

468

P. Dubois et al., IEEE Trans. Nucl. Sci. 53, 270 (2006).

469

[12] S. Jadach, B. Ward, Z. Was, Comput. Phys. Commun.

470

130, 260 (2000).

471

[13] S. Jadach, B. Ward, Z. Was, Phys. Rev. D 63, 113009

472

(2001).

473

[14] R. G. Ping et al., Chin. Phys. C 32, 599 (2008).

474

[15] J. C. Chen et al., Phys. Rev. D 62, 1 (2000).

475

[16] Z. Y. Zhang, L. Q. Qin, S. S. Fang, Chin. Phys. C 36,

476 926 (2012). 477 [17] dΓ dm∝ k 3 γq 3 π(m)|BWρGS(1 + δm 2 m2 ρBWω) + β| 2 , where kγ is 478

the photon energy and qπ(m) is the momentum of pion in

479

the π+ π−

rest frame. BWGS

ρ is the Breit-Wigner

dsitri-480

bution in GS parameterazation [22]. |δ| represents the

481

contribution from ω resonance and the complex phase of

482

δ represents the interference between ω and ρ(770)

reso-483

nance. mρis the mass of the ρ(770) resonance. β

repre-484

sents the contribution from the non-resonance.

485

[18] A. Abele et al., Phys. Lett., B402, 195 (1997).

486

[19] R. R. Akhmetshin et al., Phys. Lett., B527, 161 (2002).

487

[20] M. Benayoun et al., Z. Phys. C58, 31 (1993).

488

[21] M. Ablikim et al., Phys. Rev. D 83, 112005 (2011).

489

[22] G. J. Gounaris, J. J. Sakurai, Phys. Rev. Lett. 21, 244

490

(1968).

Şekil

FIG. 1: Kinematical distributions for the η ′
Figure 3 shows the π + π − µ + µ − invariant mass spec-
TABLE I: Numbers used in the branching fraction calcula- calcula-tions: the fitted signal yields, N (or 90% C.L
TABLE II: Impact (in %) of the systematic uncertainties on the measured branching fractions.

Referanslar

Benzer Belgeler

ÇalıĢma bulguları ıĢığında ĠSG açısından hastane ortamında sağlık çalıĢanlarını kas ve iskelet sistemi rahatsızlıkları ve tükenmiĢliğin etkilerine

Yürürlüğe giren bu yasa hastanelerde verilen sağlık hizmetleri ile ilgili çok tehlikeli işler sınıfı olarak dâhil edilmiş olup, uygulamaların nasıl

For example, the reasons why they chose Turkey as their destination, types of health procedures, travel companions, relationships between sociodemographic

İş zenginleştirme, iş genişletme gibi iş tasarımı yöntemleri ile işin yeniden düzenlenmesi, kararlara katılımın sağlanması, çalışanın kurumun strateji

GP’nin dış kısmı şekilde olduğu gibi D2 tip hücreler tarafından bastırılırsa ateşleme miktarları düşer ve (1) GP’nin iç kısmına olan baskılamaları azalır

We searched the answer of this question in our study by thinking about new market type (two-sided markets) which has -sided markets (especially Armstrong (2006)) and show

implant sites in our case was deemed adequate, and good primary stabilization of implants was observed. Regions were prepared with copious irrigation and light

Benzer analizler Trieste ve civarı için yapıldığında İstanbul‟dan farklı olarak büyük ve küçük ölçekli olaylar orta ölçekli olaylarla birlikte NDVI zaman