• Sonuç bulunamadı

On the periods of some figurate numbers

N/A
N/A
Protected

Academic year: 2021

Share "On the periods of some figurate numbers"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Selçuk J. Appl. Math. Selçuk Journal of Vol. 12. No. 2. pp. 71-80, 2011 Applied Mathematics

On the Periods of Some Figurate Numbers Omur Deveci1, Erdal Karaduman2

1Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100

Kars, Turkiye

e-mail: o deveci36@ hotm ail.com

Department of Mathematics, Faculty of Science, Atatürk University, 25240 Erzurum, Turkiye

e-mail: edum an@ atauni.edu.tr

Received Date:December 7, 2010 Accepted Date: October 19, 2011

Abstract. The number which can be represented by a regular geometrical arrangement of equally spaced point is defined as figurate number. Each of polygonal, centered polygonal and pyramidal numbers is a class of the series of figurate numbers. In this paper, we obtain the periods of polygonal, centered polygonal and pyramidal numbers by reducing each element of these numbers modulo m.

Key words: Period, polygonal number, centered polygonal number, pyramidal number.

2000 Mathematics Subject Classification: 11B75, 11B50. 1. Introduction

The figurate numbers have a very important role to solve some problems in num-ber theory and to determine speciality of some numnum-bers, see for example, [8,9]. The polygonal numbers, the centered polygonal numbers, the pyramidal num-bers and their properties have been studied by some authors, see for example, [1,3,6,15]. The study of Fibonacci numbers by reducing modulo m began with the earlier work of Wall [13] where the periods of Fibonacci numbers according to modulo m were obtained. The theory is expanded to 3-step Fibonacci se-quence by Özkan, Aydin and Dikici [11]. Lü and Wang [10] contributed to study of the Wall number for the k−step Fibonacci sequence. Deveci and Karaduman [5] extended the concept to Pell numbers. Now we extend the concept to the polygonal numbers, the centered polygonal numbers and the pyramidal numbers which are classes of the series of figurate numbers.

(2)

A sequence is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The number of elements in the repeating subsequence is called the period of the sequence. For example, the sequence a, b, c, b, c, b, c, · · · is periodic after the initial element a and has period 2. A sequence is simply periodic with period n if the first n elements in the sequence form a repeat-ing subsequence. For example, the sequence a, b, c, a, b, c, a, b, c, , · · · is simply periodic with period 3.

We have the following formulas for the polygonal numbers, the centered polyg-onal numbers and the pyramidal numbers:

Let k be the number of sides in a polygon. The nthk−gonal number is obtained by the formula P (k, n) = (k 2− 1)n 2 − µ k 2− 2 ¶ n.

A polygonal number is a number represented as dots or pebbles arranged in the shape of a regular polygon. We obtain nth triangular number, nth square number, nthpentagonal number, · · · for k = 3, 4, 5, · · · . For more information on k−gonal numbers, see [12].

The nth centered k−gonal number is obtained by the formula C (k, n) =kn

2 (n − 1) + 1.

A centered polygonal number formed by a central dot, surrounded by polygonal layers with a constant number of sides. Each side of a polygonal layer contains one dot more than a side in the previous layer, so starting from the second polygonal layer each layer of a centered k−gonal number contains k more points than the previous layer. We obtain nthcentered triangular number, nthcentered square number, nth centered pentagonal number, · · · for k = 3, 4, 5, · · · . For more information on centered k−gonal numbers, see [2].

The nthk−gonal pyramidal number is obtained by formula Pn(k)= n 2 2 + n 3 µ k 6− 1 3 ¶ − n µ k − 5 6 ¶ .

A pyramidal number represents a pyramid with a base and given number of sides. We obtain nthtriangular pyramidal number, nthsquare pyramidal num-ber, nth pentagonal pyramidal number, · · · for k = 3, 4, 5, · · · . For more infor-mation on k−gonal pyramidal numbers, see [14].

In this paper, the usual notation p is used for a prime number. 2. Polygonal Numbers

In this section, we obtain the lengths of the periods of k−gonal numbers modulo m. The notation LP(m) denote the length of the smallest period which the period is obtained each element of the polygonal numbers by reducing modulo m for k ≥ 3.

(3)

Theorem 2.1. Let k ≡ 0 (mod 4). The lengths of the periods of the polygonal numbers are as follows:

i. For u ∈ N, LP(2u) = ½

2 for u = 1, 2u−1 for u > 2. ii. If p 6= 2 and θ ∈ N, then LP¡pθ¢= pθ. iii. If m = Qti=1pei

i (t ≥ 1) where pi’s are distinct primes, then LP(m) = lcm [LP(peii)].

Proof. We prove this by direct calculation. Since k ≡ 0 (mod 4) and k ≥ 3, k = 4 , ( ∈ N).

i. Since

P (4 , n) (mod 2) ≡£(2 − 1) n2− (2 − 2) n¤ (mod 2) ≡ 0 (mod 2) for n is even and

P (4 , n) (mod 2) ≡£(2 − 1) n2− (2 − 2) n¤ (mod 2) ≡ 1 (mod 2) for n is odd, LP(2) = 2. If u > 1, then P¡4 , 2u−1¢ (mod 2u) ≡h(2 − 1)¡2u−1¢2+ (2 − 2) 2u−1i (mod 2u) ≡ ≡£2u ¡2u−1− 1¢+ 21 − 2u−2¢¤ (mod 2u) ≡ 0 (mod 2u) , P¡4 , 2u−1+ 1¢ (mod 2u) ≡ ≡h(2 − 1)¡2u−1+ 1¢2+ (2 − 2)¡2u−1+ 1¢i (mod 2u) ≡ ≡£2u¡ + 2u−1− 2u−2¢+ 1¤ (mod 2u) ≡ 1 (mod 2u) , · · · , P¡4 , 2u−1+ n¢ (mod 2u) ≡ ≡h(2 − 1)¡2u−1+ n¢2+ (2 − 2)¡2u−1+ n¢i (mod 2u) ≡ ≡£2u¡2u−1 + 2 n − 2u−2− n − + 1¢+ 1¤ (mod 2u) +(2 − 1) n2+ (2 − 2) n¤ (mod d 2u) ≡ ≡£(2 − 1) n2+ (2 − 2) n¤ (mod 2u) ≡ P (4 , n) (mod 2u) . So, we get LP(2u) = 2u−1.

ii. The proof is similar to the proof of i. and is omitted. iii. Let lcm [LP(peii)] = β.

P (4 , β) (mod m) ≡£(2 − 1) β2+ (2 − 2) β¤ (mod m) ≡ 0 (mod m) , P (4 , β + 1) (mod m) ≡h(2 − 1) (β + 1)2+ (2 − 2) (β + 1)i (mod m) ≡ ≡£β2(2 − 1) + 1¤ (mod m) ≡ 1 (mod m) , · · · ,

P (4 , β) (mod m) ≡£(2 − 1) β2+ (2 − 2) β¤ (mod m) ≡ 0 (mod m) , P (4 , β + 1) (mod m) ≡h(2 − 1) (β + 1)2+ (2 − 2) (β + 1)i (mod m) ≡ ≡£β2(2 − 1) + 1¤ (mod m) ≡ 1 (mod m) , · · · ,

(4)

P (4 , β + n) (mod m) ≡h(2 − 1) (β + n)2+ (2 − 2) (β + n)i (mod m) ≡ ≡ [β (2 β + 4 n − β − 2n − 2 + 2) + 1] (mod m) +

(2 − 1) n2+ (2 − 2) n¤ (mod m) ≡

≡£(2 − 1) n2+ (2 − 2) n¤ (mod m) ≡ P (4 , n) (mod m) . So, we get LP(m) = lcm [LP(peii)].

Theorem 2.2:Let k ≡ 2 (mod 4). Then LP(m) = m for m ≥ 2.

Proof: We prove this by direct calculation. Since k ≡ 2 (mod 4) and k ≥ 3, k = 4 + 2, ( ∈ N).

P (4 + 2, m + n) (mod m) ≡h(2 ) (m + n)2+ (2 − 1) (m + n)i (mod m) ≡ ≡ m (2 m + 2n − 2 − 1) (mod m) +h(2 ) (n)2+ (2 − 1) (n)i (mod m) ≡ ≡ P (4 + 2, n) (mod m) .

So, we get LP(m) = m.

Theorem 2.3. Let k ≡ 1 (mod 4) or k ≡ 3 (mod 4). The lengths of the periods of the polygonal numbers are as follows:

i. For u ∈ N, LP(2u) = 2u+1.

ii. If p 6= 2 and θ ∈ N, then LP¡pθ¢= pθ. iii. If m = Qti=1pei

i (t ≥ 1) where pi’s are distinct primes, then LP(m) = lcm [LP(peii)].

Proof. The proof is similar to the proof of Theorem 2.1. and is omitted. 3. Centered Polygonal Numbers

In this section, we obtain the lengths of the periods of centered k−gonal numbers modulo m. The notation LCP(m) denote the length of the smallest period which the period is obtained each element of the centered polygonal numbers by reducing modulo m for k ≥ 3.

Theorem 3.1. Let k ≡ 0 (mod 4) that is k = 2α.pe1

1 .p e2

2 . · · · .p et

t , α ≥ 2 such that p1, p2, · · · , ptare distinct primes and e1, e2, · · · , etare 0 or positive integers. The lengths of the periods of the centered polygonal numbers are as follows: i. For u ∈ N, LCP(2u) =

½

1 for u ≤ α, 2u−1 for u > α. ii. If v ∈ N such that 1 ≤ v ≤ t and λ ∈ N, then LCP

¡ pλ v ¢ = ½ 1 for λ ≤ ev, pλ−ev v for λ > ev. iii. If p 6= 2, p1, p2, · · · , ptand θ ∈ N, then LCP¡pθ¢= pθ.

(5)

Proof. We prove this by direct calculation. Since k ≡ 0 (mod 4) and k ≥ 3, k = 2α.pe1 1 .p e2 2 . · · · .p et

t , α ≥ 2 such that p1, p2, · · · , pt are distinct primes and e1, e2, · · · , et are 0 or positive integers.

i. If u ≤ α, then C (k, n) (mod 2u) ≡ ∙ k 2n (n − 1) + 1 ¸ (mod 2u) ≡ 1 (mod 2u) . So, we get LCP(2u) = 1. If u > α, then

C¡k, 2u−1¢ (mod 2u) ≡£k22u−1¡2u−1− 1¢+ 1¤ (mod 2u) ≡ 1 (mod 2u) , C¡k, 2u−1+ 1¢ (mod 2u) ≡£k 2 ¡ 2u−1+ 1¢2u−1+ 1¤(mod 2u) ≡ 1 (mod 2u) , · · · , C¡k, 2u−1+ n¢ (mod 2u) ≡£k2¡2u−1+ n¢ ¡2u−1+ n − 1¢+ 1¤(mod 2u) ≡ ≡£k2 ¡ 2un + 2u−1¡2u−1− 1¢¢¤ (mod 2u) +£k 2n (n − 1) + 1 ¤ (mod 2u) ≡ ≡£k2n (n − 1) + 1 ¤ (mod 2u) ≡ C (k, n) (mod 2u) . So, we get LCP(2u) = 2u−1.

ii. If λ ≤ ev and 1 ≤ v ≤ t, then C (k, n) ¡mod pλv¢ ∙ k 2n (n − 1) + 1 ¸ ¡ mod pλv¢≡ 1¡mod pλv¢. So, we get LCP ¡ pλ v ¢ = 1. If λ > ev and 1 ≤ v ≤ t, then C¡k, pλ−ev v ¢ ¡ mod pλ v ¢ ≡£k2pλv−ev ¡ pλ−ev v − 1 ¢ + 1¤ ¡mod pλ v ¢ ≡ 1¡mod pλ v ¢ , C¡k, pλ−ev v + 1 ¢ ¡ mod pλ v ¢ ≡ ≡£k2 ¡ pλ−ev v + 1 ¢ pλ−ev v + 1 ¤ ¡ mod pλv¢≡ 1¡mod pλv¢, · · · , C¡k, pλ−ev v + n ¢ ¡ mod pλ v ¢ ≡ ≡£k2 ¡ pλ−ev v + n ¢ ¡ pλ−ev v + n − 1 ¢ + 1¤ ¡mod pλv ¢ ≡ ≡£k2 ¡ 2npλ−ev v + pλv−ev ¡ pλ−ev v − 1 ¢¢¤ ¡ mod pλ v ¢ + +£k2n (n − 1) + 1¤ ¡mod pλv ¢ ≡ ≡£k2n (n − 1) + 1 ¤ ¡ mod pλ v ¢ ≡ C (k, n) ¡mod pλ v ¢ . So, we get LCP¡pλv ¢ = pλ−ev v . iii. If p 6= 2, p1, p2, · · · , pt, then

C¡k, pθ¢ ¡mod pθ¢£k2pθ¡pθ− 1¢+ 1¤ ¡mod pθ¢≡ 1¡mod pθ¢, C¡k, pθ+ 1¢ ¡mod pθ¢£k 2 ¡ pθ+ 1¢pθ+ 1¤ ¡mod pθ¢≡ 1¡mod pθ¢, · · · , C¡k, pθ+ n¢ ¡mod pθ¢£k2¡pθ+ n¢ ¡pθ+ n − 1¢+ 1¤ ¡mod pθ¢ ≡£k2 ¡ 2npθ+ pθ¡pθ− 1¢¢¤ ¡mod pθ¢+£k 2n (n − 1) + 1 ¤ ¡ mod pθ¢ ≡£k2n (n − 1) + 1 ¤ ¡ mod pλvpθ¢≡ C (k, n) ¡mod pθ¢.

(6)

So, we get LCP ¡

pθ¢= pθ.

Theorem 3.2. Let k ≡ 2 (mod 4) that is k = 2.pe1

1 .pe22. · · · .pett such that p1, p2, · · · , pt are distinct primes and e1, e2, · · · , et are positive integers. The lengths of the periods of the centered polygonal numbers are as follows: i. For u ∈ N, LCP(2u) =

½

1 for u = 1, 2u for u > 1.

ii. If v ∈ N such that 1 ≤ v ≤ t and λ ∈ N, then LCP¡pλv ¢ = ½ 1 for λ ≤ ev, pλ−ev v for λ > ev. iii. If p 6= 2, p1, p2, · · · , ptand θ ∈ N, then LCP¡pθ¢= pθ.

Proof. We prove this by direct calculation. Since k ≡ 2 (mod 4) and k ≥ 3, k = 2.pe1

1 .p e2

2 . · · · .p et

t such that p1, p2, · · · , pt are distinct primes and e1, e2, · · · , et are positive integers.

i. C (k, n) (mod 2) ≡£k

2n (n − 1) + 1 ¤

(mod 2) ≡ 1 (mod 2). So, we get LCP(2) = 1. If u > 1, then

C (k, 2u) (mod 2u) ≡£k 22u(2u− 1) + 1 ¤ (mod 2u) ≡ 1 (mod 2u) , C (k, 2u+ 1) (mod 2u) ≡£k 2(2 u+ 1) 2u+ 1¤ (mod 2u) ≡ 1 (mod 2u) , · · · , C (k, 2u+ n) (mod 2u) ≡£k 2(2u+ n) (2u+ n − 1) + 1 ¤ (mod 2u) ≡ ≡£k 2 ¡ 2u+1n + 2u(2u− 1)¢¤ (mod 2u) +£k 2n (n − 1) + 1 ¤ (mod 2u) ≡ ≡£k2n (n − 1) + 1 ¤ (mod 2u) ≡ C (k, n) (mod 2u) . So, we get LCP(2u) = 2u.

The proofs of ii. and iii. are similar to the proofs of Theorem 3.1. ii. and Theorem 3.1.iii., respectively and are omitted.

Theorem 3.3. Let k ≡ 3 (mod 4) that is k = pe1

1 .p e2

2 . · · · .p et

t such that p1, p2, · · · , pt are distinct primes and e1, e2, · · · , et are positive integers. The lengths of the periods of the centered polygonal numbers are as follows: i. For u ∈ N, LCP(2u) = 2u+1.

ii. If v ∈ N such that 1 ≤ v ≤ t and λ ∈ N, then LCP ¡ pλ v ¢ = ½ 1 for λ ≤ ev, pλ−ev v for λ > ev. iii. If p 6= 2, p1, p2, · · · , ptand θ ∈ N, then LCP¡pθ¢= pθ.

Proof. We prove this by direct calculation. Since k ≡ 3 (mod 4), k = pe1

1 .pe22. · · · .pett such that p1, p2, · · · , ptare distinct primes and e1, e2, · · · , etare positive integers.

C¡k, 2u+1¢ (mod 2u) ≡£k22u+1¡2u+1− 1¢+ 1¤ (mod 2u) ≡ 1 (mod 2u) , C¡k, 2u+1+ 1¢ (mod 2u) ≡£k

2 ¡

2u+1+ 1¢2u+1+ 1¤ (mod 2u) ≡ 1 (mod 2u) , · · · , C¡k, 2u+1+ n¢ (mod 2u) ≡£k2¡2u+1+ n¢ ¡2u+1+ n − 1¢+ 1¤ (mod 2u) ≡ ≡£k2

¡

2u+2n + 2u+1¡2u+1− 1¢¢¤ (mod 2u) +£k

2n (n − 1) + 1 ¤ (mod 2u) ≡ ≡£k2n (n − 1) + 1 ¤ (mod 2u) ≡ C (k, n) (mod 2u) .

(7)

So, we get LCP(2u) = 2u+1.

The proofs of ii. and iii. are similar to the proofs of Theorem 3.1. ii. and Theorem 3.1.iii., respectively and are omitted.

If k ≡ 1 (mod 4), then the rules are the same the rules of Theorem 3.3. The proof is similar to the proof of Theorem 3.3 and is omitted.

Theorem 3.4. If m =Qti=1pei

i (t ≥ 1) where pi’s are distinct primes, then LCP(m) = lcm [LCP(peii)].

Proof. We prove this by direct calculation. Let lcm [LCP(peii)] = β. C (k, β) (mod m) ≡£k2β (β − 1) + 1 ¤ (mod m) ≡ 1 (mod m) , C (k, β + 1) (mod m) ≡£k2(β + 1) β + 1 ¤ (mod m) ≡ 1 (mod m) , · · · , C (k, β + n) (mod m) ≡£k2(β + n) (β + n − 1) + 1 ¤ (mod m) ≡ ≡£k2β (β + 2n − 1) ¤ (mod m) +£k2n (n − 1) + 1¤ (mod m) ≡ ≡£k2n (n − 1) + 1 ¤ (mod m) ≡ C (k, n) (mod 2u) . So, we get LCP(m) = lcm [LCP(peii)]. 4. Pyramidal Numbers

In this section, we obtain the lengths of the periods of k−gonal pyramidal numbers modulo m. The notation LP Y (m) denote the length of the smallest period which the period is obtained each element of the pyramidal numbers by reducing modulo m for k ≥ 3.

Theorem 4.1. Let k ≡ 0 (mod 3) or k ≡ 1 (mod 3). The lengths of the periods of the pyramidal numbers are as follows:

i. If p = 2, 3, then LP Y (pu) = pu+1 for u ∈ N. ii. If p 6= 2, 3 and θ ∈ N, then LP Y

¡

pθ¢= pθ. iii. If m = Qti=1pei

i (t ≥ 1) where pi’s are distinct primes, then LP Y (m) = lcm [LP Y (peii)].

Proof. We prove this by direct calculation. Let k ≡ 0 (mod 3) that is k = 3 , ( ∈ N).

i. If p = 2, then we have for u ∈ N P2(3 )u+1−1 (mod 2u) ≡ ≡ ∙ (2u+1−1)2 2 + ¡ 2u+1− 1¢3¡3 6 − 1 3 ¢ −¡2u+1− 1¢ ¡3−5 6 ¢¸ (mod 2u) ≡ ≡£23u ¡

5 − 22u+3¢¤ (mod 2u) ≡ 0 (mod 2u) , P2(3 )u+1 (mod 2u) ≡ ∙ (2u+1)2 2 + ¡ 2u+1¢3¡3 6 − 1 3 ¢ −¡2u+1¢ ¡3−5 6 ¢¸ (mod 2u) ≡ ≡£23u ¡

(8)

P2(3 )u+1+1 (mod 2u) ≡ ≡ ∙ (2u+1+1)2 2 + ¡ 2u+1+ 1¢3¡3 6 − 1 3 ¢ −¡2u+1+ 1¢ ¡3−5 6 ¢¸ (mod 2u) ≡ ≡£23u ¡

5 − 22u+3¢¤+ 1 (mod 2u) ≡ 1 (mod 2u) , · · · , P2(3 )u+1+n (mod 2u) ≡ ≡ ∙ (2u+1+n)2 2 + ¡ 2u+1+ n¢3¡3 6 − 1 3 ¢ −¡2u+1+ n¢ ¡3−5 6 ¢¸ (mod 2u) ≡ ≡£23u ¡

5 − 22u+3¢ (mod 2u)¤+hn22 + n3¡36 13¢− n¡36−5¢i (mod 2u) ≡ ≡ Pn(3 ) (mod 2u) .

So, we get LP Y (2u) = 2u+1.

If p = 3, then the proof is similar to the proof of the case p = 2 and is omitted. ii. If p 6= 2, 3 and θ ∈ N, then we have

Pp(3 )u−1 (mod pu) ≡ ≡h(pu−1)2 2 + (pu− 1) 3¡3 6 − 1 3 ¢ − (pu− 1)¡3−5 6 ¢i (mod pu) ≡ ≡hp6u (5 − 2.p u) (pu+ 1)i (mod pu ) ≡ 0 (mod pu) , Pp(3 )u (mod pu) ≡ h(pu)2 2 + (p u)3¡3 6 − 1 3 ¢ − (pu)¡36−5¢i (mod pu) ≡ ≡hp6u (5 − 2.p u) (pu+ 1)i (mod pu) ≡ 0 (mod pu) , Pp(3 )u+1 (mod pu) ≡ ≡h(pu+1)2 2 + (pu+ 1) 3¡3 6 − 1 3 ¢ − (pu+ 1)¡3−5 6 ¢i (mod pu) ≡ ≡hp6u (5 − 2.p u) (pu+ 1) + 1i (mod pu ) ≡ 1 (mod pu) , · · · , Pp(3 )u+n (mod pu) ≡ ≡h(pu+n)2 2 + (pu+ n) 3¡3 6 − 1 3 ¢ − (pu+ n)¡3−5 6 ¢i (mod pu) ≡ ≡hp6u (5 − 2.pu) (pu+ 1) i (mod pu) +

+hn22 + n3¡36 13¢− n¡36−5¢i (mod 2u) ≡ Pn(3 ) (mod 2u) . So, we get LP Y

¡

(9)

iii. Let lcm [LP Y (peii)] = β. Pβ(3 )−1 (mod m) ≡h(β−1)2 2 + (β − 1)3¡3 6 − 1 3 ¢ − (β − 1)¡3−5 6 ¢i (mod m) ≡ ≡hβ6(5 − 2.β) (β + 1) i (mod m) ≡ 0 (mod m) ,

Pβ(3 ) (mod m) ≡h(β)22 + (β)3¡36 13¢− (β)¡36−5¢i (mod m) ≡ ≡hβ6(5 − 2.β) (β + 1) i (mod m) ≡ 0 (mod m) , Pβ+1(3 ) (mod m) ≡h(β+1)2 2 + (β + 1)3¡3 6 − 1 3 ¢ − (β + 1)¡3−5 6 ¢i (mod m) ≡ ≡hβ6(5 − 2.β) (β + 1) + 1 i (mod m) ≡ 1 (mod m) , · · · ,

Pβ+n(3 ) (mod m) ≡h(β+n)2 2 + (β + n)3¡36 13¢− (β + n)¡36−5¢i (mod m) ≡ h β 6(5 − 2.β) (β + 1) i (mod m) +hn22 + n3¡3 6 − 1 3 ¢ − n¡36−5 ¢i (mod m) ≡ ≡ Pn(3 ) (mod m) . So, we get LP Y (m) = lcm [LP Y (peii)].

Theorem 4.2. Let k ≡ 2 (mod 3). The lengths of the periods of the pyramidal numbers are as follows:

i. For u ∈ N, LP Y (2u) = 2u+1.

ii. If p 6= 2 and θ ∈ N, then LP Y ¡pθ¢= pθ. iii. If m = Qti=1pei

i (t ≥ 1) where pi’s are distinct primes, then LP Y (m) = lcm [LP Y (peii)].

Proof. The proof is similar to the proof of Theorem 4.1. and is omitted. 5. Open Question

Wall in [13] proved that the lengths of the periods of the recurring sequences obtained by reducing a Fibonacci sequences by a modulo m are equal to the lengths of the of ordinary 2−step Fibonacci recurrences in cyclic groups. The theory is expanded to 3-step Fibonacci sequence by Özkan, Aydin and Dikici [11]. Lü and Wang contributed to the study of the Wall number for the k-step Fibonacci sequence [10]. Some works on the concept have been made, for example, [4,7]. Deveci and Karaduman [5] extended the concept to Pell sequences in finite groups. Are there groups such that the lengths of the periods of recurrence sequences obtained by reducing according to a modulo m anyone of polygonal numbers, centered polygonal numbers and pyrimidal numbers are equal to the lengths of the periods of 2−step or k−step Fibonacci recurrences in these groups?

(10)

6. Acknowledgment

The authors thank the referee for her/his valuable suggestions which improved the presentation of the paper.

References

1. Abramovich, S., Fuji, T. and Wilson T. (1995): Multiple-Application Medium for the Study of Polygonal Numbers, Journal of Computers in Mathematics and Science, 14.4, 521-557.

2. "Centered Polygonal Numbers." September 2010. http://en.wikipedia.org/wiki/centered_number.

3. Conway, J.H. and Guy, R.K. (1996): The Book of Number, New York: Springer-Verlag, pp. 30-62.

4. Deveci, Ö., Karaduman, E. and Campbell, C. M. (2010): The periods of k-nacci sequences in centro-polyhedral groups and related groups, Ars Combinatoria, 97A, 197-210.

5. Deveci, Ö. and Karaduman E. (to appear): The Pell sequences in finite groups, Utilitas Mathematica.

6. Dickson, L.E. (2005): Polygonal, Pyramidal and Figurate Numbers in History of the Theory of Numbers, Vol.2: Diophantine Analsis., New York:Chelsea, pp. 1-39. 7. Doostie, H. and Hashemi, M. (2006): Fibonacci lengths involving the Wall number

k(n), J. Appl. Math. Comput., 20, 171-180.

8. Guy, R.K. (1994): Figutrate Number unsolsed Problems in Number Theory 2nd.ed. New York: Springer-Verlag, pp.147-150.

9. Guy, R.K. (1994): Every Number is Expressable as the Sum of How Many Polygonal Numbers, 101.2, 169-172.

10. Lü, K. and Wang, J. (2007): k-step Fibonacci sequences modulo m, Util. Math., 71, 169-178.

11. Özkan E., Aydin H. and Dikici R. (2003): 3-step Fibonacci series modulo m, Applied Mathematics and Computation, 143, 165-172.

12. Sloane, N. and Plouffe. S. (1995): The Encyclopedia of Integer Sequences, San Diego: Academic Press.

13. Wall, D.D. (1969): Fibonacci series modulom, Amer. Math. Monthly 67, 525-532. 14. Weisstein, E.W. (2010): Pyramidal Number From Mathworld-A Wolfram Web Resource. September http://mathworld.wolfram.com/PyramidalNumber.html. 15. Wunderlich, M. (1962): Certain properties of Pyramidal and Figurate Numbers, Mathematics of Computation, 16, 482-486.

Referanslar

Benzer Belgeler

Despite the elementary properties of Fibonacci and Lucas numbers are easily established, see [8], there are a number of more interesting and difficult questions

»Orak Çekiç» gazetesine yazı yazan muharrirler tevkii edildiği sırada Nâzım Hikmet Bey de aranmış, fakat kendi';, daha evvel Istanbuldan uzaklaştığı içir,

Alliance okulları, getirdiği modern eğitim sistemi ile geleneksel eğitim sistemini değiştirmiş ve Yahudi cemaati içerisinde yeni bir toplumsal sınıf

Ülkemizde Boztepe ve Çavuşoğlu tarafından Hacettepe Üniversitesi İhsan Doğramacı Çocuk Hastanesi pediatri hemşirelerinin AK engellerini araştırdıkları çalışmada

Because large retail developments offer a variety of uses of and meanings for consumption spaces, it is imperative to understand the resil- ience strategies developed by

Culture Jamming is examined from diverse perspectives including; advertising, semiotics, ideology and the analysis of

This study ascertains that an increase in uric acid level may be due to elevated level of HbA1c, metabolic syndrome, diabetes, obesity, and/or hypertension.... Substantial

Genel olarak hem 1930-1939 yılları arasında Almanya ve Türkiye’deki askerî kültür hakkında derin analizleriyle hem de siyasetin ve kültürün biçimlendirilme- sinde