• Sonuç bulunamadı

Langmuir-Blodgett thin film for chloroform detection

N/A
N/A
Protected

Academic year: 2021

Share "Langmuir-Blodgett thin film for chloroform detection"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Langmuir–Blodgett

thin

film

for

chloroform

detection

Rifat

C¸apan

a,∗

,

Hilal

Göktas¸

b

,

Zikriye

Özbek

c

,

Sibel

en

b

,

Mehmet

Emin

Özel

d

,

Frank

Davis

e

aBalıkesirUniversity,ScienceFaculty,PhysicsDepartment,10145Balıkesir,Turkey

bC¸anakkaleOnsekizMartUniversity,ScienceFaculty,PhysicsDepartment,17100anakkale,Turkey

canakkaleOnsekizMartUniversity,EngineeringFaculty,BioengineeringDepartment,17100anakkale,Turkey dMaltepeUniversity,VocationalSchool,DeptofMedicalImagingSystems,Maltepe,Istanbul,Turkey

eCentreforBiomedicalEngineering,CranfieldUniversity,Cranfield,BedfordMK30AL,UK

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30October2014

Receivedinrevisedform11February2015

Accepted15February2015

Availableonline21February2015

Keywords: Calix[4]arene

Vaporsensing

Langmuir–Blodgett

Surfaceplasmonresonance

a

b

s

t

r

a

c

t

Calix[4]resorcinarene(C11TEA)moleculescouldbedepositedasanLBfilmbytheLangmuir–Blodgett (LB)techniqueontosuitablesubstrates.Surfaceplasmonresonance(SPR)andUV–visspectroscopywere employedforthecharacterizationoftheseLBfilms.AhighqualityanduniformLangmuirmonolayer fromthewatersurfacecanbetransferredontoaglassorgoldcoatedsubstrateswithatransferratioof over95%.ThicknessandrefractiveindexvaluesoftheresultantLBfilmsweremeasuredusingsurface plasmonresonancewithavalueof1.04nmperlayerand1.4respectively.Forthesensingapplication towardschloroform,thisLBfilmyieldsafastandalmostfullyreversibleresponsetochloroforminfew seconds.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

ThenamecalixarenewasproposedbyGutscheforaseriesof

cyclicoligomers,readilyobtainedbytreatmentofp-alkylphenol

withformaldehyde and a suitable base.As wellas these

com-pounds, a similarclass of materials,can besynthesized bythe

acidcatalyzedcondensationofanumberofaldehydetogivecyclic

tetramers, known as calixresorcinarenes [1]. Calix[n]arenes are

knowntobeexcellentLangmuirandLangmuir–Blodgettfilm

form-ingmaterialsandtheyareusedasspecificligandsforanalytical

chemistry, sensor techniques, and medical diagnostics, since a

numberofsynthesismethodsallowflexiblevariationoftheirring

size,theycanbefunctionalizedwitha widerangeoffunctional

groups,andhavestructuralcharacteristicssuchashighporosity

andgoodchemicalstability[2].Chemicalsensorsbasedon

rela-tivelylowcostsynthesiscalixarenesandcalixresorcinareneswere

designedtodetectvariousinorganicgases[3],explosivevapours[4]

andvolatileorganiccompounds(VOC’s)[5,6]becauseoftheir

flex-iblestructure,aswellastheirwiderangeofphysicalandchemical

propertiesthatcanbetailoredbychangingtheircompositions.

The monitoring and detection of VOC’s has become a

seri-ous aspectto consider because theneed to control air quality

∗ Correspondingauthor.Tel.:+902666121000;fax:+902666121215.

E-mailaddress:rcapan@balikesir.edu.tr(R.C¸apan).

hasbecomean environmentally importantissue. The

construc-tion of gas and VOC sensors will allow the rapid detection of

harmfulorenvironmentallydamagingvapourswithouttheneed

fortechniquessuchasgaschromatographyormass

spectrome-trywhichoftenrequireexpensiveequipmentandhighlytrained

laboratorypersonnel.Improvingtheperformanceofgassensing

devices mostlydependsonthesensitivity andselectivityofthe

sensingmaterials.It iswellknownthatwhenagasmoleculeis

adsorbed onto thesurface of an organicmaterial, the

physico-chemicalproperties,includingthestructural,electrical,andoptical

properties,ofthissensingmaterialcanchange.Thishasledto

inten-siveresearchintonewmaterialswiththeabilitytobind,detect

andidentifyorganicvapours.Thechiefdifficultyingas

identifica-tioncontinuestobethefabricationofstablesensorswithahigh

sensitivityandselectivitytowardsthesubstancetobedetected.

Becauseofthesensitivityofcalixarenes toorganicvapoursand

theirexcellent LBfilm formingability, we haveinvestigated in

depththeuseof thesematerialstosenseVOCs. Previous work

hasdemonstratedsensitivityofcalixresorcinarenefilmstoBTEX

gases[5]andarangeofcommonorganicsolvents[6,7].Anumber

ofotherauthorshavealsocarriedoutstudiesonthesesystems,

for exampleSPR couldbeusedtomeasure theadsorptionof a

rangeoforganiccompoundsontocalixarenethinfilms[8].Other

workersdeposited anamine-modifiedcalixresorcinarenesas LB

films onto piezoelectric quartz crystals and showed their

sen-sitivityto a range of organicvapours,demonstrating that both

http://dx.doi.org/10.1016/j.apsusc.2015.02.109

(2)

Fig.1. ChemicalstructureofC11TEA.

thepHofthesubphaseandthepresenceofcopperionsaffected

thesensitivityof thefilms[9].In otherwork,calixarenes were

depositedbothasLBandcastfilms[10]andtestedfortheir

sen-sitivitytowardsaromatichydrocarbonsusingpiezoelectricmass

sensors, cast films were shown to be more sensitive but LB

filmsdisplayedgreaterselectivity.Anovelcalixarene–porphyrin

compoundcouldalsobedeposited asanLBfilmand shownto

demonstratechangesinopticaladsorptiononexposuretoamine

vapours[11]. Oneof thematerials studiedwasspecific to

sec-ondaryaminesanddisplayednosensitivitytoprimaryandtertiary

amines.Similartetramersbasedonpyrroleratherthanphenolic

unitshave alsobeenshowntoformLBfilmsanddisplay

sensi-tivitytoalcoholswhenassessedusingsurfaceplasmonresonace

[12,13].

Tetraundecylresorcinarenewasderivatisedusinga Mannich

reactionwithparaformaldehydeanddiethylamine[14].The

result-ingtetramine wasthen refluxed withfive equivalents of ethyl

bromideinethanolfor16h,volatilesremovedandthecalix

recrys-tallisedfromethanol.Calix[4]resorcinarene(C11TEA)waschosen

asitformsgoodqualityLBfilmsandsimilarmaterialshavealso

beenshowntoreacttoaqueousguests[15].Itwasalso

hypothe-sizedthatthepresenceofcationicammoniumsubstituentswould

effect both the size and electron density of the cavity,

poten-tiallyimprovingit’sbindingpropertiesandenhancingsensitivity

towardscertainvapours.Inthisstudy,thepreparationofLBfilmof

theC11TEAgiveninFig.1wasevaluatedatthewatersurfaceusing

isothermgraphs.Surfaceplasmonresonance(SPR)andquartz

crys-talmicrobalance(QCM) systemswere usedtodemonstratethe

thinfilmdepositiononagoldcoatedglasssubstrateandto

deter-minethethicknessandrefractiveindexofLBfilm.Furthermorewe

utilizedthisLBfilmastheactivecomponentwithinasensorfor

organicvapourssuchaschloroform,benzene,toluene andethyl

alcohol.

2. Experimentaldetails

2.1. LBfilmpreparationanddeposition

A computer controlled NIMA 622 alternate LB trough was

employedtostudythemolecularbehaviourofC11TEAmolecule

attheair–waterinterfaceandtoproduceLBfilmsontoglassand

goldcoatedglasssubstrates.Beforeeach experiment,the

barri-ersandtheTeflontroughoftheLBfilmsystemwererinsedwith

ultrapurewater(18.2Mcm)afterbeingcleanedwithchloroform.

ThesurfacepressurewasmeasuredbyusingaWilhelmybalance,

equippedwithastripofchromatographypapersuspendedatthe

air–waterinterfaceat20◦CwhichwascontrolledusingLauda

Eco-lineRE204modeltemperaturecontrolunit.C11TEAmoleculewas

dissolvedinchloroformwithaconcentrationof0.2mgmL−1 and

Table1

Theconcentrationvaluesoforganicvapours.

Organicvapours (g/cm3) M(g/mol) c×103ppm

Chloroform 1.483 119.38 278.26

Benzene 0.876 78.11 251.35

Toluene 0.870 92.14 211.50

Ethanol 0.789 46.11 383.62

wassubsequently spread onto ultrapurewater subphase atpH

6.Solutions werespreadby aHamiltonmicroliter syringeonto

thesubphasesolutionbydistributingthedropletsovertheentire

trougharea. A time period of 20min was allowedfor the

sol-vent toevaporatebeforetheareaenclosedbythebarriers was

reduced.Thepressure–area(␲–A)isothermgraphwasdetermined

withtheaccuracyof0.1mNm−1.Thisgraphwasrecorded asa

functionofsurfaceareausingthecompressionspeedofbarriers

atavalueof172mm2min−1.AquartzslideforUV–vis

measure-ment,a50nmgoldcoatedglassslideforSPRmeasurementand

aquartz crystalforQCMmeasurement wereusedas substrates

forvariousmeasurementmethods.Thefloatingmonolayeratthe

air–waterinterfacewasfoundtobestableatasurfacepressureof

22.5mNm−1;therefore,thissurfacepressurevaluewasselected

fortheLBfilmdepositionprocedure.Y-typeLBdepositionmode

andaverticaldippingprocedurewasperformedattheselected

surfacepressurewithaspeedof10mmmin−1forboththedown

andupstrokes.LBfilmsamplesweredriedfor5minaftereachup

stroke.

2.2. SPRmeasurements

A surface plasmon resonance spectrometer (BIOSUPLAR 6

Model)withalow powerlaserdiode(630–670nm)lightsource

wasemployedforthemeasurementswithanangularresolutionof

about0.003degrees.Aglassprism(n=1.62)mountedtoontoaholder

isavailableformeasurementinliquidorinair.Theglassslideshadthe

dimensionsof20mm×20mmandthetotalthicknesswas1mmare

coatedonthetopbya50nmthingoldlayer.Aftereachdeposition

cycle,theC11TEALBfilmsamplewasdriedforhalfanhourand

theSPRcurvewasmonitoredusingSPRmeasurementsystem.This

systemwasusedfortheconfirmationofthereproducibilityofLB

filmmultilayersusingtherelationshipbetweentheanglechanges

againstthedepositedthickness,whichshoulddependonthe

num-beroflayersintheLBfilm.WINSPALLsoftwaredevelopedinthe

groupofMax-Planck-InstituteforPolymerResearch(byWolfgang

Knoll),GermanywasutilizedforfittingofSPRcurvesareusedto

determinethicknessandrefractiveindexvaluesofLBfilm.

Chloroform(99%Merck),benzene,toluene and ethanol(99%

Aldrich)wereusedwithoutfurtherpurificationasorganicvapours

forthedetectionperformances.Allmeasurementsweretakenin

dryairconditioninasmallgascellwhichcouldeliminatetheeffect

ofwatervaporontheresponsepropertiesofcalix[4]resorcinarene

LBfilms[7,8].Aspecialflowcellfromtransparentplastic,

compat-iblefor vapororgasmeasurementswasconstructedtostudythe

kineticresponseofC11TEALBfilmonexposuretoorganicvapours

bymeasuringthereflectedlightintensitychanges.Thecellhastwo

channels,withinletandoutletconnectedtosiliconetubes.TheSPR

systemiscompletelycontrolledbytheBiosuplar-Softwarewhich

handlesthesettings,themeasurementsanddataacquisitionaswell

ascontrollingtomeasurementanddatapresentation.VOC

injec-tionswereperformedwithasyringe.Theconcentrationvaluesof

organicvapor(canbeseeninTable1)inppmcanbecalculatedby

theformulaasfollows[16]:

c=



24.055V

MV0



(3)

0 5 10 15 20 25 30 35 40 45 0 0.5 1 1.5 2 2.5 3 Surface Pressure, (mNm -1)

Area per molecule,

(nm

2)

Fig.2. TheisothermgraphofaC11TEAmonolayerattheair–waterinterface.

wherec(ppm)istheconcentrationofvapor,(g/mL)isthedensity

ofvapor,V(mL)isthevolumeofvaporwhichisinjectedintothe

gaschamber,M(g/mol)isthevapormolecularweight,andV0is

thevolumeofthegaschamber(∼0.02mL).

Theresponsewasrecordedasafunctionoftimewhenthe

sam-plewasperiodicallyexposedtotheorganicvapoursforatleast

2minandwasthenallowedtorecoverafterinjectionofdryair.

Thisprocedurewascarriedoutduringseveralcyclestostudythe

concentrationchangesandtoobservethereproducibilityoftheLB

filmsensingelement.

3. Resultanddiscussions

3.1. Depositionprocess

Apressure–area(␲–A)graphforaLangmuirmonolayershows

thecharacteristicsurfacebehaviourofanorganicmoleculeonthe

air–waterinterface.Theareapermoleculeforanorganicmonolayer

canbecalculatedusingthefollowingrelation[17]:

am=cNAMw

AV (2)

whereAistheareaofthewatersurfaceenclosedbythetrough

bar-riers,Mwthemolecularweight,ctheconcentrationofthespreading

solution,NAtheAvogadro’snumber,andVisthevolumeofsolution

spreadoverthewatersurface.

Solutions(200␮l)werespreadbyaHamiltonmicrolitersyringe

onto the water surface by distributing the droplets over the

entire trough area. A time period of 15min was allowed for

the solvent toevaporate beforethe area enclosed by the

bar-rierswasreduced. The␲–A isothermgraph wasobtainedwith

theaccuracyof0.1mNm−1.Fig.2showstheisothermgraphof

C11TEA. After the gas phase, C11TEA molecule shows a sharp

increase until surface pressure of 40mNm−1 and then

mono-layerat theair–water interfacestartsto collapse. A deposition

pressurevalueof22.5mNm−1wasselectedformonolayer

trans-ferontothesolid substrates.Using Fig.2,thelimitingareaper

moleculeobtainedbyextrapolatingtheslopeoflow

compressibil-itytozeropressureinthecondensedstateandavalueof1.79nm2

forC11TEAwasdeterminedusingEq.(1).Similarresultsonthe

behaviourofareapermoleculevaluesof1.71nm2 and0.75nm2

arefoundforcalix[4]arenederivativesthatcontaindifferent

num-bersoftertbutylgroupsontheirupperrims[7].Similarresearch

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 500 450 400 350 300 250 200 Absorbance Wavelength, (nm) Solution 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 410 310 210 Absorbance Wavelength, (nm) LB film 24 layer 20 layer 16 layer 12 layer 8 layer 4 layer

Fig.3. TheUV–visspectraofaC11TEAsolution.Inset:LBfilmofC11TEAwith

differentnumbersoflayers.

are found using the methodof extrapolating tozero pressure,

areas per molecule for calix[4]resorcinarenes between 1.1nm2

and 0.75nm2 [15]. C11TEA material yields a typical isotherm

behaviourwiththreeof thephasesasgas(0–1mNm−1), liquid

(∼1–18mNm−1), and solid phases (∼18–39mNm−1). The

col-lapsepointbegins at39mNm−1 wheretheorderof monolayer

is destroyed. This result is supported by McCartney [18]. The

areapermoleculeisstronglydependentonthechemical

struc-ture of the materials used and the orientation and packing of

molecules at theair–water interface.Several␲–A graphs were

taken with the same amountof volume value and our results

forC11TEAmaterialindicatedagoodstabilityand

reproducibil-ity.

TheefficiencyoftheLBfilmdepositionischeckedbythetransfer

ratio,whichistheratiooftheareaofthemonolayerremovedfrom

theair–waterinterfaceduringdepositiontotheareaofsubstrate

tobedeposited.isdescribedby:

= ALAS (3)

whereAListhedecreaseintheareaoccupiedbythemonolayer

onthewatersurface,whileASisthecoatedareaofthesubstrate.

UsingEq.(2),isfoundtobearound0.95.Thisvaluecanbeused

toconcludethatsteady,reproducibleanduniformmonolayersof

C11TEAweredepositedfromtheair–waterinterfaceontoaquartz

crystalsubstrate.

3.2. UV–visspectraofthedepositedfilms

OpticalabsorptionspectrumofC11TEAsolutionandLBfilms

wererecordedinthewavelengthrangeof200–500nm.Fig.3shows

theUV–visabsorptionspectrumofC11TEAsolutioninchloroform

andthemajorabsorptionpeakbeingobservedat280nm.Thisis

a typicalUV spectrafor calixarenes and calixresorcinarenes[1]

althoughsubstitutioncanextendtheabsorptionpeak,for

exam-ple azobenzenecalixarenes display UV–vis spectrawith strong

absorptionregions around300–400nm [19].Theinset inFig.3

showstheabsorptionspectrumofC11TEALBfilmswiththicknesses

between4and24layers.TheUV–visspectraoftheLBfilmsare

similartothesolutionspectrabutUV–visspectraoftheLBfilms

showa widerband(300–400nm)thanthat oftheonein

solu-tion.UV–visspectrumoftheLBfilmshowsaredshiftfromthe

UV–visspectrumofsolutionthiscanbeduetoanumberoffactors.

Thenatureofthesolventusedcanaffecttheresultantspectrum

anditis alsoknownthataggregationofmoleculescanoccurin

LBfilmsleadingtobroadeningandred-shiftingofanyadsorption

(4)

0 500 1000 1500 2000 2500 3000 43 44 45 46 47 48 49 50 Re fl ac tan ce , (a .u.)

Angle of incidence

gold 2 layer 4 layer 6 layer 8 layer 10 layer

Fig.4. SPRcurvesfortheC11TEALBfilmswithdifferentnumbersoflayers.

3.3. SPRcurvesandthinfilmthickness

Fig. 4 shows SPR curve resonance shifts of bare gold and

increasingnumberoflayersbetween2and10layersofC11TEA

LBfilms. Those curves are shiftedto largerangleswhen

num-beroflayersisincreasedasexpected.Thefilmthickness(d)and

refractiveindex (n) of C11TEA LB filmswere calculated by

fit-ting the SPR curves with a Fresnel formula algorithm via the

WINSPALL software as mentioned above. It was assumed that

k=0forC11TEALBfilm,sincetheyaretransparentat=633nm

[20].Thefittingcalculationsproduceameanvalueof1.4forthe

refractiveindexofC11TEALBfilm.Otherstudieshavedetermined

the refractive index of differing calixarene thin films as 1.494

by[21],1.48by[5]and between1.54and 1.43by[22]

respec-tively.

By using the fitting calculations for film thickness

demon-stratedthatwhenthenumberoflayersisincreased,filmthickness

valueisincreasinglinearlyasexpected.Theaveragefilm

thick-ness,determinedbytheslopeof thethicknessversus thelayer

numbershowninFig.5,isfoundtobe1.04nm/depositedlayer.

Therefractiveindexandthicknessofdifferentcalixarenematerials

havebeendeterminedtohaverefractiveindexesbetween1.47and

1.70alongwiththicknessvaluesfrom0.80to1.50nm[23].Capan

etal.[24]studiedtherefractiveindexandthicknessofcalix[8]acid

LB films and obtained a refractive index value of 1.21±0.08,

along with a thickness value (determined by the slope of the

thicknessversuslayer numbers) tobe1.08±0.07nm/deposited

layer.

Fig.5. Thicknessofthethinfilmsasafunctionofthenumberoflayers.

1350 1850 2350 2850 3350 3850 0 200 400 600 800 1000 P ho todetector re sponce , (a .u. ) Time, (s)

Chloroform Benzene Toluene Ethyl alcohol

Fig.6. KineticresponseofsensorcoatedwithC11TEA(10layers)toinjectionof

vapoursintotheworkingcell.

3.4. Organicvaporsensingproperties

Itisimportanttounderstandtheresponsepropertiesbetween

theC11TEAmoleculeandorganicvapourstoallowforthedetection

andidentificationoforganicvaporforapplicationasroom

tempera-turevaporsensors.IntheSPRvaporsensingarrangement,usually,a

photodiodeoperatesasadetectorprovidinganoutputvoltage

pro-portionalincidentlightintensity.Themeasurementangleisfixed

atapointonthesteepestpartoftheresonancecurveandthe

photo-diodeoutputisamonitoredasafunctionoftime.Thisiscalleda

kineticmeasurement.ThekineticresponsesoftheC11TEALBfilm

tothechloroform,benzene,tolueneandethylalcoholvapoursis

giveninFig.6bymeasuringthereflectedlightintensityasa

func-tionoftimefor2min,followedbyinjectionofdryairforafurther

2minperiod.

ThekineticresponsesoftheC11TEALBfilmintheformoflight

intensitychangetoallvapoursarealmostreversible.Theirresponse

andrecoverytimesaregiveninTable1.Theirvaluesareintheorder

ofafewsecondswhenthegascellisflushedwithdryair.Thefirst

stageinVOCanalysisistoflushareferencegas(dryair)throughthe

sensortoobtainabaseline(I0).WhentheLBfilmsensormaterial

isexposedtotheorganicvapor,thiscauseschangesinthe

out-putsignaluntilthesensorreachesasteady-state(I1).Thevaporis

finallyflushedoutofthesensorusingthedryairandthesensor

responsereturnsbacktoitsbaseline.Thetimeduringwhichthe

sensorisexposedtothevaporiscalled“theresponsetime”while

thetimeittakesthesensortoreturntoitsbaselineresistanceis

“therecoverytime”.Iindicatesthedegreeofthetotalresponseof

C11TEALBfilmwhichisthedifferencebetweentheobservedlight

intensityresponse(I1)andthebaselinelightintensity(I0).Table1

summarizestheanalysisofkineticresponses.Here,C11TEALBfilm

showsafastresponseaswellasafinedegreeofrecovery,with

responseandrecoverytimestypicallyofafewseconds.This

pro-cessisrepeatedfourtimesandeachvaporgivessimilarresponses

totheirinitialresponse.For areproducible andreliableLBfilm

gassensor,sensingmaterialshouldalwaysgivethesamepattern

oftheoutputsignalwhenthesensorisrepeatedlyexposedtoan

organicvaporatconstantintervalsoftime.ItisclearthatC11TEALB

filmyieldedarelativelystablerepeatability,agood

reproducibil-ity,andalmostuniformchangesinreflectedlightintensitydueto

theadsorptionanddesorptionprocesses.It canbeusedseveral

(5)

Table2

AnalysisdataofthekineticresponseofC11TEALBfilm.

Cycle Response

time(s)

Recovery time(s)

I0(a.u.) I1(a.u.) I[I1−I0](a.u.) Themeanvalue

¯I=



n i=1Ii n Standarddeviation =



n i=1(I−¯I) 2 (n−1) Chloroform 1 2 3.5 2972.04 3114.12 142.08 159.85 ±12.07 2 1.5 3.7 3008.52 3177.48 168.96 3 1.3 3.4 3035.40 3200.52 165.12 4 3.9 7.3 3056.52 3219.72 163.20 Benzene 1 1.1 2.5 1853.54 1927.61 74.07 79.27 ±4.86 2 1.2 2.8 1811.88 1888.26 76.38 3 2.0 3.4 1844.29 1926.45 82.16 4 2.5 5.6 1850.07 1934.55 84.48 Toluene 1 1.4 4.3 2421.32 2494.77 73.45 67.50 ±5.49 2 1.4 4.5 2419.25 2484.43 65.18 3 2.2 3.5 2449.25 2510.29 61.04 4 2.1 3.9 2467.87 2538.22 70.35 Ethylalcohol 1 1.2 1.7 1544.74 1580.43 35.69 37.11 ±1.65 2 1.8 2.2 1561.81 1600.60 38.79 3 1.7 2.8 1567.50 1603.19 35.69 4 2.3 4.5 1569.05 1607.33 38.28

C11TEALBfilmfortheorganicvapoursinthefollowingascending

orderare:chloroform>benzene>toluene>ethylalcohol.This

cal-ixresorcinareneismoreselectivetochloroformvaporthantowards

theothervapours.Asimilarworkreportedthattheexposureof

chloroformvaporismoreeffectivethan benzeneontheoptical

parametersofspunfilmbecauseoftheinteractionintheformof

CH–␲bonding betweenchloroform vaporand theelectron-rich

aromaticringsofthecalixresorcinarenethinfilms[25].Benzene

vaporshowsahigherresponsethattoluenevapor;howeverboth

ofthemhavebenzenerings.Itiswellknownthatthenumberof

adsorbedbenzenevapoursishigherthantoluenevapoursbecause

benzeneismorevolatile,hasalowermolarvolumeanda

rela-tivelyhighviscosityparameter,indicatingthatbenzenemolecules

aremoremobilethanthetoluenevapoursandpenetrateeasilyinto

theC11TEALBfilmstructure[7].Anumberofothercalixarenes

havepreviouslybeenreportedtoshowsimilarsensitivitytowards

chloroform[26,27](Table2).

4. Conclusion

C11TEAmoleculewasinvestigatedintheformofLBthinfilms

usingUV–visandSPRmeasurements.Isothermanalysisindicated

that a stable and reproducible monolayer of the material was

formedintheair–waterinterface.Thelimitingareapermolecule

wasshowntohaveavalueof1.79nm2andauniformLBdeposition

wasobservedwithatransferratioof≥95%.TheUV–visspectraof

theLBfilmsaresimilartothematerialspectrainchloroform

solu-tionalbeitwithsomebroadeningandred-shiftinthesolidform,

possiblyduetoaggregation.Thethinfilmthickness(1.04nm/layer)

andrefractiveindexvalue(1.4)wasobtainedusing SPRcurves.

SPRkineticmeasurementsshowthatC11TEALBfilmswere

sig-nificantlysensitivetochloroformandtheresponseofthefilmis

fast,large,reproducibleandhadashortrecoverytime,typically

ofa few seconds. Thetotal response oftheC11TEALB filmfor

theorganicvapoursisinthefollowingascendingorder:

chloro-form>benzene>toluene>ethylalcohol.Theseresultsdemonstrate

thepossibilitiesforthedevelopmentofopticalsensorsforC11TEA

films.

Acknowledgement

ThisworkissupportedbyTurkishScientificandTechnological

ResearchCouncil(TÜBITAK).Projectno:TBAG-107T343.

References

[1]C.M.McCartney,N.Cowlam,T.Richardson,F.Davis,C.J.M.Stirling,A.Gibaud, A.V.Nabok,Astudyofthelayerstructureinacalix-8-areneLangmuir–Blodgett filmbyreflectometry,ThinSolidFilms527(2013)285–290.

[2]C.D.Gutsche, Calixarenesrevisited,in:J.F.Stoddart (Ed.),Monographsin Supramol.Chem.,vol.6,TheRoyalSocietyofChemistryPress,Cambridge,1998.

[3]T.H.Richardson,R.A.Brook,F.Davis,C.A.Hunter,TheNO2gassensing

prop-ertiesofcalixarene/porphyrinmixedLBfilms,ColloidsSurf.A284–285(2006) 320–325.

[4]P.Montmeat,F.Veignal,C.Methivier,C.M.Pradier,L.Hairault,Studyof cal-ixarenesthinfilmsaschemicalsensorsforthedetectionofexplosives,Appl. Surf.Sci.292(2014)137–141.

[5]A.K.Hassan,A.K.Ray,A.V.Nabok,T.Wilkop,KineticstudiesofBTEXvapour adsorptionontosurfacesofcalix-4-resorcinarenefilms,Appl.Surf.Sci.182 (2001)49–54.

[6]M.Ozmen,Z.Ozbek,M.Bayrakci,S.Ertul,M.Ersoz,R.Capan,Preparationand gassensingpropertiesofLangmuir–Blodgettthinfilmsofcalix[n]arenes: inves-tigationofcavityeffect,Sens.ActuatorsB195(2014)156–164.

[7]M.Ozmen,Z.Ozbek,S.Buyukcelebi,M.Bayrakci,S.Ertul,M.Ersoz,R.Capan, Fab-ricationofLangmuir–Blodgettthinfilmsofcalix[4]arenesandtheirgassensing properties:investigationofupperrimparasubstituenteffect,Sens.Actuators B190(2014)502–511.

[8]Y.Shirshov,G.Beketov,O.Rengevych,R.Lamartine,A.Coleman,C.Bureau, Influenceofsolventmoleculesadsorptiononthincalixarenefilmsthickness andrefractiveindexmeasuredbysurfaceplasmonresonance,Funct.Mater.6 (1999)589–593.

[9]T.Y.Rusanova,A.V.Kalach,S.S.Rumyantseva,S.N.Shtykov,I.S.Ryzhkina, Deter-minationofvolatileorganiccompoundsusingpiezosensorsmodifiedwiththe Langmuir–Blodgettfilmsofcalix[4]resorcinarene,J.Anal.Chem.64(2009) 1270–1274.

[10]S. Munoz, T. Nakamoto, T. Moriizumi, Comparisons between calixarene Langmuir–Blodgettandcastfilmsinodorsensingsystems,Sens.Mater.11 (1999)427–435.

[11]A.Brittle,T.H.Richardson,L.Varley,L.C.A.Hunter,Amine-sensingpropertiesof acovalentlylinkedcalix[4]arene–porphyrin(“calixporph”)multilayeredfilm, J.Porphyr.Phthalocyanine14(2010)1027–1033.

[12]S. Conoci, L. Valli, R. Rella, M. Palumbo, Sensing performances of LB calix[4]pyrrolefilmsinalcoholvapoursrecognition,Sens.Environ.Control (2003)74–78.

[13]B.Pignataro,S.Conoci,L.Valli,R.Rella,G.Marletta,Structuralstudyof meso-octaethylcalix[4]pyrroleLangmuir–Blodgettfilmsusedasgassensors,Mater. Sci.Eng.C19(2002)27–31.

[14]D.A. Leigh,P. Linnane,R.G.Pritchard, G. Jackson,Unusualhost-guest ␲-arene···Hbondinginahoodedcavitand-thefirstsolid-statestructureofa Calix[4]resorcinarenewithunderivatisedhydroxygroups,J.Chem.Soc.Chem. Commun.4(1994)389–390.

[15]M.W.Sugden,T.H.Richardson,F.Davis,S.P.J.Higson,C.F.J.Faul,Langmuirand LBpropertiesoftwocalix[4]resorcinarenes:interactionswithvariousanalytes, ColloidsSurf.A321(2008)43–46.

[16]X.Fan,B.Y.Du,Selectivedetectionoftracep-xylenebypolymer-coatedQCM sensors,Sens.ActuatorsB166(2012)753–760.

[17]R.Capan,T.H.Richardson,D. Lacey,TheLangmuirpropertiesofa mixed copolysiloxanemonolayer,Turk.J.Phys.25(2001)445–449.

[18]C.M.McCartney,N.Cowlam,F.Davis,T.Richardson,A.Desert,A.Gibaud,C.J.M. Stirling,Onthelayerstructuresinacid-andamine-substitutedcalixarene Langmuir–Blodgettfilms,ColloidsSurf.A436(2013)41–48.

(6)

[19]C.Dridi,M.B.Ghedira,F.Vocanson,R.B.Chaabane,J.Davenas,H.B.Ouada, Opti-calandelectricalpropertiesofsemi-conductingcalix[5,9]arenethinfilmswith potentialapplicationsinorganicelectronics,Semicond.Sci.Technol.24(2009) 105007.

[20]A.K. Hassan, A.V. Nabok,A.K. Ray, A. Lucke,K. Smith, C.J.M. Stirling, F. Davis, Thinfilms ofcalix-4-resorcinarene deposited by spin coatingand Langmuir–Blodgetttechniques:determinationoffilmparametersbysurface plasmonresonance,Mater.Sci.Eng.C8–9(1999)251–255.

[21]A.K. Hassan, A.K. Ray, A.V. Nabok, F. Davis, Spun films of novel calix[4]resorcinarenederivativesforbenzenevaporsensing,Sens.ActuatorsB 77(2001)638–641.

[22]M.C.Oh,K.J.Kim,J.H.Lee,H.X.Chen,K.N.Koh,Polymericwaveguidebiosensors withcalixarenemonolayerfordetectingpotassiumionconcentration,Appl. Phys.Lett.89(2006)251104.

[23]Z.I.Katantseva,N.V.Lavrik,A.V.Nabok,O.P.Dimitriev,B.A.Nesterenko,V.I. Kalchenko,S.V.Vysotsky,L.N.Markovskiy,A.A.Marchenko,Structureand

electronicpropertiesofLangmuir–Blodgettfilmsofcalixarene/fullerene com-posite,Supramol.Sci.4(1997)341–347.

[24]R.Capan,Z.Özbek,H.Göktas¸,S.Sen,F.G.Ince,M.E.Özel,G.A.Stanciu,F.Davis, CharacterizationofLangmuir–Blodgettfilmsofacalix[8]areneandsensing properties towards volatileorganic vapors,Sens. ActuatorsB148 (2010) 358–365.

[25]T.Basova,E.Kol’tsov,A.K.Ray,A.K.Hassan,A.G.Gurek,V.Ahsen,Liquid crys-tallinephthalocyaninespunfilmsfororganicvapoursensing,Sens.Actuators B113(2006)127–134.

[26]Z.Özbek,R.C¸apan,H.Göktas¸,S.S¸en,F. ˙Ince,M.E.Özel,F.Davis,Optical param-etersofcalix[4]arenefilmsandtheirresponsetovolatileorganicvapors,Sens. ActuatorsB158(2011)235–240.

[27]M.Erdo˘gan,R.C¸apan,F.Davis,Swellingbehaviourofcalixarenefilmexposedto variousorganicvapoursbysurfaceplasmonresonancetechnique,Sens. Actu-atorsB145(2010)66–70.

View publication stats View publication stats

Referanslar

Benzer Belgeler

We say that the realization f0; 1g Z d of site percolation contains a doubly-in…nite self-repelling path if there exists a doubly-in…nite open path none of whose vertices is adjacent

He notes that, “conversely,” what had sent him “back” to these photographs is an already overwhelming “suppression or partial alteration” of “all the possible predicates

In regard to data availability, different than the majority of the reviewer recommendation ap- proaches, where the dataset requirement is limited to either commit history or

Because of a variety of factors like resource constraints, short-term profit orientation, market conditions, management indifference, even if customer needs are known, they

Prusya Kralı’nın İstanbul’da ikamet eden fevkalade murahhas ortaelçisi Baron de Martens’in takririne göre, Prusya doktorlarından Pananan ve Bederman adlı doktorlar

Yukarıda ayrıntılı olarak hayatları ve edebî çalışmaları hakkında bilgi verilen müellifler alfabetik sırayla şu şekilde gösterilebilir: Abdâl, Abdullah

Bekâr kelimesi Türkçe sözlükte sadece evlenmemiş kimse olarak tanımlanmamıştır. Bu tanımının yanı sıra evli olduğu halde ailesinden ayrı, yalnız yaşayan

After establishing an analytical framework for a constructivist analysis emphasizing the interactive relationship of ideas and material circumstances in the production of