• Sonuç bulunamadı

on The Hadamard Products of Its Adjoint Matrix With a Square Matrix

N/A
N/A
Protected

Academic year: 2021

Share "on The Hadamard Products of Its Adjoint Matrix With a Square Matrix"

Copied!
11
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

S. Ü. Fen-Edebiyat Fakültesi Fen Dergisi Sayı 17[2000]43-49,KONYA

on The Hadamard Products of Its Adjoint Matrix With

a Square Matrix

Dursun TAŞCI 1

Abstract: In this paper for any matrix A=(aij)∈Mn(R) we defined ϕ(A)=AοadjA and

(

)

T

T(A)=Aο adjA

ϕ , where T denotes transpose and

ο

denotes Hadamard product. We obtained some properties of ϕ(A) and ϕT(A).

Key Words: Hadamard product, Adjoint matrix

Bir Kare Matris ile Onun Adjoint Matrisinin Hadamard

Çarpımları Üzerine

Özet: Bu çalışmada reel elemanlı herhangi bir n×n A kare matrisi göz önüne alınarak

ve adjA A ) A ( = ο ϕ

(

)

T T(A)=Aο adjA

ϕ matrisleri tanımlandı ve bu matrislerin bazı özellikleri elde edildi.

Anahtar Kelimeler: Hadamard Çarpımı, Adjoint Matris.

Introduction and the Main Results

Firstly we give the following definitions

Definition 1.[1] The Hadamard product of A =(aij)∈Mn and B=(bij)∈Mn is defined by

. n ij ijb ) M a ( B Aο = ∈

Definition 2.[2] Let be an n×n matrix over any commutative ring. The permanent of A, written , is defined by ) a ( A= ij ) A ( per

σ σ σ σ = a ()a ( ) an (n) ) A ( per 1 1 2 2 K ,

where the summation extends over all one-to-one functions from

{

1

,

2

,

K

,

n

}

to

{

1

,

2

,

K

,

n

}

.

(2)

D.TAŞCI

Definition 3.[3] For any matrix A =(aij)∈Mn the column matrix norm 1

.

is defined by

= ≤ ≤ = n i ij n j a max A 1 1 1 .

Definition 4.[3] For any matrix A =(aij)∈Mn the row matrix norm

.

is defined by

= ≤ ≤ ∞ = n j ij n i a max A 1 1 .

Definition 5.[3] For any

A

=

(

a

ij

)

M

n, the Euclidean matrix norm is defined by

2 1 2 1 ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ =

= n j ,i ij E a A .

Definition 6.[3] For any matrix

A

=

(

a

ij

)

M

n sum matrix norm t

.

is defined by

= = n j, i ij t a A 1 .

Now we present the main results.

Theorem 1. For any A=(aij)∈M2(R)

(

(A)

)

det(A)per(A)

det ϕ =

and

(

(A)

)

det(A)per(A)

detϕT = ,

where

M

2

(

R

)

denotes 2×2 matrices with real entries, ϕ(A)=AοadjA and .

(

)

T T(A)=Aο adjA

ϕ

Proof. For any matrix

⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ = 22 21 12 11 a a a a A since ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ − − = 11 21 12 22 a a a a adjA we write ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ − − = ο = ϕ 22 11 2 21 2 12 22 11 a a ) a ( ) a ( a a adjA A ) A ( .

(3)

ON THE HADAMARD PRODUCTS OF ITS ADJOINT MATRIX WITH A SQUARE MATRIX

If we compute the determinant of ϕ(A), then we find

(

)

. ) A ( per ) A det( ) a a a a ( ) a a a a ( ) a a ( ) a a ( ) A ( det = + − = − = ϕ 21 12 22 11 21 12 22 11 2 21 12 2 22 11

Similarly it is easily seen that

(

(A)

)

det(A)per(A)

detϕT = .

Thus the proof is complete.

Remark 1. Unfortunately Theorem 1 is wrong for . Let us give a counterexample.

Consider

n

3

⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ = 4 2 2 1 2 1 3 2 1 A . Since ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ − − − − − = 0 2 2 2 2 2 4 2 6 A adj we find

ϕ

. ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ − − − − − = 0 4 4 2 4 2 12 4 6 ) A (

On the other hand, since det

(

ϕ )(A

)

=272, det

(

ϕT(A)

)

=216, det(A)=−4 and , it follows that

40

perA

=

(

(

)

)

det(

)

(

)

det

ϕ

A

A

per

A

and

(

(A)

)

det(A)per(A) det ϕT ≠ .

Theorem 2. For any matrix A=(aij)∈M2(R), the eigenvalues of are , . Also the eigenvalues of are

)

A

(

ϕ

λ1=detA ) A ( per = λ2 ϕT(A)

λ

1

=

det

A

, λ2 =per(A).

Proof. For any matrix

⎥ ⎦ ⎤ ⎢ ⎣ ⎡ = 22 21 12 11 a a a a A since ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ − − = ϕ 22 11 2 21 2 12 22 11 a a ) a ( ) a ( a a ) A (

(4)

D.TAŞCI we have

(

) (

)

2 21 12 2 22 11 22 11 2 22 11 2 21 2 12 22 11 2a a a a a a a a ) a ( ) a ( a a det )) A ( I det( − + λ − λ = ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ − λ − λ = ϕ − λ (1.1)

On the other hand the roots of the equation (1.1) are 21 12 22 11 1 =a a −a a λ and λ2 =a11a22 +a12a21. Moreover since 21 12 22 11a a a a A

det = − and per(A)=a11a22 +a12a21

we find

A det =

λ1 and λ2 =per(A).

Similarly it is easily seen that the eigenvalues of ϕT(A) are λ1 =detA and λ2 =per(A). So the theorem is proved.

Remark 2. Unfortunately Theorem 2 is wrong for . But is always an eigenvalue

of for . We state this fact as theorem .

3

n

det

A

) A ( T ϕ

n

3

Theorem 3. For

n

3

, at least an eigenvalue of ϕT(A) is equal to detA.

Proof. We remark that

in in i i i i a a a A det = 1α1+ 2α2 +K + α ,

(

i

=

1

,

2

,

K

,

n

)

(1.2) or nj nj j j j j a a a A det = 1 α1 + 2 α2 +K + α ,

(

j

=

1

,

2

,

K

,

n

)

(1.3) where

α

ij denotes cofactor of

a

ij, i.e., αij =(−1)i+jdet(Aij).

Using the properties of determinants and considering (1.2) we have

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ α − λ α − α − α − α − λ α − α − α − α − λ = ϕ − λ nn nn n n n n n n n n T a a a a a a a a a det )) A ( I det( K M M M K K 2 2 1 1 2 2 22 22 21 21 1 1 12 12 11 11

(5)

ON THE HADAMARD PRODUCTS OF ITS ADJOINT MATRIX WITH A SQUARE MATRIX ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ α − λ α − α − λ α − α − λ α − λ α − α − α − λ =

= = = nn nn n n n j nj nj n n n j j j n n n j j j a a a a a a a a a det K M M M K K 2 2 1 2 2 22 22 1 2 2 1 1 12 12 1 1 1 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ α − λ α − − λ α − α − λ − λ α − α − − λ = nn nn n n n n n n a a A det a a A det a a A det det K M M M K K 2 2 2 2 22 22 1 1 12 12 ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ α − λ α − α − α − λ α − α − − λ = nn nn n n n n n n a a a a a a det ) A det ( K M M M K K 2 2 2 2 22 22 1 1 12 12 1 1 1 ,

it follows that detA is eigenvalue of ϕT(A).

Theorem 4. Let A be n×n real matrix, then all the row sums and column sums of are equal to . ) A ( T ϕ A det

Proof. If

r

1

,

r

2

,

K

,

r

n denote the row sums of

ϕ

T

(

A

)

, then we write

= α = n j ij ij i a r 1 . On the other hand considering (1.2) we have

= α = = n j ij ij i a r A det 1

(

i

=

1

,

2

,

K

,

n

)

.

Similarly if

c

1

,

c

2

,

K

,

c

n denote the column sums of

ϕ

T

(

A

)

, then we write

= α = n i ij ij j a c 1

(6)

D.TAŞCI

Again considering (1.3) we have

= α = = n i ij ij j a c A det 1

(

j

=

1

,

2

,

K

,

n

)

. Thus the proof is complete.

Corollary 1. For A =(aij)∈Mn(R), A det n e ) A ( eTϕT = , where e=(1,1,K,1)T . Proof. We write

∑ ∑

= = = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ α = α = ϕ n i n j ij ij n j, i ij ij T T (A)e a a e 1 1 1 A det n A det n i = =

=1

and the proof is complete.

Theorem 5. For any matrix

A

=

(

a

ij

)

M

n

(

R

)

, the following statements are true. (i) ϕT(A) ≥ detA

1

(ii) ϕT(A) ≥ detA

(iii) ϕT(A) E ≥ detA

(iv) ϕT(A)t ≥n detA

Proof. (i) Considering the definition 3 and triangle inequality we have

A det A det max a max a max ) A ( n j n i ij ij n j n i ij ij n j T = α ≥ α = = ϕ ≤ ≤ = ≤ ≤ = ≤ ≤

1 1

1 1 1 1 .

(ii) By t he definition 4 and triangle inequality, we write?? EMBED Equation.3??

? ?

.

? (iii) Considering the definition 5 and triangle inequality

EMBED Equation.3??

? it follows that??

EMBED Equation.3??

?? ON THE HADAMARD PRODUCTS OF ITS ADJOINT MATRIX WITH

(7)
(8)

(iv) Similarly by the definition 6 and triangle inequality we have?? EMBED Equation.3??

? ?

(9)
(10)
(11)

Horn, R.A., Johnson, C:R., Topics in Matrix Analysis, Cambridge University Press. (1991)

Minc, H., Permanents, In Encyclopaedia of Mathematics and ItsApplications, Vol. 6, Addison-Wesley (1978)

Referanslar

Benzer Belgeler

Semiconductor Type Dependent Comparison of Electrical Characteristics of Pt/InP Structures Fabricated by Magnetron Sputtering Technique in the Range of 20-400 KH.

In particular, the band-gap of the wire material, which is an important parameter for the optical and electronic properties of the system, is renormalized by the electrons and

The Workshop was high-lighted by the participation of six invited speakers: Tama´s Terlaky (McMaster University), Farid Alizadeh (Rutgers University), Oliver Stein (Technical

1950'li y11larda, kendisi de miikemmel bir ressam olan Nurullah Berk, "Tiirkiye'de Modern Resim ve Heykel" adh ingilizce kitabmda, Fahr el Nissa Zeid'in yarat1clhk

Araştırmaya katılan üyelere ilişkin beklenen ve algılanan hizmet kalitesinin üyelik şekli bakımından karşılaştırılması sonucu personel, program ve tesis alt

kullanmakla, Realizm başta olmak üzere Uİ’deki teorilerin ‘erkek-merkezli’ bakışında olmakla yani meta-teorik düzeyde disiplinin dışlayıcı, devlet-merkezli ve

Koledok ligasyonu ile siroz oluşturulan ratlardaki intrapulmoner vasküler dilatasyonların, bu ratların akciğer homojenatlarında saptanan yüksek eNOS miktarıyla birlikte

Verilerin birbirleri ile olan ilişkisine bakıldığında, basis ossis sacri’nin transvers çapı (BTÇ), canalis sacralis’in sagittal genişliği (CSSÇ) ve S1-S2 arasındaki