• Sonuç bulunamadı

Existence, optimality and dynamics of equilibria with endogenous time preference

N/A
N/A
Protected

Academic year: 2021

Share "Existence, optimality and dynamics of equilibria with endogenous time preference"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Journal

of

Mathematical

Economics

j o u r n al ho m e p age :w w w . e l s e v i e r . c o m / l o c a t e / j m a t e c o

Existence,

optimality

and

dynamics

of

equilibria

with

endogenous

time

preference

Selman

Erol

a

,

Cuong

Le

Van

b,c,d

,

Cagri

Saglam

a,∗

aDepartmentofEconomics,BilkentUniversity,Turkey bCNRS,ParisSchoolofEconomics,France

cExeterUniversityDepartmentofEconomics,UnitedKingdom dDEPOCEN,VietNam

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received25July2009 Receivedinrevisedform 20December2010 Accepted26December2010 Available online 19 February 2011 JELclassification:

C61 D90 O41 Keywords:

Endogenoustimepreference Optimalgrowth

Competitiveequilibrium Multiplesteady-states

a

b

s

t

r

a

c

t

Thispaperstudiesthedynamicimplicationsoftheendogenousrateoftimepreferencedependingon thestockofcapital,inaone-sectorgrowthmodel.Theplanner’sproblemispresentedandtheoptimal pathsarecharacterized.Weprovethatthereexistsacriticalvalueofinitialstock,inthevicinityofwhich, smalldifferencesleadtopermanentdifferencesintheoptimalpath.Indeed,weshowthatadevelopment trapcanariseevenunderastrictlyconvextechnology.Incontrastwiththeearlycontributionsthat considerrecursivepreferences,thecriticalstockisnotanunstablesteadystatesothatifaneconomy startsatthisstock,anindeterminacywillemerge.Wealsoshowthatevenunderaconvex–concave technology,theoptimalpathcanexhibitglobalconvergencetoauniquestationarypoint.Themultipliers systemassociatedwithanoptimalpathisproventobethesupportingpricesystemofacompetitive equilibriumunderexternalityanddetailedresultsconcerningthepropertiesofoptimal(equilibrium) pathsareprovided.Weshowthatthemodelexhibitsgloballymonotonecapitalsequencesyieldinga richersetofpotentialdynamicsthantheclassicmodelwithexogenousdiscounting.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Theoptimalcapitalaccumulationmodelshavebeenatthecore

of thetheoryof economicgrowth anddynamics. Based onthe

dynamicconsumptionandsavingdecisionsoftheeconomicagents

driven by intertemporal utilitytrade-offs between current and

futureconsumption,thekeycomponentsofthesemodelsturnout

tobetherateoftimepreferenceandthetechnology.The

classi-caloptimalgrowthmodelsandmuchofthesubsequentliterature

ongrowthfocusontheconvexstructuresofthetechnologyand

preferencesthatguarantee themonotonicalconvergenceof the

sequenceofoptimalstockstowardsauniquesteadystate.Sucha

structure,however,implythatthemodelcannotbeusedto

under-standthedevelopmentpatternsthat differconsiderablyamong

countriesinthelongrun(seeQuah,1996;Barro,1997;Barroand

Sala-i-Martin,1991).

∗ Correspondingauthor.Tel.:+903122901598;fax:+903122665140. E-mailaddresses:selman@bilkent.edu.tr(S.Erol),levan@univ-paris1.fr (C.LeVan),csaglam@bilkent.edu.tr(C.Saglam).

Toaccountforthesenon-convergentgrowthpaths,avarietyof

one-sectoroptimalgrowthmodelsthatincorporatesomedegree

of marketimperfectionsbased ontechnologicalexternaleffects

and increasingreturnshavebeenpresented.Withinamodel of

capital accumulation withconvex–concave technology, Dechert

andNishimura(1983),MitraandRay(1984)havecharacterized

optimal paths and prove the existence of threshold dynamics

that generate developmentor poverty traps(see Azariadis and

Stachurski,2005,forarecentsurvey).Inthesemodels,economies

withlowinitialcapitalstocksorincomesconvergetoasteadystate

withlowpercapitaincome,whileeconomieswithhighinitial

cap-italstocksconvergetoasteadystatewithhighpercapitaincome.

Indeed,theintroductionofincreasingreturnsalsomakesitpossible

forprivatereturnstotheaccumulationofcapitalstocktobe

com-plementarywiththeaggregatestockleadingtoindeterminaciesor

continuumofequilibria(e.g.,BenhabibandPerli,1994;Benhabib

andFarmer,1996;seeNishimuraandVenditti,2006forextensive bibliography).

Ageneraltendencyinthesestudieswithmultiplesteadystates,

indeterminacyorcontinuumofequilibriaisthattheyaremostly

devotedtotheanalysisofthetechnologycomponentleavingthe

timepreferenceessentiallyunalteredwithanexogenouslyfixed

0304-4068/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jmateco.2010.12.006

(2)

geometricdiscounting.Inthispaper,yettheothermechanism,the

endogeneityoftimepreferencewillbeputforwardtoexplain

the-oreticallywhythedifferencesinpercapitaoutputlevelsamong

countriespersistinthelongrun.

Consideringthepreferencesoftheagentstoberecursive,the

earlycontributionsonthetheoryofendogenoustimepreference

postulate that anagent’s discountratedepends onthelevel of

present and future consumption (e.g.,Uzawa, 1968; Lucasand

Stokey,1984;Epstein,1987;Obstfeld,1990).Thesemodelsnearly

exclusivelyassumeanincreasingmarginalimpatiencesothatthe

agentsgetmoreimpatientastheygrowricher.Sucha

specifica-tionensuresstableoptimalcapitalsequencesthatconvergetoa

uniquesteadystateindependentoftheinitialconditions.However,

recentworkboththeoretically(e.g.,BeckerandMulligan,1997;

Stern,2006)andempirically(e.g.,Lawrance,1991;Samwick,1998; Fredericketal.,2002)proposethattheagentsgetmorepatient

astheygrowricherandimposethat thediscount ratedepends

closelyuponthestockofwealth(seeHamadaandTakeda,2009,

forarecentsurvey).Thisisinparalleltotheideathatthestockof

wealthisakeytoreachbetterhealthservicesandbetterinsurance

marketssothatthemorewealthiertheagentgets,themorepatient

itbecomes.Byconsideringdiscountfactorasafunctionof

con-sumption,Mantel(1998)studiestheimpactofdecreasingrateof

timepreferenceonoptimalgrowthpathofaneconomywitha

pri-maryfocusonthemonotonicitypropertiesofoptimalconsumption

andinvestment.Das(2003)derivesasetofsufficientconditions

forstabilityanduniquenessinthesamecontextinacontinuous

timeoptimalgrowthmodel.Stern(2006),alongthelinesofBecker

andMulligan(1997),letindividualsspendresourcestoincrease

theappreciationofthefuture.Heprovidesnumericalexamplesof

multiplesteadystatesandaconditionallysustainedgrowthpath.

In this paperweadapt theclassicoptimalgrowthmodel to

includeanendogenousrateoftimepreferencedependingonthe

stockofcapitalandanalyzetheimplicationsontheequilibrium

dynamics.Todoso,theplanner’sproblemisfirstpresentedandthe

optimalpathsarecharacterized.Weshowthatadevelopmenttrap

canariseevenunderastrictlyconvextechnology.Inotherwords,

weprovethatthereexistsacriticalvalueofinitialstock,inthe

vicinityofwhich,smalldifferencesleadtopermanentdifferences

intheoptimalpath.IncontrastwiththeearlycontributionsbyKurz

(1968),whoassumescapitaldependentpreferences,byBealsand Koopmans(1969),Iwai(1972),whoassumerecursivepreferences,

andmorerecently,byStern(2006),whoassumesendogenoustime

preferencedependingonfutureorientedresources,wenotedthat

thecriticalstockisdefinitelynotanunstablesteadystatesothat

ifaneconomystartsatthisstock,anindeterminacywillemerge.

Ontheotherhand,underasimilarconditiontothatofDechertand

Nishimura(1983),wealsoshowthatevenunderaconvex–concave

technology,theoptimalpathcanexhibitglobalconvergencetoa

uniquestationarypoint.Later,themultiplierssystemassociated

withanoptimalpathis proventobethesupportingprice

sys-temofacompetitiveequilibriumunderexternalityanddetailed

resultsconcerningthepropertiesofoptimal(equilibrium)paths

areprovided.Weshowthatthemodelexhibitsgloballymonotone

capitalsequencesyieldingarichersetofpotentialdynamicsthan

theclassicmodelwithexogenousdiscounting.

Thekeyreasonofourresultsisthatweconsiderthattherateof

timepreferencedecreaseswiththestockofwealthincontrastwith

exogenouslyfixeddiscountfactorassumedinstandardmodels.In

particular,thediscountfactorattributedtotheutilityof

consump-tionatperiodtincreaseswiththelevelofcapitalstockavailable

forproductionatperiodt.Accordingly,thelowerthestockof

cap-ital,thehigherthesacrificeofpostponingpresentconsumptionin

exchangeforfutureconsumption.InlinewithBeckerandMulligan

(1997),Stern(2006),animmediateimplicationofthisassumption

isthatastheagentgrowswealthier,thelevelofinvestmentin

capi-talthatwillbeappreciatedinthefutureincreasesandthereforethe

agentwillbecomemorepatient.Indeed,recentempiricalstudies

usingexperimentaldataalsosupportthevalidityofthishypothesis

ofwealthcausespatience(e.g.,Harrisonetal.,2002;Ikedaetal.,

2005).

Incorporatingsuchanhypothesis,animportantaspectofour

modelisthatwhileallowingvariationintherateoftime

prefer-ence,atthesametimeitmaintainstimeconsistency.Aremarkable

featureofouranalysisisthatourresultsdonotrelyon

particu-larparameterizationoftheexogenousfunctionsinvolvedinthe

model,rather,itprovidesamoreflexibleframeworkinregardsto

thediscountingoftime,keepsthemodelanalyticallytractableand

usesonlygeneralandplausiblequalitativeproperties.

Therestofthepaperisorganizedasfollows.Section2describes

themodelandprovidesthedynamicpropertiesofoptimalpaths.

Section3presentstheexistenceofacompetitiveequilibriumwith

externalityandstudiestheequilibriumdynamics.Finally,Section

4concludes.

2. Model

Themodeldiffersfromtheclassicoptimalgrowthmodelby

theassumptions ondiscounting. Ratherthanassumingthatthe

levelofdiscountonfutureutilityisanexogenousparameter,we

assumethatitisendogenousdependingonthepathofcapitalstock.

Formally,themodelisstatedasfollows:

max{ct,xt+1}t=0



t=0



t



s=1 ˇ(xs)



u(ct), subjectto

t,ct+xt+1≤f(xt),

t,ct≥0,xt≥0, x0≥0,given,

Wemakethefollowingassumptionsregardingthepropertiesof

thediscount,utilityandtheproductionfunctions.

Assumption1. ˇ:R+→R++iscontinuous,differentiable,

stric-tly increasing and satisfies supx>0ˇ(x)=ˇm<1, supx>0ˇ

(x)<+∞.

Assumption2. u:R+→R+ is continuous,twicecontinuously

differentiableandsatisfiesu(0)=0.Moreover,itisstrictly

increas-ing,strictlyconcaveandu(0)=+∞(Inadacondition).

Assumption3. f :R+→R+ is continuous, twicecontinuously

differentiableandsatisfiesf(0)=0.Moreover,itisstrictlyincreasing

andlimx→+∞f(x)<1.

Foranyinitialconditionx0≥0,whenx=(x0,x1,x2, ...)issuch

that0≤xt+1≤f(xt)forallt,wesayitisfeasiblefromx0andtheclass

ofallfeasibleaccumulationpathsisdenotedby(x0).Itmaybe

easilyverifiedthatifx0<x0,then(x0)⊂(x0).Aconsumption

sequencec= (c0,c1,...) isfeasiblefromx0≥0whenthereexists

x∈(x0)with0≤ct≤f(xt)−xt+1.

Notingthattheconstraintswillbebindingattheoptimumas

theutilityandthediscountfunctionsarestrictlyincreasing,we

introducethefunctionUdefinedonthesetoffeasiblesequencesas

U(x)= ∞



t=0



t



s=1 ˇ(xs)



u(f(xt)−xt+1). (1)

ThepreliminaryresultsaresummarizedinthefollowingLemma

whichhasastandardproofusingTychonovtheorem(seeLeVan

(3)

Lemma1. Let ¯x bethegreatestpointx≥0suchthatf(x)=x.Then,

(a)Forany x∈(x0), we have xt≤A(x0) for all t, where A(x0)=

max



x0, ¯x



.

(b)(x0)iscompactintheproducttopologydefinedonthespaceof

sequencesx.

(c)Uiswelldefinedanditiscontinuousover(x0)withrespectto

theproducttopology.

Itisnowclearthattheinitialoptimalgrowthmodelisequivalent

to:

max{U(x)|x∈(x0)}.

2.1. Existenceofoptimalpaths

Theexistence ofan optimalpath followsfromthefact that

(x0)iscompactfortheproducttopologydefinedonthespace

ofsequencesxandUiscontinuousforthisproducttopology.The

positivityofoptimalconsumptionandcapitalstockpathsfollow

fromtheInadacondition.

Proposition1.

(i)Thereexistsanoptimalpathx.Theassociatedoptimal

consump-tionpath,cisgivenby

ct=f(xt)−xt+1,

t.

(ii) Ifx0>0,everysolution(x,c)totheoptimalgrowthmodelsatisfies

ct>0,xt>0,

t. (2)

Proof. Itiseasy. 

2.2. Valuefunction,Bellmanequation,optimalpolicy

Inordertocharacterizethebehavioroftheoptimalpaths,we

willproceedbydefiningthevaluefunctionandanalyzingthe

prop-ertiesoftheoptimalpolicycorrespondence.ThevaluefunctionV

isdefinedby:

x0≥0,V(x0)=max{xt+1}∞t=0





t=0



t



s=1 ˇ(xs)



u(f(xt)−xt+1)|

t,0≤xt+1≤f(xt),x0≥0,given



. (3)

Theboundsondiscountingtogetherwiththeexistenceof

maxi-mumsustainablecapitalstockguaranteeafinitevaluefunction.

UndertheAssumption(1)andtheAssumption(2),onecan

imme-diately show that the value function is non-negative, strictly

increasingandcontinuous(seeStokeyetal.,1989).Giventhese,

Bellmanequationfollows.

Proposition2.

(i) V(0)=0,andV(x0)>0ifx0>0.Ifxisanoptimalpath,then

V(x0)= ∞



t=0



t



s=1 ˇ(xs)



u(f(xt)−xt+1).

(ii)Visstrictlyincreasing.

(iii)Viscontinuous.

Proposition3.

(i)VsatisfiesthefollowingBellmanequation:

x0≥0,V(x0)=max



u(f(x0)−x)+ˇ(x)V(x)|0≤x≤f(x0)



. (4)

(ii) Asequencex(x0)isanoptimalsolutionifandonlyifitsatisfies:

t,V(xt)=u(f(xt)−xt+1)+ˇ(xt+1)V (xt+1). (5)

Proof. SeeLeVanandDana(2003). 

Theoptimalpolicycorrespondence,:R+→R+isdefinedas

follows: (x0)=argmax



u(f(x0)−y)+ˇ(y)V(y)|y∈[0,f(x0)]



.

It is important to note that although the utility function is

strictlyconcave,thesolutionmaynotbeuniqueasthe

multiplica-tionofdiscountfunctiondestroystheconcavestructureneededfor

uniqueness.Thenon-emptinessandtheclosednessoftheoptimal

correspondenceanditsequivalencewiththeoptimalpathfollow

easilyfromthecontinuityofthevaluefunctionbyastandard

appli-cationofthetheoremofthemaximum.

Proposition4.

(i)(0)={0}.

(ii)Ifx0>0andx1∈(x0),then0<x1<f(x0).

(iii)isclosedandhenceuppersemi-continuous.

(iv)Asequencex∈(x0)isoptimalifandonlyifxt+1∈(xt),

t.

(v)The optimalcorrespondence isincreasingsothat if x0<x0,

x1∈(x0)andx1∈(x0)thenx1<x1.

Proof. (ii)Followseasilyfrom(2).(iii)FollowsfromtheTheorem

ofMaximum.(iv)Followsfrom(5).(v)SeeDechertandNishimura

(1983),orAmiretal.(1991). 

Theincreasingnessofiscrucialfortheconvergenceofoptimal

paths,hencefortheanalysisofthelong-rundynamics.In Stern

(2006),assuminganendogenous timepreference dependingon

thefuture-orientedresources,theincreasingnessofhasbeen

provenbyusingthestrictconcavityofˇ.Sucharestrictiononthe

curvatureofthediscountfunctionisnotnecessaryinoursetup.

Moreover,wehavealsoproventhattheoptimalcorrespondence,

isnotonlyclosedbutalsouppersemi-continuous.

Withthepositivityoftheoptimalconsumptionandthestockof

capital,Eulerequationeasilyfollows.

Proposition5. Whenx0>0,anysolutionx∈(x0)satisfiestheEuler

equation:

t,u(f(xt)x

t+1)=ˇ(xt+1)u(f(xt+1)−xt+2)f(xt+1)

+ˇ(x

t+1)V (xt+1) (6)

Proof. Recallthat0<xt+1<f(xt),

t.Takeanyn,andconsiderthe

pathofcapitalxydefinedasfollows:xy

t =xt,

t /=n+1andxyn+1=

y∈Y,whereY=

f−1(xn+2),f(xn)

.Notethatitisawelldefined

openinterval includingxn+1 becausext+1<f(xt)and xt+2<f(xt+1).

Bychoosingy∈Y,weguaranteethaty<f(xt)andxt+2<f(y)sothat

xy(x

0).FromtheoptimalityofxwehaveU(x)U(xy),

y∈Y.

Let(y)=U(xy).Then(y)ismaximizedatzeroinY,which

sug-geststhat(0)=0.Withsomealgebra,thisendstheproof. 

Inastandardoptimalgrowthmodelwithgeometricdiscounting

andtheusualconcavityassumptionsonpreferencesand

(4)

theproperties oftheoptimalpath iseasilyfoundby usingthe

firstorderconditionstogetherwithenvelopetheoremby

differ-entiatingthevaluefunction.However,inourmodel,theobjective

functionincludesmultiplicationofadiscountfunction.This

gen-erallydestroystheusualconcavityargumentwhichisusedinthe

proofofthedifferentiabilityofvaluefunctionandtheuniquenessof

theoptimalpaths(seeBenvenisteandScheinkman,1979;Araujo,

1991).

Tothisend,thenextpropositionshowsthatthevaluefunction

isdifferentiablealmosteverywhereandthereexistsaunique

opti-malpathfromalmosteverywherewithoutanyassumptiononthe

curvatureofˇ.

Proposition6.

(i)LeftderivativeofVexistsateveryx0>0andV−(x0)=u(f(x0)−

(x0))f(x0),where␪(x0)=min(x0).

(ii)RightderivativeofVexistsateveryx0>0andV+(x0)=u(f(x0)−

(x0))f(x0),where(x0)=max(x0).

Proof. SeeAskriandLeVan(1998);LeVanandDana(2003)forthe

proofsbasedontheClarkegeneralizedgradientsandthestandard

optimalgrowthtools,respectively. 

Nowwe are abletoseethe relationbetween

differentiabil-ityofthevaluefunctionandtheuniquenessoftheoptimalpath.

Noticethat,givenx0,ifoptimalx1isuniquesothat(x0)is

single-valuedand␪(x0)=(x0)=x1,fromtheaboveproposition,wesee

thatV

−(x0)=V+(x0),henceVisdifferentiableatx0,andviceversa.

Thisanalysiscanbegeneralizedtoanyperiodtotherthanzero.

Theseallowustoclaimthattheoptimalcorrespondenceissingle

valuedanddifferentiablealmosteverywhere.

Proposition7.

(i)Ifxisanoptimalpathfromx0,thenVisdifferentiableatanyxt,

t≥1.Ifxisanoptimalpathfromx0,thereexistsauniqueoptimal

pathfromxtforanyt≥1.

(ii)Visdifferentiableatx0>0ifandonlyifthereexistsaunique

optimalpathfromx0.

(iii) Visdifferentiablealmosteverywhere,i.e.,the optimal pathis

uniqueforalmosteveryx0>0.

(iv)isdifferentiablealmosteverywhere.

Proof. SeeLeVanandDana(2003). 

Wehaveprovedthattheoptimalcorrespondenceissingle

valuedanddifferentiablealmosteverywhere.Inadditiontothis,

wehavealsoshownthatthereexistsauniqueoptimalpathfrom

almostanyinitialcapitalstock.Theseresultswillprovetobecrucial

inanalyzingthedynamicpropertiesoftheoptimalpaths.

2.3. Dynamicpropertiesoftheoptimalpaths

Apointxsisanoptimalsteadystateifxs= (xs),sothatthe

stationary sequence xs= (xs,xs,...,xs,...) solves the problem:

max{U (xs) :xs (xs)}.Ifxsisdifferentfromzero,thenthe

asso-ciatedoptimalsteadystateconsumptionmustbestrictlypositive

fromInadacondition.Hence,fromEulerequation(6),thissteady

statewillsolve:

u(f(x)x)=ˇ(x)u(f(x)x)f(x)+ˇ(x)V (x). (7)

ByProposition3,weknowthatthestationaryplaneveryperiod

equaltoxsisoptimalfromxsifandonlyifitsatisfies

V

xs

=u(f(xs)xs)+ˇ(xs)V

xs

. (8)

Followingfrom(7)and(8),thissteadystatewillsatisfy:

u(f(x)−x)=[1−ˇ(x)][1ˇ −ˇ(x)f(x)]

(x) u

(f(x)x). (9)

Wewillnowprovethattheendogenousrateoftimepreference

preservesthemonotonicityoftheoptimalpathsandprovidethe

conditionunderwhichtheconvergencetoanoptimalsteadystate

isguaranteed.

Proposition8. Theoptimalpathxfromx0ismonotonic.

Proof. Sinceisincreasing,ifx0>x1,wehavex1>x2.By

induc-tion,xt>xt+1,

t.Ifx1>x0,usingthesameargumentyieldsxt+1>xt,

t.Nowifx1=x0,thenx0∈(x0).Recallthattheoptimalpathis

uniqueaftert=1.Sincex0∈(x0),xt=x0,

t. 

Itisimportanttonotethatthemonotonicityoftheoptimalpaths

hasbeenprovedwithoutanyassumptiononthecurvatureof

nei-thertheproductionnorthediscountfunction.Itisalready well

knownthatinmulti-sectornonclassicaloptimalgrowthmodels,

onecaneasilyrefertolatticeprogrammingandTopkistheoremin

ordertoprovethattheoptimalpathsaremonotoniciftheplanner’s

criterionfunctionissupermodular(seeAmiretal.,1991).However,

followingthisapproachinamodelwithtimepreferencedepending

onthefuture-orientedresources,Stern(2006)assumesastrictly

concavediscountfunction.

Asamonotonerealvaluedsequencewilleitherdivergeto

infin-ityorconvergetosomerealnumber,thefactthatoptimalcapital

sequencesare monotone proves tobe crucial in analyzing the

dynamicpropertiesandthelong-runbehaviorofourmodel.

Proposition9. Thereexistsanε>0suchthatifsupx>0f(x)<((1−

ε)/ˇm),anyoptimalpathconvergestozero.

Proof. Lettheoptimalpathxconvergetox>0.Then,by

consid-eringtheEulerequationast→∞,weobtain

u(f(x)x) u(f(x)−x) = [1ˇ(x)][1−ˇ(x)f(x)] ˇ(x) ≥ 1− ˇm ˇ sup

1−ˇmsup x>0f (x)

, where ˇ

sup≡supx>0ˇ(x). Note that (u/u)=(((u)2−

u.u)/(u)2)>0,i.e.,u/uisincreasing.LetB=argmax

x>0(f(x)−x).

Inaccordancewiththese,wehave:

u(f(B)−B) u(f(B)B) ≥ u(f(x)−x) u(f(x)x) ≥ 1−ˇm ˇ sup

1−ˇmsup x>0 f(x)

.

Defining ε=(ˇsup /(1−ˇm))((u(f(B)−B))/(u(f(B)−B))),

supx>0f(x)≥(1−ε/ˇm) when the optimal path converges to

x>0.Thus,supx>0f(x)<(1−ε/ˇm)impliesthattheoptimalpath

convergestozero. 

Inaclassicoptimalgrowthmodel,iff(0)≤1/ˇ,thenthe

opti-malpathconvergestozero.Asweconsidertheendogenousnature

oftimepreference andallowfornonconvexities inthe

produc-tiontechnology, we have slightlydeviated from this condition.

However,itmustbenotedthattheintervalforsupx>0f(x)that

guaranteestheconvergencetozerowillalwaysbeasubsetof(0,

1/ˇm)andthiscannotbeimprovedinanessentialway.

Wewillnow presenttheconditionunderwhich the

conver-gencetoanoptimalsteadystateis guaranteedand analyzethe

behaviorof theoptimalpathswhen we would have uniqueor

multipleoptimalsteadystates.

Proposition10. Assumex0>0.Letinfx>0ˇ(x)=ˇ.Iff(0)>1/ˇ,

thentheoptimalpathconvergestoanoptimalsteadystatexs>0.

Proof. Sinceˇ(·)isincreasing,ˇ=ˇ(0).Notethat[fˇ](·)isa

(5)

pathanditconvergestozero.Since[fˇ](·)iscontinuous,there

existsNsuchthatn>Nimpliesf(xn)ˇ(xn)>1.

IfxisanoptimalpaththenitsatisfiestheEulerequation.Hence,

foreveryt,inparticular,fort≥N,wehave:

u(f(xt)x t+1) =u(f(xt+1)−xt+2)ˇ(xt+1)f(xt+1) +ˇ(x t+1)V (xt+1) >u(f(xt+1)xt+2)ˇ(xt+1)f(xt+1) >u(f(x t+1)−xt+2), implyingthat f(xt)−xt+1<f(xt+1)−xt+2.

Then,weobtainthat:

0<f(xN)−xN+1<lim

y→0[f(y)−y] =0,

leadingtoacontradiction.

Sincethesequencexismonotonicandbounded,itconvergesto

somexs>0.Nowx

t→xs,xt+1∈(xt),xt+1→xs.Hence,bytheupper

semi-continuityofthecorrespondence,wegetxs(xs). 

Withconvextechnologyand exogenouslyfixedtime

prefer-encerateinastandardoptimalgrowthmodel,iff(0)>1/ˇthen

thereexistsaunique(non-zero)steadystatetowhichalloptimal

pathsconvergeindependentlyoftheirinitialstate.Inourmodel,

duetotheexistenceofthemaximumsustainablelevelofcapital

stock,whenf(0)>1/ˇ,theoptimalpathconverges

monotoni-callytowardsanoptimalsteadystate.Thisconditioncanberecast

asF(0)>r+ıbydefiningtherateofinterestrby1/(1+r)=ˇand

thefunctionfbyf(k)=F(k)+(1ı)kwhereFistheproduction

func-tionand ıistherateof depreciationofcapital. Accordingly,in

ourmodel,whenthecostofinvestmentislow,theoptimalpath

convergestoanoptimalsteadystate.

Wewillnowconsidertheoptimalpathdynamicsinthelong

runandshowthatourmodelcansupportuniqueoptimalsteady

statewithglobalconvergenceandmultiplicityofoptimalsteady

stateswithlocalconvergence.Indeed,wewillshowthatourmodel

exhibitsglobalconvergenceevenunderconvex–concave

technol-ogyandmultiplicityofoptimalsteadystatesevenunderconvex

technology.

Case1(Globalconvergence). Assumex0>0.Letinfx>0ˇ(x)=ˇand

f(0)>1/ˇ.Considerthecasewherethereexistsauniquesolution

xsto(9).ByProposition10,weknowthattheoptimalpaths

can-notconvergeto0.Then,anyoptimalpathconvergestotheunique

optimalsteadystatexs,irrespectiveoftheirinitialstate.

Whenthereexistsauniquesolutionto(9),itisclearfromabove

thatitwillbeanoptimalsteadystate.However,whenthereexist

multiplesolutionstothesteady-stateequation(9),thestationary

sequencesassociatedwiththesesteadystatesmayormaynotbe

optimal.Anaturalquestionisthenwhetherthesesolutionswill

constitutea long-runequilibrium intheoptimalgrowthmodel

andifso,willthatenableustoshowwhetheraneconomywith

wealthdependentendogenousdiscountingcanexhibitthreshold

dynamicsevenunderconvextechnologyornot.Devotedtothis

end,first,wewillconsiderthecasewherewehaveexactlytwo

optimalsteadystates,forthesakeofsimplicity.Weshallprovethat

thiswouldimplytheexistenceofacriticalstockandlocal

conver-gence.Second,wewillshowthatourmodelcanindeedsupport

twooptimalsteadystatesinanexample.

Case2(Localconvergence). Assumex0>0.Letinfx>0ˇ(x)=ˇand

f(0)>1/ˇ.Considerthecasewherewehaveexactlytwooptimal

steadystates,xl<xh,forthesakeofsimplicity.Supposethatxhis

unstablefromtheright.Giventheexistenceofamaximum

sustain-ablecapitalstock,asanyoptimalpathfromx0>xhhastoconverge

toanoptimalsteadystate,therewillbeanothersteadystatelarger

thanxh,acontradiction.Hence,xhisstablefromtheright.Itisalso

impossibletohavexlunstablefromtheleft,sincetheoptimalpaths

cannotconvergeto0.Thesealreadyimplytheexistenceofacritical

stockandtheemergenceofthresholddynamics.

Whenever both of theoptimal steady states turn out tobe

saddle-pointstable,itisclearthattherewillexistacriticalstock

ofcapitalbelowwhichtheoptimalpathwillconvergetoxland

abovewhichtheoptimalpathwillconvergetoxh.However,xhcan

bestablefromtherightbutunstablefromtheleft,andsimilarlyxl

canbestablefromtheleftbutunstablefromtheright.Thesecases

canoccuronlywhentheoptimalpolicyistangenttoy=xlineatxh,

andxl,respectively.Itisimportanttonotethatevenunderthese

casesthresholddynamicsemerge.Thefollowingproposition

pro-videstheformalanalysisofthelocalconvergencewhenwehave

twooptimalsteadystates.

Proposition11. Assumex0>0.Letinfx>0ˇ(x)=ˇandf(0)>1/ˇ.

Supposethereareexactlytwooptimalsteadystates.Letthehighand

thelowoptimalsteadystatesbe,respectivelyxhandxl.Thenthere

existsxc∈[xl,xh]suchthatanyoptimalpathxstartingfromx0,

con-vergestoxlifx0<xc,andconvergestoxhifx0>xc.

Proof. Take anyinitialcapital levelsy<z, and let y,z beany

two correspondingoptimalpaths.Since theoptimal

correspon-dence is increasing,weiteratively obtainyt<zt for allt. Hence

limt→∞yt≤limt→∞zt.Thus,ifzconvergestoxl,sodoesy.Ify

con-verges toxh, sodoesz. Let X1={x|there existsan optimalpath

fromxthat converges toxl}, x∗1=supX1, and X2={x|there exists

anoptimalpathfromxthatconvergestoxh},x∗2=infX2.Fromthe

above argument, x∗

1≤x2∗. Suppose otherwise, then there exists

small

1

,

2

≥0suchthatx∗

1−

1

∈X1,x2∗+

2

∈X2,andx1∗−

1

>

x∗

2+

2

.However,thiscontradictswiththeabove,bysettingx∗2+

2

=y<z=x∗

1−

1

.Nowwewanttoshowthatx∗1=x2∗.Suppose

not,thenthereexistsx∗

3suchthatx1∗<x3∗<x∗2.Butthenan

opti-mal path from x∗

3 can neither converge toxl norto xh by the

definitionsofx∗

1 andx∗2.Therefore,x∗1=x2∗.Definexc=x1∗=x∗2.If

x0<xc=x1∗,takesomesmall



1≥0withx0<x∗1



1∈X1.Bythe

aboveargument,anyoptimalpathfromx0 convergestoxl.

Simi-larly,ifx0>xc=x∗2,takesomesmall



2 ≥0withx0>x2∗+



2∈X2,

which wouldshowthatanyoptimalpathfromx0 convergesto

xh.Noticethatxl∈X1andxh∈X2.Therefore,xl≤supX1=x∗1=xc=

x∗

2=infX2≤xh,i.e.,xc∈[xl,xh]. 

Remark1. Asithasbecomeclearbynow,ifisnottangentto

y=xlineateitherxlorxh,botharelocallystableandxc∈(xl,xh).

Notethatifisnottangenttoy=xlineateitherxlorxh,itmustbe

thecasethatjumpsovery=xlineatxc.Inthiscase,xcisnotan

unstableoptimalsteadystatebutagenuinecriticalpointleading

tothethresholddynamics.

Ifistangenttoy=xlineatxl,itcanonlybefromabovethe

y=xlinebecausexlisstablefromtheleft.Inthiscasewegetxc=xl.

Similarly,ifistangenttoy=xlineatxh,itcanonlybefrombelow

they=xlineandwegetxc=xh.

Inordertoprovideabetterexpositionofouranalysis,following

Stern(2006),wewillspecifyfunctionalformsinanexampleand

showthatourmodelcanindeedsupporttwooptimalsteadystates

(6)

Fig.1.Optimalpolicyafter300iterationsontheinitialzerovaluefunction.

Fig.2. Lowsteadystate=0.0012isoptimal.

Example1. Supposethat

u(c) =1c1− , f(x) =Ax˛+(1ı)x, ˇ(x) =− e−(x+ )ε , where 0<{A, },0<{˛, ,ε}<1,0< <e ε ,and e− ε<<

1.Checkthatf,u,andˇsatisfytheassumptionsets.Weemploy

thefollowingsetoffairlystandardcoefficients:

A=0.5, ˛=0.3, ı=0.15, =0.5, =0.97, =2.5,

=1, ε=0.9.

ItturnsoutthatthemaximumsustainablecapitalstockisA (x0)=

max



x0, ¯x



,where ¯xis5.58431,andthereexistthreesolutionsto

(9).Theprecisevaluesare,xl=0.0012,xm=0.5865,andxh=3.8105.

Inordertodeterminewhichoftheseareactuallytheoptimalsteady

states,weanalyzetheoptimalpolicybymakinguseofBellman’s

operator.Fig.1showstheoptimalpolicyforiterationsofthe

Bell-manoperatoronthezerofunctionandindicatesthatxlandxhare

stableoptimalsteady states.Figs. 2–4present thedetailed

pic-turesoftheoptimalpolicyintheneighborhoodofthexl,xmand

xh,respectively.

Atfirstsight,onemightthinkthatthemiddlesteadystatexmis

anunstableoptimalsteadystateasitissurroundedbytwostable

optimalsteadystates.IncontrastwithStern(2006),eventhough

xmisasolutionofthestationaryEulerequation(9),Fig.1strongly

indicatesthatitisnotanoptimalsteadystate.Indeed,ifitwere,

Fig.3.Middlesteadystate(xm=0.586505)isnotoptimal!

Fig.4.Highsteadystate(xh=3.81057)isoptimal.

wouldhavetocrossy=xlineatxm.Moreover,weseethatthereis

genuinecriticalpointatxc=0.6548.Itisclearlynotanoptimalor

nonoptimalsteadystatebecausethenitwouldhavetosatisfy(9).

Asxcisnotanoptimalsteadystate,cannotcrossy=xlineat

xc,i.e.,xc∈/(xc).Ontheotherhand,Fig.1showsthatthegraphof

jumpsovery=xlineatxc.Asisuppersemicontinuous,itmustbe

thecasethatthereexistx

1∈(0,xc)∩(xc)andx1∈(xc,∞)∩(xc).

Therefore,xcisacriticalpointwhichisnotanunstablesteadystate.

Foranyinitialcapitalstocklevellowerthanxc,thesystemwill

faceadevelopmenttrap,enforcingconvergencetoaverylow

cap-itallevelxl,evenunderastrictlyconcaveproductionfunction.On

theotherhand,foranyinitialcapitallevelhigherthanxc,the

opti-malpathwillconvergetoxh.However,ifaneconomystartsatxc,

anindeterminacywillemerge:thesystemcanoptimallyfollowx

1,

andatthesametimeitcanoptimallyfallintoadevelopmenttrap

followingx

1.

Theexistenceofcriticalvalueisactuallyrecognizedsincethe

papersbyClark(1971);MajumdarandMitra(1982);Dechertand

Nishimura(1983)indiscretetimeandSkiba(1978)andAskenazy and Le Van (1999) in continuous time horizon. These studies

are mostly devoted to the analysis of the technology

compo-nent leaving thetime preference essentially unaltered withan

exogenouslyfixedgeometricdiscounting.Theyassumeaspecific

convex–concave technology under which the low steady state

turnsouttobeunstableandhighsteadystateturnsouttobe

sta-blesothatanoptimalpathconvergeseithertozeroortothehigh

steadystate.However,weshowthatevenunderstrictlyconcave

productionfunction,theeconomycanexhibita“trap”sothata

(7)

smalldifferenceswillleadtopermanentdifferencesintheoptimal path.

In this respect,ouranalysisis in linewiththeearly

contri-butionsthat emphasizetheimportanceof thesubjective utility

functionandreleasetheoptimalgrowththeoryfromthealmost

takenforgrantedRamsey’sadditiveutilityfunction(e.g.,Bealsand

Koopmans,1969;Iwai,1972).Baseduponthestationaryordinal

utility function that implies a broad class of preference

struc-turesthatarerecursiveandcontainthetime-additivepreference

asa specialcase, theyshowtheexistenceofa criticalstock so

thattheinitialconditionscanaffectthelong-run optimalpath.

Adoptingastrictlyconcavediscountfunctiondependingonthe

future-orientedresources,Stern(2006)analyzesaseriesof

numer-icalexamplesthatalsoexhibitmultiplicityofsteadystateswith

merelocalconvergence.Besidesthese,Kurz(1968)introduces

cap-italasanargumentintheRamseytypeutilityfunctionandshows

alsothattheremayexistmultipleturnpikes.

Inallof thesestudiesmentioned above,thecritical stockof

capitalbelow which theoptimalprogram leadsonlytoforever

diminishingcapitalandgraduallyconvergingtodevelopmenttrap

isanunstableoptimalsteadystate.Ifitsohappensthatthe

ini-tiallevelofcapitalstockequalsthecriticalstock,theoptimalpath

willremainonthatgeneralizedturnpikeforever.However,inour

modelthecriticalstockisdefinitelynotanunstablesteadystateso

thatifaneconomystartsatthisstock,anindeterminacyemerges.

Comparedtotheoptimalgrowthmodelswithexogenoustime

pref-erence,this introducesafundamental differenceintheoptimal

pathdynamics.

3. Competitiveequilibriumwithexternality

Fromnowon,wewillassumethattheproductionfunctionfis

strictlyconcave.Wefirstdefinetheconceptsofequilibriumwith

externalityand competitiveequilibrium. Suppose weare given

asequenceofcapital ˜x =(x0, ˜x1,..., ˜xt,...)∈ [0,A(x0)]∞andthe

associatedsequenceofdiscountfactors ˜ˇ=( ˜ˇ1,..., ˜ˇt,...)where

˜

ˇt=ˇ (˜xt) ,

t≥1. Giventhis fixedsequence ˜ˇ

ˇ,ˇm



∞,

con-siderthefollowingproblem:

maxx



t=0



t



s=1 ˜ ˇs



u (f(xt)−xt+1) subjectto

t,0≤xt+1≤f(xt), x0>0,given.

Let the solutionto theabove problem bex=(x0, x1, ...,xt,

...).Itdependson ˜ˇ,hence ˜x.Wewritex= ( ˜ˇ)= (ˇ(˜x)),and

hencex=(˜x).Anequilibriumwithexternalityassociatedwith

x0isasequenceofcapitalstockx∗=(x0,x1∗,...,x∗t,...)suchthat

x∗=˚(x).Alistofsequences(x,c,p,q)isacompetitive

equilib-riumwithexternalityofthiseconomyifthefollowingaresatisfied:

(a) c∗∈ ∞

+,x∗∈ ∞+,p∗∈( 1+\{0}),q∗∈R++,

(b)c∗solvestheconsumer’sproblem:

maxc



t=0



t



s=1 ˇ(x∗ s)



u(ct) subjectto ∞



t=0 ∗ p tct≤q ∗x 0+∗

where∗isthemaximumprofitofthefirm,

(c)x∗solvesthefirm’sproblem:

∗=maxx



t=0 p∗ t(f(xt)−xt+1)−q∗x0 subjectto

t≥0,0≤xt+1≤f(xt), x0>0,given,

(d)themarketsclearateveryperiod:

t≥0,c∗

t +x∗t+1=f(xt∗),x∗0=x0.

Thepurposeistoprovetheexistenceofacompetitive

equi-libriumofthisintertemporaleconomy.Inordertodoso,wewill

firstprovethatthereexistsafixedpointof˚,namelyan

equi-librium.Later,underanadditionalassumption,wewillshow

thatthisequilibriumisindeedacompetitiveequilibriumofthe

intertemporaleconomywithendogenoustimepreference.

Thevaluefunctionassociatedwiththeproblem(PE)takesthe

followingform: V(x0,ˇ1,ˇ2,ˇ3,...)=maxx



t=0



t



s=1 ˇs



u(f(xt)−xt+1) subjectto 0≤xt+1≤f(xt), x0>0,given.

VsatisfiestheBellmanequation:

V(x,ˇt+1t+2,..)=maxy ∈[0, f (x)]

u(f(x)−y)+ˇt+1V(y,ˇt+2t+3,..)



.

Proposition12. ThefunctionViscontinuouswiththetopologyin

Rforx0andtheproducttopologyforˇ∈[ˇ,ˇm]∞.Moreover,itis

strictlyconcaveinx0. Proof. Let U(x0,ˇ,x)= ∞



t=0



t



s=1 ˇs



u (f(xt)−xt+1)

wherex∈(x0).OnecanshowthatUiscontinuousin(x0,ˇ,x)for

thetopologyinRforx0andtheproducttopologyfor(ˇ,x).Itiswell

knownthat(·)isacontinuouscorrespondencefromR+intothe

spaceofsequencesendowedwiththeproducttopology(see,for

instance,LeVanandDana,2003).Since

V(x0,ˇ)=max



U(x0,ˇ,x)|x∈(x0)



,

fromthemaximumtheorem,Viscontinuous.Thestrictconcavity

ofVwithrespecttox0followsfromthestrictconcavityoffandu.



Lemma2. Themapˇ iscontinuouswithrespecttotheproduct topology.

Proof. Itisstandard. 

Proposition13. ˚iscontinuouswithrespecttotheproduct topol-ogy.

Proof. Fromthemaximumtheorem,thesolutionx= (ˇ)isupper

semi-continuouswithrespecttoˇ.Asthesolutionto(PE)isunique,

itisacontinuousfunctionwithrespecttoˇ.Since ˜ˇ=ˇ(˜x),themap

(8)

Toattainanequilibrium,theinitialsequenceofdiscountinghas

tobeconsistentwiththelevelthatis assumedwhentheagent

makeshersingledecisions.Thissuggeststhatthefixedpointsof˚

arecandidatesforcompetitiveequilibria.

Proposition14. ˚hasafixedpoint.

Proof. ˚isacontinuousmappingfrom[0,A(x0)]∞into[0,A(x0)]∞.

Sincethedomainiscompactfortheproducttopologyandalsoa

convexset,Schaudertheoremconcludesthatthereexistsx[0,

A(x0)]∞whichsatisfiesx∗=(x∗). 

Proposition15. If(x0,x∗1,x∗2...)isanequilibriumwithexternality

associatedwithx0,then(x1∗,x2∗,x3∗...)isanequilibriumwith

exter-nalityassociatedwithx∗

1.

Proof. LetV(x,ˇt+1,ˇt+2,..)bethevaluefunctionatperiodt+1.

Foranytwehave

V(x∗

t,ˇt+1,ˇt+2,..) =maxy∈[0,f(x)]

u(f(x)−y)+ˇt+1V(y,ˇt+2t+3,..)



=u(f(x∗t)−x∗t+1)+ˇt+1V(x∗t+1,ˇt+2,ˇt+3,..)

Particularlyfort≥2,weseethat(x∗1,x∗

2,...)isanequilibrium

withexternalityassociatedwithx∗

1. 

Proposition16. Anyequilibriumwithexternalityx∗associatedwith

someinitialcapitalstocksatisfiestheEulerequation:

u(f(x

t)−x∗t+1)=u(f(x∗t+1)−x∗t+2)ˇ(x∗t+1)f(xt+1∗ ). (10)

Proof. Itiseasy. 

Fortherest,weassumethatthefunction[ˇf](·)isdecreasing

and[ˇf](0)>1.Notethatlimx→∞[ˇf](x)<1.

Proposition17. Theequilibriumwithexternalityassociatedwithx0

isunique.

Proof. Taketwoequilibriawithexternality(x0,x1,x2,...)and

(x0,x1,x2,...)associated withx0.Supposethatx1>x1.Let the

associatedconsumptionpathsbe(c0,c

1,...)and(c0,c1,...).

First,wewillprovebyinductionthatx

t>xt,forallt≥1and

c

t<ct for all t. Trivially, c0 =f(x0)−x1<f(x0)−x1=c0. Then

by (10), u(c

1)[ˇf](x1)=u(c0)>u(c0)=u(c1)[ˇf](x1) which

impliesu(c

1)>u(c1)as[ˇf]isadecreasingfunction.Hence,c1<

c

1.

Now suppose x

t>xt and ct<ct for some t. f(xt)−

x

t+1=ct<ct =f(xt)−xt+1, so xt+1 >xt+1. Again, by (10),

u(c

t+1)[ˇf](xt+1)=u(ct)>u(ct)=u(ct+1)[ˇf](xt+1) which

impliesu(c

t+1)>u(ct+1 )as[ˇf]isadecreasingfunction.Hence,

x

t+1>xt+1andct+1 <ct+1.

Nowconsiderthemaximizationproblemgiventhediscounting

sequenceˇ(x).Thepathx

isfeasiblefromx0,andyieldsstrictly

higherutilitythanxgiventhediscountingsequenceˇ(x)because

c

t<ctforallt.However,thisisacontradictionwithxbeingafixed

pointwhich wouldimplythat x itselfistheuniquemaximizer

giventhediscountingsequenceˇ(x).Thereforex

1=x1.Letx1=

x

1=x1.

Notice that Proposition 15 implies that (x1,x2,x3,...) and

(x1,x2,x3,...)aretwoequilibriawithexternalityassociatedwith

x1.Thenapplyingthesamearguments,wegetx2=x2.Finally,by

inductivelyapplyingProposition15andtheabovearguments,we

getx

t=xt forallt. 

Corollary1. If[ˇf](x0)=1forsomex0,thentheuniquefixedpoint

associatedwithx0isthestationarysequence(x0,x0,x0,...).

Proof. Letˇ=ˇ(x0)andconsiderthebasicneoclassicalmodelwith

fixeddiscountfactorˇ.Astheinitialcapitalisalreadyx0whichis

steadystatecapitallevelintheneoclassicalgrowthmodel,(x0,x0,

x0,...)willsolvethesocialplannerproblem.Thismeansthat(x0,

x0,x0, ...)istheuniquemaximizergiventhediscountsequence

(ˇ,ˇ, ...).Thus,itisafixedpointassociatedwithx0,andbythe

abovepropositionitistheuniquefixedpointassociatedwithx0.



Proposition18. Any equilibriumwithexternality monotonically

convergestoapointxssatisfying[ˇf](xs)=1.Moreover,ifthereare

multiplesuchpoints,itmonotonically convergestotheonethat is

closesttotheinitiallevelofcapital.

Proof. Onecanshowthatthesetofsolutionsto[ˇf](x)=1

con-stituesacompactinterval,sayX=[xsmin,xs

max].Notethatitiswell

possibletohavexs

min=x s

maxorxmins <x s

max.Lettheinitialcapital

levelbex0andtheassociatedequilibriumwithexternalitybex∗.

ByCorollary1,ifx0∈Xwehavex∗=(x0,x0,...)whichconverges

totheclosestsolutionx0to[ˇf](x)=1.

Considerx0<xsmin.Supposex∗doesnot–monotonically

con-verge–toxs

min.Thenx∗asasequenceeitherpassesfromtheregion

(0,xs

min]totheregion(x

s

min,∞),orstrictlydecreasesintheregion

[0,xs

min],atleastonceatsomepointintime.Formally,thereexists

someteitherwithx∗

t ≤xsmin<x∗t+1orwithx∗t+1<x∗t ≤xsmin.

Supposethatforsomet,xt≤xmins <xt+1.As1=[ˇf](xmins )≥

[ˇf](xt+1∗ ),(10)impliesu(c

t)≤u(ct+1∗ ).Thenbyconcavityofuwe

getf(x∗t)−x∗

t+1≥f(x∗t+1)−x∗t+2,whichyieldsx∗t+1<xt+2∗ asx∗t <

x∗

t+1.Hence, x∗t+1<x∗t+2 and xsmin<x∗t+2.Inductively we obtain

xs

min<x∗t+1<xt+2∗ <....Duetothemaximumsustainablecapital

stock,x∗cannotdiverge,soitconvergesmonotonicallytoalevelx

thatisstrictlyhigherthanx∗

t+1.Takingthelimitof(10)forthefixed

pointx∗astgoestoinfinity,weseethatthelimitxofx∗hasto

satisfy[ˇf](x)=1.Thusxs

min<xt+1∗ <x≤xsmaxandhencext+1∗ ∈X.

ThenCorollary1impliesthattheequilibriumwithexternality

asso-ciatedwithx∗

t+1is(x∗t+1,xt+1∗ ,...),however,Proposition15implies

thatitis(x∗t+1,x∗

t+2,...).Recallthatthefixedpointfromx∗t+1 is

unique,sowegetacontradictionasx∗

t+1<x∗t+2.

Now suppose that for some t, x∗

t+1<x∗t ≤xsmin. As 1= [ˇf](xmins )≤[ˇf](x∗t+1),(10)impliesu(c∗ t)≥u(c∗t+1).Thusweget f(x∗t)−x∗ t+1≤f(x∗t+1)−xt+2∗ ,whichyieldsx∗t+1>x∗t+2asx∗t >xt+1∗ . Hence,x∗

t+2<x∗t+1<xsmin.Inductivelyweobtain...<xt+1∗ <x∗t ≤

xs

min.Takingthelimitof(10),weseethattheonlypossibilityisx

convergestozero.Ifx∗convergestozero,thereexistssomelargeT

suchthat[ˇf](xt∗)>1forallt>T,because[ˇf](0)>1.Thenu(ct∗)>

u(c

t+1)fort>Tby(10).Hence,f(xt∗)>f(x∗t)−x∗t+1=ct∗>c∗T>0

forallt>T.However,f(x∗t)convergestozeroalongwithx∗bythe

continuityoff.Contradiction.

Thereforewehaveshownthatthefixedpointassociatedwith

x0<xsminmonotonicallyconvergestotheclosestsolutionx

s minof

theequation[ˇf](x)=1.

Thecaseofx0>xsmaxisanalogoustox0<xsmin. 

Justtorecall,thefixedpointx∗of˚,namelytheequilibrium

withexternalityassociatedwithx0,solvestheproblem

maxx



t=0



t



s=1 ˇ(x∗ s)



u(f(xt)−xt+1) subjectto 0≤xt+1≤f(xt), x0>0,given.

Wewillnowprovethatsuchafixedpointisindeeda

competi-tiveequilibrium.

Theorem 1. Assume that f(0)ˇ>1. Define q=1,p∗ t =

(



ts=1ˇ(x∗s))u(f(x

t)−xt+1∗ ), c∗t =f(x∗t)−x∗t+1,

t. Then, (c∗, x∗,

(9)

Proof. First, we prove that p∗ is in 1 +\



0



. Clearly p∗

t >

0. We need to prove that



t=0 p∗ t = ∞



t=0 ( t



s=1 ˇ(x∗ s))u(f(x∗t)−x∗t+1)

is bounded. We have shown that x∗ convergesto some xsX.

[ˇf](0)>1suggestsxs

min>0,hencethesequenceu(f(x∗t)−x∗t+1)

isbounded.Thus,thesum



t=0

p∗

t existsinR+.

Since x∗ ∈[0, A(x0)]∞ we get x∗∈ ∞+. By the constraints of

theproblem(PE),f(A(x0))≥f(x∗t)≥x∗t+1≥0.Hence,f(A(x0))≥c∗t =

f(xt∗)x∗

t+1≥0,i.e.,c∗∈ ∞+.

Theproofsthatx∗isasolutiontotheproblem(PP)andc∗solves

theconsumer’sproblem(CP)arestandard(see,e.g.,LeVanand

Dana,2003).

Finally,onecaneasilynotethatthemarketclearingcondition,

c∗

t +x∗t+1=f(xt∗)issatisfied. 

ByProposition18,theoptimalpathsconvergetoapointx∗with

f(x)ˇ(x)=1. (11)

Clearly,suchapointisuniqueif[ˇf](· )isstrictlydecreasing.

Forsimplicity,letusassumeaCobb–Douglasproduction

tech-nology,f(x)=Ax˛,whereA>0denotesthetotalfactorproductivity.

Theremayexistuniqueorcontinuumofsteadystatesinthismodel

withendogenoustimepreferencedependingonthecharacteristics

ofthediscountfunction.

Example2. Letˇ(x)=− e−(x+ )ε,where0< ,0<ε<1,0< <

(1−˛)e ε

,and( e− ε/1−˛)<<1.Notethatˇsatisfiesallofour

assumptions.Wewillnowshowthatˇ(x)f(x)isstrictlydecreasing.

Wehave

ˇ(x)f(x)

=



 e−(x+ )ε



A˛x˛−1





=A˛x˛−2



e−(x+ )ε

1˛+εx(x+ )ε−1

(1˛)



.

Then,forx>0,

ˇ(x)f(x)

<0ifandonlyif

h(x):= exp



−(x+ )ε



1−˛+εx(x+ )ε−1



−(1−˛)<0.

Itisclearthathisdifferentiable,henceobtainsitsmaximumatthe

boundariesorcriticalpoints.Attheboundaries,

h(0)= exp

− ε

[1˛] −(1˛) =(1−˛)

exp

− ε





=−(1˛)ˇ(0)<0,and lim x→∞h(x)=x→∞lim(1−˛) e −(x+ )ε+ lim x→∞ e −(x+ )εεx(x+ )ε−1 −(1˛)=−(1−˛)<0.

Soatanycriticalpointx,wehaveh(x)=0.Accordingly,

e−(x+ )εε(x+ )ε−1



1˛+εx(x+ )ε−1

+1(1ε) x

x+



=0.

Hence,(1− ˛+εx(x+ )ε−1)=1(1ε)(x/x+ ).Thenwehave

h(x)= e−(x+ )ε



1(1ε) x

x+



−(1−˛)

atanycriticalpointx.Itisclearthattheexpression e−(y+ )ε[1

(1−ε)(y/y+ )] is maximized at y=0. Therefore, we obtain

thath(x)≤ e− ε

−(1˛).Recallthat( e− ε/1−˛)<,hence

e− ε

−(1−˛)<0,implyingthatatanycriticalpointx,h(x)<0.

Thus, h is a negativevalued function, implyingthat ˇ(x)f(x) is

strictlydecreasing.

Anydiscountfunctionˇunderwhichˇ(x)f(x)turnsouttobea

strictlydecreasingfunctionimpliesauniquesteadystateandglobal

convergence.Theuniquesteadystateisbothlocallyandglobally

determinate.Moreover,themodelmayevenpossessacontinuum

ofsteadystates,anditdependsontheinitialconditionastowhich

oneisrealizedinthelongrun.Hence,theeconomyexhibitsno

tendencytowardglobalconvergence;animportantdeparturewith

respecttotheneoclassicalgrowthmodel.

Example3. Considerthefollowingdiscountfunctionthatconsists

ofthreeparts: ˇ(x)=

mx+n, x<a; 1 f(x) = 1 A˛x1−˛, a≤x≤b; − x, b<x.

where A>0, 1>˛>0, (A˛/2−˛)1/1−˛>b>a>0, m=1˛/A˛a−˛,

n=(1/A)a1−˛,=(2−˛/A˛)b1−˛,and =(1˛/A˛)b2−˛.Letscheck

theassumptions.ˇisalreadydifferentiableintheregions(0,a),(a,

b),(b,∞).Somesimplealgebraforcheckingtheleftandrightlimits

ofˇandˇatthepointsaandbshowsthatthisspecificationofm,

n,and makesˇisdifferentiableataandb.Thereforeˇis

differ-entiable,alsoimplyingcontinuity.ˇ(0)=n>0,henceˇrangesinto

R++.Also,asm>0,A>0,˛∈(0,1),and >0,ˇisstrictlyincreasing.

Asˇisstrictlyincreasing,thesupremumofwhichis,isstrictly

lessthanoneby(A˛/2−˛)1/1−˛>b.Moreover,thesupremumof

thederivativeofˇisalsoboundedwhichiseasytoseebysome

algebra.

Noticethatthroughout thewholeinterval[a,b],ˇ(x)f(x)=1,

thereforewehaveacontinuumofsteadystates[a,b].Aswehave

proventhatanyequilibriumwithexternalitywithinitialcapital

x0∈[a,b]willbeconstantovertime,theinitiallevelofcapitalstock

lowerthanawillleadtoanincreasinglymonotonicconvergence

towardsawhereastheinitialtheinitiallevelofcapitalstockhigher

thanbwillresultindecreasinglymonotonicconvergencetowards

b.

Remark 2. Existenceofthecriticalvaluexc andcontinuumof

equilibriawithstrictlyconcaveproductionfunctionarepeculiarto

ourmodelofendogenoustimepreference.

4. Conclusion

Inthispaper,wepresentthedynamicimplicationsof

endoge-noustimepreferencedependingonthestockofwealthinaone

sectorgrowthmodel.Weprovewithoutanyassumptiononthe

curvaturesoftheproductionandthediscountfunctionsthat

opti-malpolicyissinglevaluedanddifferentiablealmosteverywhere

in theplanner’sproblemand theoptimalpathsaremonotonic.

We consider the optimal path dynamics in the long run and

showthatourmodelcanexhibitglobalconvergenceevenunder

aconvex–concavetechnologyandmultiplicityofoptimalsteady

states even under a convex technology. Indeed, we show that

there existsa critical stockof capital belowwhich theoptimal

programleadsonlytoforeverdiminishingcapitalandgradually

convergingtodevelopmenttrapandabovewhich theeconomy

convergestothehighsteadystate.Wealsoshowthatifitso

hap-pensthattheinitiallevelofcapitalstockequalsthecriticalstock,

whichisnotanoptimalornonoptimalsteadystate,an

indetermi-nacyemerges.Moreover,themultiplierssystemassociatedwith

anoptimalpathisproven tobethesupportingpricesystemof

(10)

concerningthepropertiesofoptimal(equilibrium)pathsare pro-vided.

Extensionstoourmodelareobviouslypossibleandincludethe

considerationsofuncertainty,heterogenousagentsandstrategic

interactions.Theseareinourresearchagenda.

References

Amir,R.,Mirman,L.J.,Perkins,W.R.,1991.One-sectornonclassicaloptimalgrowth: optimality conditions and comparative dynamics. International Economic Review32(3),625–644.

Askenazy,P.,LeVan,C.,1999.Amodelofoptimalgrowthstrategy.Journalof Eco-nomicTheory85(1),24–51.

Askri,K.,LeVan,C.,1998.Differentiabilityofthevaluefunctionofnonclassical optimalgrowthmodels.JournalofOptimizationTheoryandApplications97, 591–604.

Araujo,1991.Theoncebutnottwicedifferentiabilityofthepolicyfunction. Econo-metrica59(5),1383–1393.

Azariadis, C., Stachurski, J., 2005. Poverty Traps. In: Aghion, P., Durlauf, S. (Eds.), In: Handbook of Economic Growth, vol. 1. Elsevier, Amsterdam, pp.295–384.

Barro,R.J.,1997.DeterminantsofEconomicGrowth.MITPress,Cambridge,MA. Barro,R.J.,Sala-i-Martin,X.,1991.Convergenceacrossstatesandregions.Brookings

PapersonEconomicActivity1,107–182.

Beals,R.,Koopmans,T.C.,1969.Maximizingstationaryutilityinaconstant technol-ogy.SIAMJournalofAppliedMathematics17(5),1001–1015.

Becker,G.S.,Mulligan,C.B.,1997.Theendogenousdeterminationoftimepreference. TheQuarterlyJournalofEconomics112(3),729–758.

Benhabib,J.,Farmer,R.E.A.,1996.Indeterminacyandsectorspecificexternalities. JournalofMonetaryEconomics37,21–443.

Benhabib,J.,Perli,R.,1994.Uniquenessandindeterminacy:transitionaldynamics withmultipleequilibria.JournalofEconomicTheory63,113–142.

Benveniste,L.M.,Scheinkman,J.A.,1979.Onthedifferentiabilityofthevalue func-tionindynamicmodelsofeconomies.Econometrica47,727–732.

Clark,C.W.,1971.Economicallyoptimalpoliciesfortheutilizationofbiologically renewableresources.MathematicalBiosciences17,245–268.

Das,M.,2003.Optimalgrowthwithdecreasingmarginalimpatience.Journalof EconomicDynamicsandControl27,1881–1898.

Dechert,W.D.,Nishimura,K.,1983.Acompletecharacterizationofoptimalgrowth pathsinanaggregatedmodelwithnon-concaveproductionfunction.Journalof EconomicTheory31,332–354.

Duran,J.,LeVan,C.,2003.Simpleproofofexistenceofequilibriuminaone-sector growthmodelwithboundedorunboundedreturnsfrombelow. Macroeco-nomicDynamics7,317–332.

Epstein,L.,1987.Asimpledynamicgeneralequilibriummodel.JournalofEconomic Theory41,68–95.

Frederick,S.G.,Loewenstein,G.,O’Donoghue,T.,2002.Timediscountingandtime preference:acriticalreview.JournalofEconomicLiterature40,351–401. Hamada,K.,Takeda,Y.,2009.OntheRoleoftheRateofTimePreferencein

Macroe-conomics:ASurvey.In:InternationalTradeandEconomicDynamics:Essaysin MemoryofKojiShimomura,.Springer,Berlin/Heidelberg,pp.393–420. Harrison,G.W.,Lau,M.I.,Williams,M.B.,2002.Estimatingindividualdiscountrates

inDenmark:afieldexperiment.AmericanEconomicReview92,1606–1617. Ikeda,S.,Ohtake,F.,Tsutsui,Y.,2005.Timediscountrates:ananalysisbasedon

eco-nomicexperimentsandquestionnairesurveys.InstituteofSocialandEconomic ResearchDiscussionPaperNo.638,OsakaUniversity.

Iwai,K.,1972.Optimaleconomicgrowthandstationaryordinalutility—afisherian approach.JournalofEconomicTheory5,121–151.

Kurz,M.,1968.Optimaleconomicgrowthandwealtheffects.International Eco-nomicReview9,348–357.

Lawrance,E.C.,1991.Povertyandtherateoftimepreference:evidencefrompanel data.JournalofPoliticalEconomy99,54–75.

LeVan,C.,Dana,R.A.,2003.DynamicProgramminginEconomics.KluwerAcademic Publishers.

Lucas,R.E.,Stokey,N.,1984.Optimalgrowthwithmanyconsumers.Journalof Eco-nomicTheory32,139–171.

Majumdar,M.,Mitra,T.,1982.Intertemporalallocationwithanon-convex technol-ogy:theaggregativeframework.JournalofEconomicTheory27,101–136. Mantel,R.R.,1998.Optimaleconomicgrowthwithrecursivepreferences:

decreas-ingrateoftimepreferences.EstudiosdeEconomia25,161–178.

Mitra,T.,Ray,D.,1984.Dynamicoptimizationonnon-convexfeasibleset:some generalresultsfornon-smoothtechnologies.ZeitschriftfurNationaokonomie 44,151–175.

Nishimura,K.,Venditti,A.,2006.Indeterminacyindiscrete-timeinfinite-horizon models.In:Dana,R.A.,LeVan,C.,Mitra,K.,Nishimura,K.(Eds.),Handbookon EconomicGrowth:Vol.1:TheDiscreteTimeHorizon.Kluwer.

Obstfeld,M.,1990.Intertemporaldependence,impatienceanddynamics.Journalof MonetaryEconomics26,45–75.

Quah,D.T.,1996.Convergenceempiricsacrosseconomieswith (some)capital mobility.JournalofEconomicGrowth1,95–124.

Samwick,A.,1998.Discountratehomogeneityandsocialsecurityreform.Journal ofDevelopmentEconomics57,117–146.

Skiba,A.K.,1978.Optimalgrowthwithaconvex–concaveproductionfunction. Econometrica46,527–539.

Stern,M.L.,2006.Endogenoustimepreferenceandoptimalgrowth.Economic The-ory29,49–70.

Stokey,N.L.,Lucas,R.,Prescott,E.,1989.RecursiveMethodsinEconomicDynamics. HarvardUniversityPress.

Uzawa,H.,1968.Timepreference,theconsumptionfunction,andoptimumasset holdings.In:Wolfe,J.(Ed.),Value,CapitalandGrowth,Chicago.Chicago Univer-sityPress.

Şekil

Fig. 1. Optimal policy after 300 iterations on the initial zero value function.

Referanslar

Benzer Belgeler

To prove our long-time existence result we start by converting (1) into a perturbation of the symmetric hyperbolic linear system and obtain the energy estimates for the

The acoustic signatures of the six different cross-ply orthotropic carbon fiber reinforced composites are investigated to characterize the progressive failure

In this thesis, we present a survey on the well-posedness of the Cauchy problems for peridynamic equations with different initial data spaces.. These kind of equations can be

A person cannot deal with something from both synchronic and diachronic perspectives at the same time, Saussure adds, but both perspectives are necessary; Saussure

We certify that we have read the thesis submitted by Güliz Bozkurt titled “The Effects of Using Diaries as a means of Improving Students’ Writing, Vocabulary and Reflective

But now that power has largely passed into the hands of the people at large through democratic forms of government, the danger is that the majority denies liberty to

For the linguists it gives much food for thoughts in such areas as semantic changes of the meaning of words in different historical periods, research of metaphors, studying of the

Use of books, slow obsolescence rate, and citations to Turkish and single-authored sources are common in arts and humanities use of journals; fast obsolescence rate, citations