• Sonuç bulunamadı

Maximal and potential operators associated with gegenbauer differential operator on generalized morrey spaces

N/A
N/A
Protected

Academic year: 2021

Share "Maximal and potential operators associated with gegenbauer differential operator on generalized morrey spaces"

Copied!
15
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

National Academy of Sciences of Azerbaijan Volume 46, Number 1, 2020, Pages 129–143 https://doi.org/10.29228/proc.23

MAXIMAL AND POTENTIAL OPERATORS ASSOCIATED WITH GEGENBAUER DIFFERENTIAL OPERATOR ON

GENERALIZED MORREY SPACES

ELMAN J. IBRAHIMOV, SAADAT A. JAFAROVA, AND S. ELIFNUR EKINCIOGLU Abstract. In this paper we study the boundedness of the maximal (G-maximal) and potential (G-potential) operators associated with Gegen-bauer differential operator on generalized G-Morrey spaces. The results of this paper are generalizations of the corresponding results to gen-eralized G-Morrey spaces and modified Morrey spaces.We obtain also analogs of E.Nakai’s results for the Hardy-Littlewood maximal operator and the Riesz potential in generalized Morrey spaces.

1. Introduction

In 2011, in the paper [11] new integral transformations that formed the ba-sis of theory of Harmonic analyba-sis of the Gegenbauer differential operator were constructed. Later, this theory was intensively developed in various directions: approximation theory, imbedding theory, transformation theory, theory of max-imal functions and potential theory (see [4-8, 9-11]). The basis of this theory was the Gegenbauer differential operator G (see [1]). In [1], various represen-tations (through integral and hypergeometrical functions) of eigen-functions of this operator, relations between them, formulas of addition and product for these functions, asymptotic formulas, etc are given. The reader can find detailed infor-mation in the mentioned paper [1].

One of the important directions of the Gegenbauer harmonic analysis is the boundedness of maximal operator and potential generated by the Gegenbauer differential operator G.

The boundedness of the maximal (G-maximal) and potential (G-potential) operators associated with Gegenbauer differential operator G.

G ≡ Gλ= (x2− 1) 1 2−λ d dx(x 2− 1)λ+12 d dx, x ∈ (1, ∞), λ ∈ (0, 1 2) on the Lebesgue, Morrey and modified Morrey spaces is considered in [3, 4, 5].

In the present paper, we introduce a generalized Gegenbauer-Morrey (G-Morrey) space Mp,λ,ω(R+, G), and estimate G-maximal and G− potential operators gen-erated by Gegenbauer differential operator G. The obtained result is an analog of

2010 Mathematics Subject Classification. 42B20, 42B25, 42B35.

Key words and phrases. G-maximal operator, G-potential, generalized G-Morrey space.

(2)

the corresponding theorems obtained for the Hardy-Littlewood maximal operator and the Riesz potential in [16].

2. Definition and notation

Let H(x, r) = (x − r, x + r) ∩ (0, ∞), r ∈ (0, ∞), x ∈ (0, ∞) = R+. For all measurable sets E ⊂ (0, ∞), put µE = |E|λ =

R

Esh2λtdt.

For 1 ≤ p ≤ ∞ let Lp,λ(R+, G) be the space of functions measurable on R+ with the finite norm

kf kLp,λ = Z ∞ 0 |f (cht)|pshtdt 1 p , 1 ≤ p < ∞, kf k∞,λ≡ kf k∞= ess sup t∈(0,∞) |f (cht)|, p = ∞. In [5], the following notation is introduced.

Let 1 ≤ p < ∞, 0 < λ < 12, 0 ≤ γ ≤ 2λ + 1, [r]1 = min{1, r}. We denote by Lp,λ,γ(R+, G), R+ = (0, ∞), the G-Morrey space, and by eLp,λ,γ(R+, G) the modified G-Morrey space, as the set of locally integrable functions f (chx), x ∈ R+, with the finite norms

kf kLp,λ,γ = sup x,r>0 r−γ Z H(x,r) |f (cht)|psh2λtdt !1p , kf k e Lp,λ,γ = supx,r>0 [r] −γ 1 Z H(x,r) |f (cht)|psh2λtdt !p1 , respectively. Note that eLp,λ,0(R+, G) = Lp,λ,0(R+, G) = Lp,λ(R+, G). If 1 ≤ p < ∞, 0 < λ < 12, 0 ≤ γ ≤ 2λ + 1, then e Lp,λ,γ(R+, G) = Lp,λ,γ(R+, G) ∩ Lp,λ(R+, G) and kf k e Lp,λ,γ = max{kf kLp,λ,γ,kf kLp,λ} (see [5], Lemma 2.2).

If γ < 0 or γ > 2λ + 1, then Lp,λ,γ(R+, G) = eLp,λ,γ(R+, G) = Θ, where θ is the set of all functions equivalent to 0 on R+.

Let 1 ≤ p < ∞, 0 < λ < 12, 0 ≤ γ ≤ 2λ + 1. We denote by W Lp,λ,γ(R+, G) the weak G-Morrey space, and W eLp,λ,γ(R+, G) the modified weak G-Morrey space as the set of locally integrable functions f (chx), x ∈ R+, with the finite norms

kf kW Lp,λ,γ = sup r>0 r sup t,x>0  t−γ|{y ∈ H(x, t) : |f (chy)| > r}|γ 1p , kf kW eL p,λ,γ = supr>0r supt,x>0  [t]−γ1 |{y ∈ H(x, t) : |f (chy)| > r}|γ 1p , respectively.

(3)

Note that W Lp,λ(R+, G) = W Lp,λ,0(R+, G) = W eLp,λ,0(R+, G), Lp,λ,γ(R+, G) ⊂ W Lp,λ,γ(R+, G) and kf kW Lp,λ,γ ≤ kf kLp,λ,γ, eLp,λ,γ(R+, G) ⊂ W Lp,λ,γ(R+, G)

and kf kW eL

p,λ,γ ≤ kf kLep,λ,γ.

The generalized shift operator associated with the operator Gλ is of the form (see [6, 9]) Aλchtf (chx) = Γ(λ + 1 2) Γ(λ)Γ(12) Z π 0 f (chxcht − shxsht cos ϕ)(sinϕ)2λ−1dϕ. This operator possesses properties similar to those of the generalized shift oper-ator in Levitan’s works [13] and [14].

By analogy with [16], we introduce the following notation.

Definition 2.1. Let 1 ≤ p < ∞ and let w : R+→ R+be a Lebesgue measurable function. The generalized Gegenbauer-Morrey (G-Morrey) space Mp,λ,w(R+, G) associated with the Gegenbauer differential operator Gλ are the set of locally integrable functions f (chx), x ∈ R+ with the finite norm

kf kM p,λ,w(R+,G)≡ kf kMp,λ,w := sup x∈R+,r>0  1 w(r) Z H(0,r) Aλcht|f (chx)|psh2λtdt 1 p , and the weak Morrey space W Mp,λ,w(R+, G) are the set of locally integrable functions f (chx), x ∈ R+, with the finite norm

kf kW Mp,λ,w(R+, G) ≡ kf kW Mp,λ,w = sup r>0 r sup x∈R+,t>0  1 w(t) n y ∈ H(0, t) : |Aλchyf (chx)| > r o λ 1p = sup r>0 r sup x∈R+,t>0  1 w(t) Z {y∈H(0,t):Aλ chy|f (chx)|>r} sh2λydy 1 p .

Under the choice w(r) = rγ, 0 ≤ γ ≤ 2λ + 1, or w(r) = [r]γ1, we can write that Lp,λ,γ(R+, G) ≡ Mp,λ,w(R+, G)|w(r)=rγ, and eLp,λ,γ(R+, G) ≡ Mp,λ,w(R+, G)

w(r)=[r]γ1, respectively (see [5]).

Let MG be the Gegenbauer maximal operator(see [9]) for f ∈ Lloc1,λ(R+) MG(chx) = sup r>0 1 |H(0, r)|λ Z H(0,r) Aλcht|f (chx)|sh2λtdt, where |H(0, r)|λ= Rr 0 sh 2λtdt. For q ≥ 1 let MGqf (chx) = (MG|f |q(chx)) 1 q.

The Riesz-Gegenbauer ((R-G)-potential) IGα is defined as follows (see [3, 4, 5]) IGαf (chx) = 1 Γ(α2) Z ∞ 0 Z ∞ 0 rα2−1hr(cht)dr  Aλchtf (chx)sh2λtdt, where hr(cht) = Z ∞ 1 e−u(u+2λ)rPuλ(cht)sh2λudu and Puλ(cht) is an eigen function of the operator G.

(4)

Throughout in the paper, we will denote by shx, chx the hyperbolic functions and by A . B we mean that A ≤ CB with some positive constant C which can depend on some parameters. If A . B and B . A, we write A ≈ B and say that they are equivalent.

3. Main results

Let 0 < δ ≤ 1. Assume that w(r) satisfies the conditions: for any r > 0

r ≤ t ≤ 2r ⇒ w(t) ≈ w(r), (3.1) Z ∞ r w(t) tγδ+1dt . ( r−(2λ+1)δw(r), γ = 2λ + 1; 0 < r < 2. r−4λδw(r), γ = 4λ; 2 ≤ r < ∞. (3.2) Theorem 3.1. Let conditions (3.1) and (3.2) be valid. Then

(i) For f ∈ Mp,λ,w(R+, G) and 1 ≤ q < p < ∞

kMGqf kMp,λ,w . kf kMp,λ,w. (3.3)

(ii) For f ∈ W Mp,λ,w(R+, G) , 1 ≤ p < ∞ and for any t > 0

kMGpf kW Mp,λ,w . kf kMp,λ,w. (3.4)

Now, we consider the Riesz-Gegenbauer potential ((R-G)-potential) IGα. Theorem 3.2. Let 0 < λ < 12 , 0 < α < 2λ + 1, 1 ≤ p < 2λ+1α and 1p−1

q = α 2λ+1. Assume that w satisfies the conditions (3.1) and (3.2). Then

(i) if p > 1 then for f ∈ Mp,λ,w(R+, G) kIGαf kM

q,λ,w q

p . kf kMp,λ,w

, (3.5)

(ii) if p = 1 and f ∈ M1,λ,w(R+, G). Then

kIGαf kW Mq,λ,w . kf kM1,λ,w. (3.6)

Corollary 3.1. [3] Let 0 < α < 2λ + 1, 0 < γ < 2λ + 1 − α and 1 ≤ p < 2λ+1−γα . (i) If 1 < p < 2λ+1−γα , then condition 1p − 1q = 2λ+1−γα is necessary and sufficient for the boundedness of Iα

G from Lp,λ,γ(R+, G) to Lq,λ,γ(R+, G).

(ii) If p = 1 < 2λ+1−γα , then the condition 1 −1q = 2λ+1−γα is necessary and sufficient for the boundedness of IGα from L1,λ,γ(R+, G) to W Lq,λ,γ(R+, G). Corollary 3.2. [5] Let 0 ≤ α < 2λ + 1, 0 ≤ γ < 2λ + 1 − α and 1 ≤ p < 2λ+1−γα .

1) If 1 < p < 2λ+1−γα , then the condition 2λ+1α ≤ 1p −1q2λ+1−γα is necessary and sufficient for the boundedness of IGα from eLp,λ,γ(R+, G) to eLq,λ,γ(R+, G).

2) If p = 1 < 2λ+1−γα , then the condition 2λ+1α ≤ 1 −1 q ≤

α

2λ+1−γ is necessary and sufficient for the boundedness of IGα from eL1,λ,γ(R+, G) to W eLq,λ,γ(R+, G).

(5)

4. Auxiliary results

Further we need the following results.

Lemma 4.1. [9] For 0 < λ < 12 the following relations are true: |H(0, r)|λ

(

shr22λ+1, 0 < r < 2, (chr2)4λ, 2 ≤ r < ∞. Let χH be the characteristic function of H = H(0, r).

Lemma 4.2. [10]. For x ∈ R+, r > 0, and 0 < λ < 12 the following relation MGχH(chx) ≈       shr 2 shx+r2 2λ+1 , 0 < x + r < 2,  shr 2 shx+r2 4λ , 2 ≤ x + r < ∞ is valid.

Lemma 4.3. For every nonnegative function f (ch x), x ∈ R+ the following re-lation r Z 0 Aλchtf (ch x)sh2λtdt ≈ Z H(x,r) f (ch u)sh2λu du. is valid.

Proof. In the work [9] it is proved that (see [9], proof of Theorem 2.1) J (x, r) = r Z 0 Aλchtf (chx)sh2λt dt = Cλ ch(x+r) Z ch(x−r) f (z)(z2− 1)λ−12 Z ϕ(z,x,r) (1 − u2)λ−1du dz, where ϕ(z, x, r) = z ch x−ch r√ z2−1sh x and −1 ≤ ϕ(z, x, r) ≤ 1, Cλ= Γ(λ+12) Γ(λ)Γ(1 2) . Then A(z, x, r) = Cλ 1 Z ϕ(z,x,r) (1 − u2)λ−1du ≤ Cλ 1 Z −1 (1 − u2)λ−1du = 1. Now estimate the integral A(z, x, r). Let −1 ≤ ϕ(z, x, r) ≤ 0. Then

A(z, x, r) = Cλ 1 Z ϕ(z,x,r) (1 − u2)λ−1du ≥ Cλ 1 Z 0 (1 − u2)λ−1du ≥ 2λ−1Cλ 1 Z 0 (1 − u)λ−1du = 2 λ−1 λ Cλ.

(6)

Now, let 0 ≤ ϕ(z, x, r) ≤ 1, then A(z, x, r) = Cλ 1 Z ϕ(z,x,r) (1 − u)λ−1(1 + u)λ−1du = Cλ 1−ϕ(z,x,r) Z 0 uλ−1(2 − u)λ−1du = Cλ ∞ Z 1 1−ϕ(z,x,r) u−λ−1  2 − 1 u λ−1 du = Cλ ∞ Z 1 1−ϕ(z,x,r) u−2λ(2u − 1)λ−1du = 22λ−1Cλ ∞ Z 2 1−ϕ(z,x,r) u−2λ(u − 1)λ−1du = 22λ−1Cλ ∞ Z 1−ϕ(z,x,r) 1+ϕ(z,x,r) (u + 1)−2λuλ−1du = 22λ−1· Cλ 1+ϕ(z,x,r) 1−ϕ(z,x,r) Z 0 (1 + u)−2λuλ−1du ≥ 22λ−1Cλ 1 Z 0 (1 + u)−2λuλ−1du ≥ 22λ−1Cλ 1 Z 0 uλ−1 (1 + u)2λdu ≥ Cλ 2 1 Z 0 uλ−1du = Cλ 2λ . Consequently, A(z, x, r) = 1 Z ϕ(z,x,r) (1 − u2)λ−1du ≈ 1, and J (x, r) ≈ ch(x+r) Z ch(x−r) f (z)(z2− 1)λ−12dz = Z H(x,r) f (chu) sh2λudu.  Theorem 4.1. (Calderon-Zygmund decomposition of Rn). Suppose that f is nonnegative integrable on R+. Then for any fixed α > 0, there exists a sequence {Hj(xj, rj)} = {Hj} of disjoint interval such that

(1) f (chx) ≤ α for a.e. x 6∈S j Hj; (2) |S j Hj|λ ≤ α1kf kL1,λ; (3) α < |H1 j|λ R Hjf (chy)sh 2λydy . 2(2λ+1)nα, n = 1, 2, . . ..

The proof of this theorem is similar to Theorem 1.2.1 from [15]. Theorem 4.2. (Fefferman-Stein type inequality)

(7)

(i) For every nonnegative measurable functions f and g on R+ every 1 ≤ p < ∞ and every 0 < t < ∞, Z R+ Aλcht(MGf (chx))pg(chx)sh2λxdx . Z R+ Aλchtf (chx)pMGg(chx)sh2λxdx, (4.1) (ii) For any measurable function on R+ f ≥ 0 and g ≥ 0

Z {x∈R+:AλchtMGf (chx)>α} g(chx)sh2λxdx . 1 α Z R+ Aλchtf (chx)MGg(chx)sh2λxdx, (4.2) Proof. First assertion follows from the inequality (see[3], Theorem 1.4)

Z r 0 Aλcht(MGf (chx))pg(chx)sh2λxdx . Z r 0 Aλchtf (chx)pMGg(chx)sh2λxdx as r → ∞.

We prove (4.2). Using the relation from Lemma 4.3 Z H(0,r) Aλchtf (chx)sh2λtdt ≈ Z H(x,r) f (chu)sh2λudu ≈ α, we obtain Z Hi(0,r) Aλchtf (chx)MGg(ch x)sh2λxdx ≥ Z Hi(0,r) Aλchtf (chx) 1 |Hi(0, r)|λ Z Hi(0,r) Aλchtg(chx)sh2λydysh2λxdx ≥ α Z {u∈R+:MGf (chu)>α} g(chu)sh2λudu.

Summing over i, we get Z R+ Aλchtf (chx)MGg(chx)sh2λxdx & α Z R+ g(chu)sh2λudu & α Z {u∈R+:MGf (chu)>α} g(chu)sh2λudu.

From this it follows (4.2). 

Lemma 4.4. Let the conditions (3.1) and (3.2) hold. Then for 1 ≤ p < ∞ and f ∈ Mp,λ,w(R+, G) we have

Z

R+

(8)

Proof. Let χH be the characteristic function of H(0, r). Then MGχH ≤ 1. On the other hand, by Lemma 4.2 for 0 < x + r < 2 we have

Z R+ Aλcht|f (chx)|p(MGχH(cht))δsh2λtdt ≈ Z r 0 Aλcht|f (chx)|psh2λtdt + ∞ X k=0 Z 2k+1r 2kr  shr 2 shx+r2 (2λ+1)δ Aλcht|f (chx)|psh2λtdt ≈ w(r) 1 w(r) Z r 0 Aλcht|f (chx)|psh2λtdt  + ∞ X k=0 Z 2k+1r 2kr  shr 2 sh(2k+1+ 1)r 2 (2λ+1)δ Aλcht|f (chx)|pshtdt (since shax ≥ ashx for a ≥ 1)

. w(r) + ∞ X k=0 2−(2λ+1)δw(2k+1r) kf kpM p,λ,w . r(2λ+1)δ ∞ X k=0 w(2kr) (2λ + 1)(2λ+1)δ kf k p Mp,λ,w. By (3.1) w(2kr) (2kr)(2λ+1)δ . Z 2k+1r 2kr w(t) t(2λ+1)δ+1dt, we have Z R+ Aλcht|f (chx)|p(M GχH(cht))δsh2λtdt .  r(2λ+1)δ Z ∞ r w(t) t(2λ+1)δ+1dt  kf kMp p,λ,w . w(r)kf kM p p,λ,w. (4.3)

If 2 ≤ x + r < ∞, then by Lemma 4.2 and previous case we obtain Z R+ Aλcht|f (chx)|pM GχH(cht) δ sh2λtdt .  r4λ Z ∞ r w(t) t4λδ+1dt  kf kMp,λ,w . w(r)kf kMp,λ,w. (4.4)

Now the assertion of Lemma 3.4 follows from (4.3) and (4.4). 

5. Proofs of the main results

Proof of Theorem 3.1. (i) We use (4.1) for |f |q and χH ≥ 0, the characteristic function of H(0, r). Then Z H(0,r) Aλcht(MGqf (chx))psh2λxdx . Z R+ Aλcht|f (chx)|pMGχH(chx)sh2λxdx

(9)

It follows from Lemma 4.4 with δ = 1 that Z

H(0,r)

cht(MGqf (chx))psh2λxdx . w(r)kf kMp,λ,w.

Therefore we obtain (3.3).

(ii) We use (4.2). By Lemma 4.4 with δ = 1 we have n x ∈ H(0, r) : AλchtMGf (chx) > α o λ = Z {x∈R+:AλchtMG|f |p(chx)>αp} χH(chx)sh2λxdx . α−p Z R+ Aλcht|f (chx)|pM χH(chx)sh2λxdx . α−pw(r)kf kpM p,λ,w.

From this it follows (3.4).

To prove Theorem 3.2 we need the following result (see [4], Theorem 3) Theorem 5.1. [4] Let 0 < λ < 12, 0 < α < 2λ + 1 and 1 ≤ p < 2λ+1α .

(a) If 1 < p < 2λ+1α , then the condition 1p−1q = 2λ+1α is necessary and sufficient for the boundedness of the operator Iα

G from Lp,λ(R+, G) to Lq,λ(R+, G).

(b) If p = 1, the condition is necessary and sufficient for the boundedness of the operator IGα from L1,λ(R+, G) to Lq,λ(R+, G).

Proof of Theorem 3.2. (i) For f ∈ Mp,λ,w(R+, G) and for H(0, r), let f = f1+ f2, f1 = f χH. Since IGα is bounded from Lp,λ(R+, G) to Lq,λ(R+, G),

Z H(0,r) Aλcht|IGαf1(chx)|qsh2λxdx . kIGαf1kqL q,λ(H(0,r)) . kf1kqLq,λ(H(0,r)) . Z H(0,r) Aλcht|f (chx)|psh2λxdx q p . Therefore,  w(r)− q p Z H(0,r) Aλcht|IGαf1(chx)|qsh2λxdx 1q .  1 w(r) Z H(0,r) Aλcht|f (chx)|psh2λtdt 1 p . kf kMp,λ,w. (5.1)

For x ∈ H(0, r) and for t ∈ (r, ∞) we have

|IGαf2(chx)| .    R∞ r Aλ cht|f2(chx)|sh2λt (cht)2λ+1 dt, 0 < r < 2, R∞ r Aλ cht|f2(chx)|sh2λt (cht)4λ dt, 2 < r < ∞, .    R∞ r Aλ cht|f2(chx)|sh 2λt (cht)2λ+1−α dt, 0 < r < 2, R∞ r Aλ cht|f2(chx)|sh2λt (cht)4λ−α dt, 2 < r < ∞,

(10)

.        shr2α−2λ+1 ∞ R r Aλcht|f2(chx)| sh r 2 sht+r2 2λ+1−α sh2λtdt, 0 < r < 2, shr2α−4λ ∞ R r Aλcht|f2(chx)|  shr 2 sht+r 2 4λ−α sh2λtdt, 2 < r < ∞, .        shr2−(2λ+1)(1−2λ+1α ) ∞ R r Aλcht|f2(chx)| sh r 2 sht+r2 (2λ+1)(1−2λ+1α ) sh2λtdt, 0 < r < 2, shr2−4λ(1− α 4λ) ∞ R r Aλcht|f2(chx)|  shr 2 sht+r2 4λ(1−α 4λ) sh2λtdt, 2 < r < ∞, ≈        |H(0, r)| α 2λ+1−1 λ ∞ R r Aλcht|f2(chx)|(MGχH(cht))1− α 2λ+1shtdt, 0 < r < 2 |H(0, r)| α 4λ−1 λ ∞ R r Aλcht|f2(chx)|(MGχH(cht))1− α 4λsh2λtdt, 2 < r < ∞. (5.2) First we consider the case 0 < r < 2 and 0 < α < 2λ + 1. Let 0 < δ < 1 −2λ+1αp . By H¨older’s inequality, we have

|Iα Gf2(chx)| . 1 |H(0, r)|1− α 2λ+1 λ Z ∞ r Aλcht|f2(chx)|(MGχH(chx)) δ p(M GχH(cht))1− α 2λ+1− δ pshtdt . 1 |H(0, r)|1− α 2λ+1 λ Z ∞ r Aλcht|f2(chx)|p(MGχH(cht))δsh2λtdt 1p × Z ∞ r (MGχH(cht))p− αp 2λ+1−δshtdt p−1p = 1 |H(0, r)|1− 1 p+ 1 q λ Z ∞ r Aλcht|f2(chx)|p(MGχH(cht))δsh2λtdt 1p × Z ∞ r (MGχH(cht)) p− αp 2λ+1−δ p−1 shtdt !p−1p = 1 |H(0, r)| 1 q λ Z ∞ r Aλcht|f2(chx)|p(MGχHcht)δsh2λtdt 1p × 1 |H(0, r)|λ Z ∞ r (MGχH(cht)) p−2λ+1αp −δ p−1 shtdt !p−1p (5.3) Further 1 |H(0, r)|λ Z ∞ r (MGχH(cht)) p− αp 2λ+1−δ p−1 shtdt ≈ 1 |H(0, r)|λ Z ∞ r  shr 2 sht+r2 (2λ+1)(p−δ)−αpp−1 sh2λtdt

(11)

. sh r 2 (2λ+1)(p−δ)−αpp−1 shr22λ+1 Z ∞ r sh2λ t2ch2λ t2 (sht2) (2λ+1)(p−δ)−αp p−1 dt . shr 2 (2λ+1)(p−δ)−αpp−1 −(2λ+1) Z ∞ r sh2λ t 2ch t 2 (sht2) (2λ+1)(p−δ)−αp p−1 dt . shr 2 (2λ+1)(1−δ)−αpp−1 Z ∞ r d(sh2t) (sh2t) (2λ+1)(p−δ)−αp p−1 −(2λ+1)+1 . shr 2 (2λ+1)(1−δ)−αpp−1 Z ∞ r d(sh2t) (sh2t) (2λ+1)(1−δ)−αp p−1 +1 . 1. (5.4)

From (5.3) and (5.4) we obtain |IGαf2(chx)| . |H(0, r)| −1 q λ nZ ∞ r Aλcht|f2(chx)|p(MGχH(chx))δsh2λtdt o1p (5.5) for 0 < x + r < 2 and 0 < α < 2λ + 1.

Now we consider the case 2 ≤ x + r < ∞ and 0 < α ≤ 4λ. Let 0 < δ < 1 −αp. By H¨older’s inequality we have

|Iα Gf2(chx)| . 1 |H(0, r)|1− α 4λ λ Z ∞ r Aλcht|f2(chx)|(MGχH(cht)) δ p(M GχH(cht))1− α 4λ− δ pshtdt . 1 |H(0, r)|1− α 4λ λ Z ∞ r Aλcht|f2(chx)|p(MGχH(cht))δsh2λtdt p1 × sh r 2 1−2λ shr22λ+1−α   ∞ Z r Aλcht|f2(chx)|p(MGχH(cht)) p−αp−δ p−1 shtdt   p−1 p . sh r 2 1−2λ shr22λ+1−α   ∞ Z r Aλcht|f2(chx)|p(MGχH(cht))δsh2λtdt   1 p × Z ∞ r ( sh r 2 sht+r2 ) 4λ(p−δ)−αp p−1 shtdt p−1p . |H(0, r)| 1−2λ 1+2λ λ |H(0, r)| 1 q+1− 1 q λ   ∞ Z r Aλcht|f2(chx)|p(MGχH(cht))δsh2λtdt   1 p × sh r 2 1−2λ |H(0, r)| 1 q λ   1 shr22λ+1 Z ∞ r sh2λ t2ch2λ t2 shr2 4λ(p−δ)−αp p−1 dt   p−1 p

(12)

. 1 |H(0, r)| 1 q λ   ∞ Z r Aλcht|f2(chx)|p(MGχH(cht))δsh2λtdt   1 p × shr 2 1−2λ   1 shr22λ+1 Z ∞ r d(sh2t) sh2t 4λ(1−δ)−αp p−1 +1   p−1 p (5.6) We estimate the expression

1 shr22λ+1 Z ∞ r d(sh2t) (sh2t) 4λ(1−δ)−αp p−1 +1 ≈ 1 (shr2)2λ+1+ 4λ(1−δ)−αp p−1 . From (5.6) we get shr 2 1−2λ   1 shr22λ+1 Z ∞ r d(sh2t) sht2 4λ(1−δ)−αp p−1 +1   p−1 p . 1 (shr2)1p(4λ(1−δ)+(4λ−α)p−2λ−1) . 1. From this and (5.6) we obtain

|IGαf2(chx)| . 1 |H(0, r)| 1 q λ Z ∞ r Aλcht|f2(chx)|p(MGXH(cht))δsh2λtdt 1p (5.7) for 2 ≤ x + r < ∞ and 0 < α ≤ 4λ.

It remains to consider the case 2 ≤ x + r < ∞ and 4λ < α < 2λ + 1. Let δ < 1 −(8λ−α)p , |IGαf2(chx)| . Z ∞ r Aλcht|f2(chx)| sh 2λt (cht)2λ+1dt . Z ∞ r Aλcht|f2(chx)|sh 2λt chαtdt . 1 shr2α−4λ Z ∞ r Aλcht|f2(chx)|  shr 2 sht+r2 α−4λ sh2λtdt . 1 shr2α−4λ Z ∞ r Aλcht|f2(chx)|(MGχH(cht)) α−4λ 4λ sh2λtdt . 1 shr2α−4λ Z ∞ r Aλcht|f2(chx)|(MGχH(cht)) δ p(M GχH(cht)) α−4λ 4λ − δ pshtdt.

By H¨older’s inequality we have |IGαf2(chx)| . 1 shr2α−4λ Z ∞ r Aλcht|f2(chx)|p(MGχH(cht))δsh2λtdt 1p × Z ∞ r (MGχH(cht))( α−4λ 4λ − δ p) p−1 p shtdt p−1p

(13)

= sh r 2 2λ+1−α shr22λ+1−α shr2α−4λ Z ∞ r Aλcht|f2(chx)|(MGχH(cht))δsh2λtdt p1 × Z ∞ r  shr 2 sht+r2 (α−4λ)p−4λδp−1 sh2λtdt !p−1p . sh r 2 6λ+1−2α |H(0, r)| 1 q+1− 1 p λ Z ∞ r Aλcht|f2(chx)|p(MGχH(cht))δsh2λtdt 1p × Z ∞ r  shr 2 sht+r2 (α−4λ)p−4λδp−1 sh2λtdt !p−1 p . 1 |H(0, r)| 1 q λ Z ∞ r Aλcht|f2(chx)|(MGχH(cht))δsh2λtdt 1p × shr 2 2λ+1−α   1 shr22λ+1 Z ∞ r sh2λ t2ch2λ t2 (sh2t) (α−4λ)p−4λδ p−1 dt   p−1 p . (5.8) Further 1 shr22λ+1 Z ∞ r sh2λ t2ch2λ t2 (sh2t) (α−4λ)p−4λδ p−1 dt ≤ 1 shr22λ+1 Z ∞ r d(sh2t) (sh2t) (α−4λ)p−4λδ p−1 −4λ+1 . 1 shr22λ+1 · 1 shr2 (α−4λ)p−4λδ−4λ(p−1) p−1 . 1 shr2 (α−8λ)p+4λ−4λδ+(2λ+1)(p−1) p−1 = 1 shr2 (α−6λ+1)p−4λδ+2λ−1 p−1 . From this and (5.8) we obtain

shr 2 2λ+1−α   1 shr22λ+1 Z ∞ r sh2λ t2ch2λ t2 (sh2t) (α−4λ)p−4λδ p−1 dt   p−1 p . 1 shr2(α−6λ+1)p−4λδ+2λ−1−(2λ+1−α)pp . 1 shr2(2α−8λ)p+2λ−1−4λδp . 1 shr2(α−4λ)p+2λ−1−4λδp . 1, From this and (5.8), we have

|IGαf2(chx)| . |H(0, r)| −1 q λ Z ∞ r Aλcht|f2chx|p(MGχH(cht))δsh2λtdt 1p . (5.9)

(14)

Combining(5.5), (5.7) and (5.9), by Lemma 4.4 we obtain |Iα Gf2(chx)| . |H(0, r)| −1q λ Z ∞ r Aλcht|f chx|p(M GχH(cht))δsh2λtdt p1 . |H(0, r)|− 1 q λ w(r) 1 pkf kM p,λ,w, for x ∈ H(0, r) and n w(r)− q p Z H(0,r) |IGαf2(chx)|qsh2λxdx o1q . kf kMp,λ,w. (5.10) By (5.1) and (5.10) we get (3.5).

(ii) For f ∈ L1,λ,w(R+, G) and for f ∈ H(0, r) let f = f1+ f2, f1 = f χH. By Theorem 5.1, IGα is bounded from L1,λ(R+, G) to W Lq,λ(R+, G)

|{x ∈ H(0, r) : |IGαf1(chx)| > β}|λ. 1 βkf1kL1,λ q . w(r) β kf kM1,λ,w q . (5.11) It follows from (5.2) and Lemma 4.4 with p = 1, δ = 1 − 2λ+1α = 1q that at 0 < r < 2 |IGαf2(chx)| . |H(0, r)| −1 q λ Z ∞ r Aλcht|f2(ch x)|p(MGχH(cht)) 1 qshtdt . |H(0, r)|− 1 q λ w(r)kf kM1,λ,w for x ∈ H(0, r). (5.12) And suppose δ = 1 −α = 1q at 2 ≤ r < ∞ |IGαf2(chx)| . |H(0, r)| −1 q λ w(r)kf kM1,λ,w, for x ∈ H(0, r). (5.13)

From (5.12) and (5.13) we have

|{x ∈ H(0, r)} : |IGαf2(chx)| > β|λ. Z H(0,r) Aλ cht|IGαf2(chx)| β q sh2λtdt .w(r) β kf kM1,λ,w q . (5.14)

Combining (5.11) and (5.14) we obtain (3.6).

Acknowledgements. The first author was partially supported by the grant of 1st Azerbaijan-Russia Joint Grant Competition (Grant No. EIF-BGM-4-RFTF-1/2017-21/01/1). The authors thank to the referee for the constructive comments and recommendations, which definitely help to improve the readability and qual-ity of the paper.

References

[1] L. Durant, P. M.Fisbane, and L. M. Simmons, Expansion formulas and addition theorems for Gegenbauer functions, J.Math. Phys. 17 (1976), 1933-1948.

[2] C. Fefferman, E.M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.

[3] V.S. Guliyev, E.J. Ibrahimov, Necessary and sufficient condition for the boundedness of the Gegenbauer-Riesz potential on Morrey Spaces, Georgian Math. J. (2018), 1-13. [4] V.S. Guliyev, E. Ibrahimov, Necessary and sufficient conditions for the boundedness

(15)

[5] V.S. Guliyev, E. Ibrahimov, Necessary and sufficient conditions for the boundedness of the Gegenbauer-Riesz potential in modified Morrey spaces, Trans. A. Razmadze Math. Inst. 170 (2019), 1-15.

[6] V.S. Guliyev, E.J. Ibrahimov, S.Ar. Jafarova, Gegenbauer Transformation, Nikolski-Besov Spaces Generalized by Gegenbauer operator and Their Approximation Char-acteristics, Advances in Analysis 2 (2017), 167-194.

[7] V.S. Guliyev, E.J. Ibrahimov, On equivalent normalizations of functional spaces associated with the generalized Gegenbauer shift, Anal. Math 34 (2008), 83-103 (Russian).

[8] V.S. Guliyev, E.J. Ibrahimov, Generalized Gegenbauer shift and some problems of the theory of approximation of functions on the metric of L2,λ, Trans. Natl. Acad.

Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics 35 (2015), 19-51.

[9] E.J.Ibrahimov, A. Akbulut, The Hardy-Littlewood-Sobolev theorem for Riesz po-tential generated by Gegenbauer operator, Trans.of A.Razmadze Math.Init. 170 (2016), 166-199.

[10] E.J. Ibrahimov, S.Ar.Jafarova, On boundedness of the Riesz potential generated by Gegenbauer differential on Morrey spaces, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics 37 (2017), 49-70.

[11] E.J. Ibrahimov, On Gegenbauer transformation on the half-line, Georgian Math. J. 18 (2011), 497-515.

[12] V. Kokilashvili, S. Samko , Singular integrals in Weighted Lebesgue Spaces with Variable Exponent, Georgian Math. J. 10 (2003), 145-156.

[13] B.M. Levitan, Expansion in Fourier series and integrals with Bessel functions, Us-pekhi Mat. Nauk 6 (1951), 102-143.

[14] B.M. Levitan, Theory of Generalized Shift Operators, [in Russian] Nauka, Moscow, 1973.

[15] Lu Sh., Ding Y, Yan D, Singular integrals and related topics, World Scientific Pub-lishing, 2007.

[16] E. Nakai, Hardy-Littlewood Maximal operator, Singular Integral Operators and the Riesz Potentials on Generalized Morrey Spaces, Math. Nachr. 166 (1994),95-103.

Elman J. Ibrahimov

Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azer-baijan

E-mail address: elmanibrahimov@yahoo.com

Saadat A. Jafarova

Azerbaijan State Economic University, AZ1001, Baku, Azerbaijan

E-mail address: sada-jafarova@rambler.ru

S. Elifnur Ekincioglu

Department of Mathematics, Dumlupinar University, 43100 Kutahya, Turkey

E-mail address: elifnurekincioglu@gmail.com

Referanslar

Benzer Belgeler

Metal n-tipi yarıiletken doğrultucu (Schottky) kontaklar... Metal n-tipi yarıiletken omik kontaklar... Metal n-tipi yarıiletken-metal yapısı... Schottky Diyotlarda Akım İletimi

Hence the focus on the shifting landscapes of postapartheid Johannesburg, the locale of the texts I discuss below: Ivan Vladislavic’s experimental urban chronicle Portrait with

Sanayi üretim endeksi faktörü Gıda-İçecek sektör endeksini tüm piyasa koşullarında (yalnızca yükselen ve yatay piyasada istatistiksel olarak anlamlı biçimde)

Pervititch haritalarında özellikle Şişhane Caddesi, Kandilli Türbe ve Dervişzade Sokak çevresinde bitişik nizamlı ahşap konut yoğunluğu görülürken, İvaz Efendi

30 yıl sonra, Redhouse'un okuyucularından biri, Cambridge'in birincisi ve daha sonra Londra Üniversitesinde Fa,ı;sça profesörü olan Charles Edward Wilson (1858-1938)

In particular, Lee and Wong [10] introduced weak Armendariz rings (i.e. if the product of two linear polynomials in R [X] is 0, then each product of their coefficients is 0), Liu

Bu taslak ayrıca vakıfların, vakıfların belgelendirilmesi, vakfedenin şer’i şartlarına riayet edilmesi, hayır hedeflerine yoğunlaşma ve özellikle ihtiyaç sahibi fakir

In order to generalize this method and thus obtain bound states and wave functions of hydrogen atom in MGECSC potential in presence of external electric field, which is used as a