• Sonuç bulunamadı

Comparative study of arylene bisimides substituted with imidazole side group for different dielectrics on the OFET application

N/A
N/A
Protected

Academic year: 2021

Share "Comparative study of arylene bisimides substituted with imidazole side group for different dielectrics on the OFET application"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatSciVerseScienceDirect

Synthetic

Metals

j o u r n a l ho me p a g e : w w w . e l s e v i e r . c o m / l o c a t e / s y n m e t

Comparative

study

of

arylene

bisimides

substituted

with

imidazole

side

group

for

different

dielectrics

on

the

OFET

application

Cem

Tozlu

a,∗

,

Sule

Erten-Ela

b

,

Th.

Birendra

Singh

c

,

N.

Serdar

Sariciftci

c

,

Sıddık ˙Ic¸

li

b,∗ aDepartmentofEnergySystemEngineering,FacultyofEngineering,Karamano˘gluMehmetbeyUniversity,70100Karaman,Turkey

bSolarEnergyInstitute,EgeUniversity,Bornova,35100Izmir,Turkey

cLinzInstituteforOrganicSolarCells(LIOS),PhysicalChemistry,JohannesKeplerUniversityLinz,Altenbergerstr.69,A4040Linz,Austria

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23January2013

Receivedinrevisedform25February2013 Accepted29March2013

Keywords:

Organicfieldeffecttransistor Naphthalene

Perylene Benzimidazole

a

b

s

t

r

a

c

t

Weanalyzedtheeffectofpolymericdielectricwithhydroxylandhydroxyl-freegrouponcurrent–voltage

characteristicsoforganicthinfilmtransistorbytheuseofbenzimidazole-derivedarylenebisimide

derivatives.Polyvinylalcohol(PVA)withpolargroupandbenzocyclobutene(BCB)withnon-polargroup

wereusedassolutionprocesseddielectricmaterialstocomparewitheachotherinthinfilm

transis-torapplication.Thehydroxylgrouphasasignificanteffectonturn-onvoltageandturn-offcurrentin

depletionregimeduetohydroxylgroup.Itisobservedthatthesurfacemorphologyisinfluencedbythe

chemicalstructureofpolymericdielectricconcerningsurfaceenergy.Theelectronfieldeffectmobilityof

botharylenebisimidesisenhancedbydecreasedsurfaceenergyofdielectric.Thehighestmobilitywas

obtainedbyemployingnaphthalenebis-benzimidazoleasanactivelayeronbothdielectricscompared

withperylenebis-benzimidazolesemiconductor.Theelectricalbehaviorsofthesesemiconductorsare

discussedinrelationtogatedielectricsurfaceproperties.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Organicsemiconductorshavebeenattractingmuchattention for electronicdevices becauseof theirpotential applicationsin low-cost,largeareaandflexibledevicessuchasplasticsolarcell, flat-paneldisplaysetc.[1–3].Organicthinfilmtransistors(OTFT) based on highly conjugated p-channel or n-channel active, as organicelectronicdevices,havebeenusedonactiveandpassive matrixdisplays[4,5],radiofrequencyidentificationtags, chem-icalsensors,biological sensors,etc.[6,7].Lowmolecularweight peryleneandnaphthalenebisimidederivatives,arylenebisimides werewidelyinvestigated assmallorganicmoleculeswith vari-ous substituents tocreate advantages ontheirelectrochemical, luminescentandelectronicpropertiesallowingapplicationto con-structorganicbased electronicdevices [8–10]. Thestrong␲−␲ interactions and high electron affinity are special features of these materials to utilize in n-channel organic thin film tran-sistors[11–13].Inrecentyears,electronacceptingmoietieslike halogen substituents [14–16] and polymer containing arylene bisimides [17,18] have been reported as air stable n-channel OTFT. Remarkable studies have been reported employing vari-ous perylene and naphthalenebisimides as modified dielectric

∗ Correspondingauthors.Tel.:+903882265053;fax:+902323882023. E-mailaddresses:tozlu.cem@gmail.com(C.Tozlu),sicli@yahoo.com(S. ˙Ic¸li).

layerwithpoly-methylmethacrylate(PMMA)[19,20],n-octadecyl triethoxysilane (OTS) [21], hexzamethyl disilazane (HDMS)and 3,5-bis(trifluoromethyl)thiophenol[22],onbareSiO2[23,24].The

surface modification improves drastically the performance of OTFTsincomparedonlywiththebareSiO2.Polymericdielectrics

havebeenusedwidelyingateinsulatorsinrecentyears,dueto theirfavorablechemicalandphysicalpropertiesinsolution pro-cessabledepositiontechnique.Someofthesepolymericmaterials alsocompetewiththebareSiO2insulatorforapplicationin

elec-tronics[25].Theirsurfacepropertiesinfluencedirectlymorphology ofsemiconductorsandsemiconductor/dielectricinterfaceinwhich motionofchargecarriersoccurs[26,27].ThestudiesofOTFTbased onperyleneandnaphthaleneorganicsemiconductorsareless com-monfor comparativeofperformancearylenebisimidesonbare polymericdielectricsurfaces.

We nowreporttheOTFTperformanceswithnovel naphtha-leneandperylenebisimidessubstitutedbenzimidazolegroupson hydroxyl and hydroxyl-freepolymeric insulators.The synthesis of thenaphthalene and perylene bis-benzimidazole is reported elsewhere [28,29]. Novelty of application on OTFTs for these molecular structures is the extended conjugation of aromatic rings onbare polymeric dielectrics, compared to the naphtha-lene and perylene diimides studiedin literature. Hydroxyl-free divinyltetramethyldisiloxane-bis(benzocyclobutene)(BCB,called “cyclotene”)and hydroxyl polyvinylalcohol (PVA)werechosen toevaluatetheperformanceoffabricatedtransistorsdependence 0379-6779/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

6 C.Tozluetal./SyntheticMetals172 (2013) 5–10

ondielectricsurfaceproperties.Naphthalenebis-benzimidazole, NBBI,andperylenebis-benzimidazole,PBBI,basedOTFTsarenot usedinthinfilmtransistorasanactivelayer.

2. Experimental

Theorganicthinfilmtransistors(OTFTs)werefabricatedwith top contact/bottom gate geometry to investigate properties of dielectric/semiconductorinterfacebydepositionoforganic semi-conductor on dielectric layer. The OTFT device geometry and chemical structure of used NBBI and PBBI semiconductors are shownin Fig.1(a–c).Theindium tinoxidecoatedglasseswere patternedbyetchingwithdilutedHClforbottomgateelectrode. Prior to coating of dielectrics, the substrates were cleaned by soakinginultrasonicbathwithdistilledwater,acetoneand iso-propanol, respectively. Benzocyclobutene (BCB) and poly(vinyl alcohol) (PVA)(Mowiol® 40-8) with average molecularweight

of120,000werepurchased fromDownChemicalCompany and AldrichCompany,respectively.Themolecularstructuresof poly-meric dielectrics are shown in Fig. 1(d–e). The BCB thin film polymericdielectricwascoatedonITOsubstratebyspincoating at1500rpmin 45sand curedfor1hat285◦Cin vacuumoven underargonatmosphere.PVAthinfilmpolymericdielectricwas coatedonITOsubstratebyspincoatingof10wt/v%PVAsolution at1500rpmin45sanddriedfor24hunderroomtemperaturein vacuum.NBBIandPBBIsemiconductorswiththicknesses100nm werethermallyevaporated undervacuum(10−5mbar)atarate of0.05nm/sonBCBandPVAcoatedsubstratesundersame con-ditions,respectively.LiF/Almetalelectrode(purity99.9%)witha

Fig.1.(a)Cross-sectionalillustrationoffabricatedtopcontactOTFT,(b)chemical structuresofnaphthalenebis-benzimidazole(NBBI),(c)perylenebis-benzimidazole (PBBI), (d) divinyltetramethyldisiloxane-bis (benzocyclobutene) (BCB) and (e) polyvinylalcohol(PVA).

Fig.2. Outputcharacteristics(Ids−Vds)ofNBBIandPBBItransistorsondielectricsofBCBandPVAforvariousVgsindeviceI(a),deviceII(b),deviceIII(c)anddeviceIV(d), respectively.Allmeasurementsweretakenundersameconditions.

(3)

Fig.3. TransfercharacteristicsfordeviceI(a),deviceII(b),deviceIII(c)anddeviceIV(d).AllcurveswereobtainedunderVds=50V.Leftaxisrepresents(logIds−Vgs)curve andrightaxisI1/2ds −Vgscurve.

thickness0.6nm/60nm wasdeposited onactive layersof NBBI andPBBIwithvacuumevaporatorunder1×10−6mbarbyusing shadowmaskhavingachannellength(L)of47␮mandchannel width(W)of2mm.Theelectricalcharacterizationsoffabricated devicewerecarriedoutinaninertgasatmosphere.Theoutput (Ids−Vds)andtransfer(Ids−Vgs)characteristicsoffabricatedOFETs

weremeasuredwithAgilentE5273ASource/Measureunit. Sepa-ratesandwichstructuresofmetal–insulator–metal(MIM)withAu electrodeswerepreparedforcapacitance–voltagemeasurements ofdielectricfilms.AHP4842ALCRmeterwasusedforthe geometri-calcapacitancemeasurementsofinsulatorinMIMdevicestructure. Thesurfacemorphologiesofdielectricfilmsandactivelayerswere examinedintappingmodewitha Q-Scope250ScanningProbe MicroscopeAmbiosTechnologyoperatingat roomtemperature. Thethicknessofthedielectricwasdeterminedbyasurface pro-filometer(AmbiosXP-1).

Inthisstudy,devicesarereferredasdeviceIanddeviceIIfor NBBIandPBBIbasedOTFTsontheBCBdielectric,deviceIIIand deviceIVforNBBI andPBBIbasedOTFTsonthePVA dielectric, respectively.

3. Resultsanddiscussion

ThethicknessesofpolymericdielectricfilmsofPVA andBCB wereadjustedtoobtaininsameordercapacitancevaluesof insu-latedfilms.ThecapacitancevaluesofBCBandPVAinsulatorswere found to be 1.2nF/cm2 and 1.8nF/cm2 with 2␮m and 3.8␮m

filmthicknesses,respectively.Thedielectricconstantsofinsulators frommeasureddielectricthicknesseswereestimatedasεPVA=8

andεBCB=2.6,respectively.Thepolymericinsulatedfilmsdifferin

theirsurfaceenergydependonmolecularstructures.Thesurface energyofBCBandPVAwere34.3mJ/m2 and45mJ/m2 in

accor-dancewiththeRefs.[30,31],respectively.

AllOTFTswerefabricatedunderthesameconditionsinorder toabletocomparewitheachother.Alldevicespresenttypical n-channeltransistoroutputcharacteristicsasafunctionofVgs.The

outputcharacteristicsofalldevicesfabricatedontopofthe poly-mericgate-insulatorwithLiF/Altop drain-sourcecontactswere showninFig.2(a–d).ThedraincurrentIdsincreaseslinearlywith

Vds, at low voltages, implies that good establishment of ohmic

contactforelectroninjectionbetweensemiconductorsandLiF/Al contacts. When the output characteristics of devices are com-pared withPVA and BCB dielectrics,thewell-defined pinch-off (Vds≈Vgs−Vth)voltagesarenotobservedasshowninFig.2.Inideal

thin filmtransistor (TFT),the differentialresistancer=

Vds/

Ids

must behighin thesaturationregime(Vds>Vgs).In contrastto

idealTFToutputcharacteristics,deviceswithexceptionofdevice IIIexhibitedalowdifferentialresistanceinoutputcharacteristics abovethepinch-offvoltages.Thehighconductivityinsaturation regimecanbeattributedtothepresenceofinterfacechargesatthe dielectric/semiconductorinterface[32].

Fig. 3(a–d) depicts the transfer characteristics (logIds−Vgs)

and (Ids1/2−Vgs)of OTFTs at Vth=50V to illustrate turn-off and

turn-onstatebehaviorbysweepinggatevoltage.Themagnitude oftheturn-offcurrentexhibitsadependenceonpolymericgate dielectric,PVAgateinsulateddevicesshowedveryhighoffcurrent comparedwithBCBgateinsulateddevicetransfercharacteristicsin depletionregime(Vgs≤0V).TheOH−groupofPVAhassignificantly

largedipolemomentthatcreatesinternalelectricfieldinaddition to gate induced field at the semiconductor/dielectric interface. AlthoughcapacitancevalueofPVAgatedielectriciscomparable withBCBdielectric,draincurrentisverylargeinbothaccumulation regimeandalsoindepletionregimeforPVAdielectricduetodipole fieldofgateinsulator.Inadditiontoturn-offcurrent,weevaluated turn-on voltagewhichis definedasthegatevoltagewhere the drain current starts to increase. From transfer characteristic of

(4)

8 C.Tozluetal./SyntheticMetals172 (2013) 5–10

Fig.4. Atomicforcemicroscopy(AFM)imagesofNBBIfilm(a)andPBBIfilm(b)whichweredepositedonBCBlayers;NBBIfilm(c)andPBBIfilm(d)whichweredeposited onPVAdielectric.Allimagesweretakenintappingmode.

devices,thelargenegativeturn-onvoltagewasobservedforPVA gateinsulateddevicescomparedwithBCBdielectric.Thisnegative turn-onvoltageshowspresencesoftrapstatesthatprovidemobile charge in the channel formed at the dielectric/semiconductor interface [33,34] and also molecular dipole field of dielectric influencesturn-onvoltageabsolutelyduetoband-bendingatthe insulator/semiconductorinterface[35,36]. Thehysteresiseffects werealsoobservedespecially in thepresenceof PVA dielectric whichhavehydroxylgroup.Althoughthereareseveralarguments astothemechanismofthehysteresiseffectinOFET,theresults showthatthechargeinjectionandtrappingmechanismaremain sourcesofhysteresismechanisminOFETwhichisproducedonthe dielectricwithOH−[37].Furthermore,forinvestigationofinterface trapsinfluencesontransfercharacteristics,subthresholdswing,S, whichispointedoutthesharpnessoffieldeffectonsetdetermined from inverse slope of the log(Ids) versus Vgs below threshold

voltage, was evaluated. From transfer characteristics of below thresholdvoltage whichis extracted froma slope of(Ids(sat))1/2

versusVgswhereinterceptontheVgsaxis,alldevices exhibited

largesubthresholdswing(S).Actuallynormalizedsub-threshold swing,SN=S×Ci whereCiis thedielectric capacitanceper unit

area,permitstocomparemoreaccuratelydevicesbehaviorbelow thresholddependsondielectric thicknessand varyingdielectric materials.Thenormalized subthresholdswingvalues varyfrom

50nFVdecade−1cm−2 to 120nFVdecade−1cm−2, the largest valuewasobtainedfromPVAinsulateddevices thatshowmore deepinterfacetraps.Thesubthresholdswingdependsonnotonly dielectricthicknessandalsostronglyinterfacetrapspositionnext tointerface[38].Thedeviceparameters extractedfromtransfer characteristicsofOTFTsusingEq.(1)aresummarizedinTable1. Thesaturatedelectronfield-effectmobility,,wasobtainedfrom saturatedregimeofOTFTbyusingfollowingequation[39], (Ids(sat))1/2=



W

2LCi



1/2

(Vgs−Vth) Vds>Vgs−Vth (1)

whereIdsisthedrain–sourcecurrent,Wisthewidthofchannel,

L is thechannel length, Ci is the capacitance per unit area of

theinsulator.Vgsisthegatevoltage,isthemobilityofcharge

carrierandVthisthethresholdvoltage.Aslopeof(Ids(sat))1/2versus

Vgs determines saturated electron field-effect mobility, , and

thresholdvoltagesinwhichinterceptVgsaxis.

The saturated electron mobilities of devices fabricated on BCB dielectrichave highermobility compared withsame semi-conductorsbaseddevicesfabricatedonPVAdielectricalthoughthe permittivityofPVAismuchhigherthanBCB.Thecarriermobilities ofarylenebisimidederivativesbasedOTFTsincreasedasthesurface energyofthegatedielectricdecreased.Asdiscussedforpentacene smallmoleculesinbyYangetal.[40],mobilityvaluesofpentacene

(5)

Table1

SummaryofdeviceparametersforNBBIandPBBIbasedOTFTswithPVAandBCBdielectrics.

Device Semiconductor Dielectric V0(V) Vth(V) e(cm2V−1s−1)

DeviceI NBBI BCB 0 15 1×10−3

DeviceII PBBI BCB −2 18 1.6×10−4

DeviceIII NBBI PVA −12 3.9 8.1×10−4

DeviceIV PBBI PVA −16 2.8 9×10−5

Thevaluesshownhereareanaverageofatleastsixdifferentdevicesfabricatedundersameconditions.

decreasedwithincreasingsurfaceenergyofdielectric.Shinetal.

investigated the effects of polar functional groups of dielectric

resultingfromO2plasmatreatment.Theyfoundthatthemobility

ofpentaceneincreasesasdecreasesurfaceenergyofgatedielectric

withlargepolarfunctionalgroups[41].Gaoetal.demonstrated

similarresultsbyinvestigatingrelationshipbetweenmobilityand surfaceenergyofgatedielectricregardingthesurfaceenergyof activesemiconductor.Itisgenerallyacceptedthatthehigherfield effectmobility is achieved in case identicalsurface energies of dielectricandthesemiconductor[42].Thetransfercharacteristics ofsemiconductorsshowthatnaphthalenebis-benzimidazolehas agood performanceinOTFTonbothdielectricscompared with perylenebis-benzimidazoleonthesamegateinsulatedlayer.This performance difference mayattribute tofacilitation of channel formationandstrong␲–␲interactionatinsulator/NBBIinterface. Inordertoexaminethesurface effectsonthechargecarrier mobility depends on dielectric and semiconductors, an atomic forcemicroscopy(AFM)wasused.Beforecomparisoninsurface morphologiesofsemiconductorsonPVAandBCBinsulating-films, weevaluatedthesmoothnessofbare insulatorfilms.Themean roughnessofPVAwas0.2nmandthatofBCBwas0.43nm, indicat-ingthereisnolargedifferencesinroughnessofinsulating-films. Fig.4(a–b)depictsatomicforcemicroscopy(AFM)imageofvacuum evaporatedNBBIandPBBIfilmsonBCBlayerinthreedimensions. NBBIandPBBIfilmsexhibitroughsurfacewitharoot-meansquare (RMS)roughnessof1.73nmand1.33nm,respectively.Thegrains ofsemiconductorgrowthanislandshapeonBCBdielectricwith averagepeaktovalleydistanceof110nmforNBBIand150nmfor PBBI.Theaveragemaximumheightvalueofgrainsaboveaverage filmthicknessonBCBdielectriclayerwasfoundtobe5.57nmfor NBBIand4.392nmforPBBI,respectively.Thefilmmorphologies ofNBBIandPBBIonPVAdielectriclayerareshowninFig.4(c–d). ThegrainheightsofNBBIdepositedonPVAinsulating-filmwere decreased withtheexception ofsomeisland formationslocally whicharesufficientlyseparatedfromeachother,whilePBBI semi-conductorshowsasamorphous-likefilmswholethesurface.These imagesshowanevidenceoflower mobilitydue tograinshape propertiesonsurface.Althoughvalleysactasacarriertrapsdue to roughness scattering at first or second semiconductor layer formedclosetotheinterface,itisdifficulttoestimateinterface morphologyfromAFMimagesoftopsurface.Hence,wecanmerely makeanassumptionaboutthechargecarriermobilitydependence ongrainsappeared ontopsurfaces.In generally, grains signifi-cantlyinfluencethetransport mechanism ofcharge carrierand itsmobilitydue tohoppingprocess betweenorganicmolecules [43]. The grain size differenceof same semiconductors on dif-ferentinsulating-filmscanbeattributedtotheRMSdifferences andhydrophilic/hydrophobicpropertyofinsulatorfilms.The ary-lenebisiimidessubstitutedwitharomaticsidechainscanchange surfacepropertyfromhydrophilictohydrophobic.Inthecaseof C O and N H terminated perylene and naphthalene tetra car-boxylicdimidesmayshowrelativelymorehydrophilicsurfacein accordancewithdensityofpolargroups.Thegrainsof semiconduc-torgrowthshowmoreorderedaggregationsandbetterelectrical characteristicsinthepresenceofsubstratewiththesamesurface property.

4. Conclusion

Adetailedstudyofn-channelOFETsbasedonnaphthaleneand perylene bis-benzimidazole is presentedby incorporating polar andnon-polarpolymericdielectrics.Wefindthedipolemoment depending onthe polarfunctional groups modifies thesurface potentialoftheinterfacenexttochannelandinducesmobilecharge carriersatturn-offstateofOTFT.Experimentalresultsindicatethat thechoiceofgatedielectricscandominatetheelectrical perfor-manceofOTFTbyinfluencingmorphologyandstructureofactive layer.Thepresenceofhydroxylinpolymericdielectrichasaneffect ontheinterfacialelectrontrappingstatesnexttochannelat insu-lator/semiconductor.ThehighestmobilitywasobtainedfromBCB gate insulatedalthoughitscapacitance valueandpermitivityis lowerthanPVAdielectric.Theresultsshowedthatnaphthalene bis-benzimidazolehasagoodperformanceinOTFTonbothdielectrics compared with perylenebis-benzimidazole. The imidazole side groupinfluencessignificantlychargecarriermobilityandsurface morphologyduetosurfaceenergyoforganicthinfilm.

Acknowledgments

This studywas supportedby European Science Foundation-ExchangeGrantofORGANISOLARandEUFP6OrgaPVNetprojects. We acknowledge Scientific and Technological Research Council of TURKEY(TUBITAK)and StatePlanningOrganization (DPT)of Turkey.

References

[1]H.Hoppe,N.S.Sariciftci,JournalofMaterialsResearch19(2004)1924. [2]G.B.Blanchet,Y.L.Loo,J.A.Rogers,F.Gao,C.R.Fincher,AppliedPhysicsLetters

82(2003)463.

[3]F.Eder,H.Klauk,M.Halik,U.Zschieschang,G.Schmid,C.Dehm,AppliedPhysics Letters84(2004)2673.

[4]J.H.Lee,D.N.Liu,S.T.Wu(Eds.),IntroductiontoFlatPanelDisplays,JohnWiley &SonsLtd.,Wiltshire,2008.

[5]L.Zhou,A.Wanga,S.C.Wu,J.Sun,S.Park,T.N.Jackson,AppliedPhysicsLetters 88(2006)83502–83504.

[6]Z.Bao,J.Locklin(Eds.),OrganicField-EffectTransistors,TaylorandFrancis,Boca Raton,2007.

[7]L.Wang,D.Fine,D.Sharma,L.Torsi,A.Dodabalapur,Analyticaland Bioanalyt-icalChemistry384(2006)310.

[8]S.K.Lee,Y.Zu,A.Herrmann,Y.Geerts,K.Mullen,A.J.Bard,Journalofthe Amer-icanChemicalSociety121(1999)3513–3530.

[9]P.Gawrys,D.Boudinet,M.Zagorska,D.Djurado,J.M.Verilhac,G.Horowitz,J. Pécaud,S.Pouget,A.Pron,SyntheticMetals159(2009)1478–1485. [10]E.E.Neuteboom,S.C.J.Meskers,E.W.Meijer,R.A.J.Janssem,Macromolecular

ChemistryandPhysics205(2004)217–222.

[11]C.Tozlu,S.ErtenEla,S.Icli,SensorsandActuatorsA:Physical161(2010) 46–52.

[12]T.N.Krauss,J.Major,E.Barrena,V.Dehm,X.N.Zhang,F.Würthner,D.G.de Oteyza,L.P.Cavalcanti,H.Dosch,Langmuir24(2008)12742–12744. [13]M.M.Torrent,C.Rovira,ChemicalSocietyReviews37(2008)827–838. [14]R.Schmidt,A.M.Krause,J.H.Oh,K.Radacki,P.Erk,Y.S.Sun,M.Deppisch,H.

Braunschweig,Z.Bao,M.Könemann,F.Würthner,JournaloftheAmerican ChemicalSociety131(2009)6215–6228.

[15]B.A.Jones,A.Facchetti,M.R.Wasielewski,T.J.Marks,JournaloftheAmerican ChemicalSociety129(2007)15259–15278.

[16]H.Z.Chen,M.M.Ling,X.Mo,M.M.Shi,M.Wang,Z.Bao,ChemistryofMaterials 19(2007)816–824.

[17]Z.Chen,Y.Zheng,H.Yan,A.Facchetti,JournaloftheAmericanChemicalSociety 131(2009)8–9.

(6)

10 C.Tozluetal./SyntheticMetals172 (2013) 5–10 [18]S. Hüttner,M. Sommer,M. Thelakka, AppliedPhysics Letters 92 (2008)

93302–93305.

[19]A.S.Molinari,H.Alves,Z.Chen,A.Facchetti,Al.F.Morpurgo,Journalofthe AmericanChemicalSociety131(2009)2462–2463.

[20]S.Tanida,K.Noda,H.Kawabata,K.Matsushige,ThinSolidFilms518(2009) 571–574.

[21]M.M.Ling,P.Erk,M.Gomez,M.Koenemann,J.Locklin,Z.Bao,Advanced Mate-rials19(2007)1123–1127.

[22]C.Piliego,D.Jarzab,G.Gigli,Z.Chen,A.Facchetti,M.A.Loi,AdvancedMaterials 21(2009)1–4.

[23]B.A.Jones,A.Facchetti,T.J.Marks,M.R.Wasielewski,ChemistryofMaterials19 (2007)2703–2705.

[24]H.E.Katz,A.J.Lovinger,J.Johnson,C.Kloc,T.Siegrist,W.Li,Y.-Y.Lin,A. Doda-balapur,Nature404(2000)478–480.

[25]A.Facchetti,M.H.Yoon,T.J.Marks,AdvancedMaterials17(2005)1705–1725. [26]F.C.Chen,C.H.Liao,AppliedPhysicsLetters93(2008)103310–103313. [27]H.Kawaguchi,M.Taniguchi,T.Kawai,SyntheticMetals15(8)(2008)355–358. [28]S.Erten,S.Icli,InorganicaChimicaActa361(2008)595.

[29]S.Erten,F.Meghdadi,S.Gunes,R.Koeppe,N.S.Sariciftci,S.Icli,European Phys-icalJournalAppliedPhysics36(2007)225.

[30]F.A. Yildirim, R.R. Schliewe, W. Bauhofer, R.M. Meixner, H. Goebel, W. Krautschneider,OrganicElectronics9(2008)70–76.

[31]Th.B.Singh,F.Meghdadi,N.SerapGünes,G.Marjanovic,P.Horowitz,S.Lang, N.S.Bauer,Sariciftci,AdvancedMaterials17(2005)2315–2320.

[32]Th.B.Singh,N.Marjanovic,P.Stadler,M.Auinger,G.J.Matt,S.Günes,N.S. Sari-ciftci,JournalofAppliedPhysics97(2005)83714.

[33]C.Erlen,P.Lugli,IEEETransactionsonElectronDevices56(2009)546–552. [34]S.Scheinert,K.P.PErntich,B.Batlogg,G.Paasch,JournalofAppliedPhysics102

(2007)104503–104510.

[35]K.P.Pernstich,S.Haas,D.Oberhoff,C.Goldmann,D.J.Gundlach,B.Batlogg,A.N. Rashid,G.Schitter,JournalofAppliedPhysics96(2004)6431–6438. [36]Y.Jang,J.H.Cho,D.H.Kim,Y.D.Park,M.Hwang,K.Cho,AppliedPhysicsLetters

90(2007)131104–131106.

[37]Cheon An Lee, Dong-Wook Park, Sung Hun Jin, Yoo Chul Kim, Han Park,JongDunkLee,Byung-GookPark,AppliedPhysicsLetters 88(2006) 262120–2621123.

[38]S.Scheinert,G.Paasch,M.Schröder,H.K.Roth,S.Sensfuß,Th.Doll,Journalof AppliedPhysics92(2002)330–337.

[39]S.M.Sze,PhysicsofSemiconductorDevices,3rded.,Wiley,NewYork,2007. [40]S.Y. Yang, K. Shin, C.E. Park, Advanced Functional Materials 15 (2005)

1806–1814.

[41]K.Shin,S.Yoon,C.Yang,H.Jeon,C.E.Park,OrganicElectronics8(2007)336–342. [42]J.Gao,K.Asadi,J.B.Xu,J.An,AppliedPhysicsLetters94(2009)93302–93305. [43]G.Horrowitz,M.H.Hajlaoui,AdvancedMaterials12(2000)1046–1050.

Şekil

Fig. 2. Output characteristics (I ds − V ds ) of NBBI and PBBI transistors on dielectrics of BCB and PVA for various V gs in device I (a), device II (b), device III (c) and device IV (d), respectively
Fig. 3. Transfer characteristics for device I (a), device II (b), device III (c) and device IV (d)
Fig. 4. Atomic force microscopy (AFM) images of NBBI film (a) and PBBI film (b) which were deposited on BCB layers; NBBI film (c) and PBBI film (d) which were deposited on PVA dielectric

Referanslar

Benzer Belgeler

For SiC, as the magnitude k is smaller than n at infrared, surface roughness caused reflection change is limited; however, polar resonance at λ around 12 µm causes one resonance peak

Bonferroni testi sonucuna göre birinci gelişme dönemi sonunda çap ve tek ağaç göğüs yüzeyi artımına göre 2- 2.5 m ve 3-3.5 m aralık bırakılarak

This paper presents a new approach to enhance the clustering problems with the bio-inspired Cuttlefish Algorithm (CFA) by searching the best cluster centers that can minimize

madde kapsamındaki münhasır hakların, kavram olarak teşebbüsler tarafından verilen münhasır haklar ile en fazla karıştırılmasına neden olan özelliği, her iki durumda

Eski edebî metinlerdeki perakende kayıd- lar arasından fevkalâde kıymetli bilgi kırın­ tıları toplanabilmekde, bunlar hususiyle mu­ sikînin çalgı kısımlarına

a) General supervision. Do Stefano pointed out the need for general supervision of the business procedures of National Offices, possibly by an International

ناتسدروك ميلقلإ ةبسنلاب لاحلا كلذك - لاا ةحفاكم نوناق ردصأ يذلا قارعلا مقر ميلقلاا يف باهر ( 3 ( ةنسل ) 2006 نوناق( يباهرلإا شعاد ميظنت مئارج يف اوطروت نمم

Bu bulgular›n ›fl›¤›nda olgunun, sa¤ aortik sinüsten kö- ken alan, anormal orijinli sol ana koroner arterin, ç›kan aort ve pulmoner trunkus aras›ndaki seyri nedeni ile