• Sonuç bulunamadı

77

78

Ülkemizde, akciğer kanserine ilişkin araştırmalarda yaşam çözümlemesi yöntemlerinden Cox orantılı tehlikeler modelinden yararlanılmaktadır. Fakat çalışma verisinin homojen olmadığı durumlarla da karşılaşılmaktadır. Yaşam verisinin homojen olmaması, çözümleme sonucunda ulaşılan değerlendirmelerin etkinliğinin azalmasına ve verinin yeterince açıklanamamasına neden olmaktadır.

Bu nedenle, yaşam çözümlemesi verilerinde heterojenliğinin açıklanabilmesi için zayıflık modellerinin göz önüne alınması gerekmektedir.

79

KAYNAKLAR

[1] Cox, D.R., Regression models and life-tables, Journal of the Royal Statistical Society,Series B, 34, 187-220, 1972.

[2] Allison, P.D., Survival Analysis Using SAS: a practical guide, SAS İnstitute INC, North Carolina, 2010.

[3] Collett, D., Modelling Survival Data in Medical Research. Chapman&

Hall/CRC, London, 2010.

[4] Lee E., Wang J., Statistical Methods for Survival Data Analysis, Wiley &

Sons, Haboken , New Jersey, 2003.

[5] Wienke A., Frailty Models In Survival Analysis, Chapman&Hall, Florida, 2011.

[6] Klein, J.P., Moeschberger, M.L., Multivariate survival analysis. Survival Analysis Techniques for Censored and Truncated Data, Springer, New York, 405-422, 1997.

[7] Ata, N., Yaşam Çözümlemesinde Orantısız Hazard Modeli, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2005.

[8] Breslow, N.E., Covariance analysis of censored survival data, Biometrics, 30, 89-99, 1974.

[9] Efron, B., The efficiency of Cox’s likelihood function for censored data, Journal of the American Statistical Association, 76, 312-319, 1977.

[10] Kalbfleisch, J.D. , Prentice,R.L., The Statistical Analysis of Failure Time Data, Wiley, New York, 1980.

[11] Peto, R., Discussion of Professor Cox’s paper, Journal of Royal Statistical Society, B, 34, 205-207, 1972.

[12] Hosmer, D.W., Lemeshow, S., Applied Survival Analysis: Regression Modelling Of Time To Event Data, Wiley&Sons, New York, 1999.

80

[13] Therneau, T. M., Grambsch, P. M., Modelling Survival Data: Extending the Cox Model, Springer, New York, 2000.

[14] Ralston, A., Wilf H.S., Matematical Methods for Digital Computers, Wiley, New York, 1967.

[15] Carnahan, B., Luther, A.H., Wilkes, J.O., Applied Numerical Methods, Wiley, New York, 1969.

[16] Persson, I., Essays on the Assumption of Proportional Hazards in Cox Regression,http://www.divaportal.org/diva/get.Document?urn_nbn_se_

uu_diva_1628-1_fulltext.pdf (Ağustos, 2012)

[17] Kalbfleisch, J.D., Prentice, R.L., The Statistical Analysis Of Failure Time Data, Second Edition, Wiley&sons, New York, 2002.

[18] Schoenfeld, D., Partial residuals for the proportional hazards model, Biometrika, 69, 551-55 1982.

[19] Harrell, Frank.E., PHGLM procedure, SAS supplemental Library User’s Guide, Version 5 Edition, SAS Institute, Cary, N.C., 1986.

[20] Gill, R.D., Schumacher, M., A simple test for the proportional hazards assumption, Biometrika, 74, 289-300, 1987.

[21] Grambsch P., Thernau T.,Proportional hazards tests and diagnostics based on weighted residuals, Biometrika 81 515-526, 1994.

[22] Quentin, R., Ruimy, R., Rosenau, A., Musser, J. M. & Christen, R. Genetic identification of cryptic genospecies of Haemophilus causing urogenital and neonatal infections by PCR using specificprimers targeting genes coding for 16S rRNA.J, Clinic Microbiology 34,1380–1385, 1996.

[23] Ngandu, N.H., An Emprical Comparision of Statistical Tests For Assessing the Proportional Hazards Assumption of Cox's Model. Statistics in Medicine.,16, 611-626, 1997.

[24] Chung M. D., Song I. H.,Combined therapy consisting of intraarterial cisplatin infusion and systemic interferon-α for hepatocellular carcinoma patients with major portal vein thrombosis or distant metastasis, Cancer, Volume 88, Issue 9, pages 1986–1991, 1 May 2000.

81

[25] Arjas, E., A graphical method for assessing goodness of fit in Cox’s proportional hazards model, Journal of the American Statistical Association, 83, 204-212, 1988.

[26] Anderson, P.K., Borgan, Gill, R.D., Keiding, N., Linear nonparametric tests for comparison of counting process with application to censored survival data, International Statistical Review, 50, 219-258, 1982.

[27] Nardi, M. Schemper, Comparing Cox and Parametric Models in Clinical Studies, Statistics in Medicine, 22, 3597-3610, 2003.

[28] Vaupel, J.W., Manton, K., Stallard, E., The Impact of Heterogeneity in Individual Frailty on The Dynamics of Mortality, Demography, 16, 439–454, 1979.

[29] Lanchester, T., Econometric Methods for the Duration of Unemployment, Econometrica, 47, 939–956, 1979.

[30] Andersen, P.K., Borgan, O., Gill, R.D., Keiding, N., Statistical Models Based On Counting Processes, Springer, Verlag, New York, 1993.

[31] Aalen, O.O., Effects of Frailty in Survival Analysis. Statistical, Methods in Medical Research, 3, 227-243, 1994.

[32] Hougaard, P. Frailty Models for Survival Data, Lifetime Data Analysis, 1, 255–273, 1995.

[33] O’Quigley J,, Stare, J., Proportional Hazards Models with Frailties and Random Effects, Statistics in Medicine, 21, 3219-3233, 2002.

[34] O’Quigley J,, Stare, J., Fit and Frailties in Proportional Hazards Regression”, Statistics in Medicine, 21, 3219-3233, 2004.

[35] Hougaard, P., Life table methods for heterogeneous populations.

Biometrika, 71, 75–83, 1984.

[36] Clayton, D., Cuzick, J., Multivariate Generalisations of the Proportional Hazards Model (with discussion), Journal of the Royal Statistical Society, Series A, 148, 82–117, 1985.

82

[37] Manton, K., Stallard, E., Vaupel, J., Alternative models for heterogeneity of mortality risks among the aged. Journal of the American Statistical Association 81, 635–644, 1986.

[38] Vaupel, J.W., Carey, J.R., Christensen, K., Johnson, T.E., Yashin, A.I., Holm, N.V., Iachine, I.A., Kannisto, V., Khazaeli, A.A., Liedo, P.,Longo, V.D., Zeng, Y., Manton, K.G., Curtsinger, J.W., Biodemographic trajectories of longevity. Science 280, 855–860, 1998.

[39] McGilchrist, C.A., Aisbett, C.W., Regression with frailty in survival analysis.

Biometrics 47, 461–466, 1991.

[40] Guo, G., Rodriguez, G., Estiamting amultivariate proportional hazards model for clustered data using the EM algorithm with an application to child survival in Guatemala, Journal of the American Statistical Association, 87, 969-976, 1992.

[41] Yashin, A.I., Iachine, I.A., Genetic Analysis of Durations: Correlated Frailty Model Applied to Survival of Danish Twins, Genetic Epidemiology, 12, 529 – 538, 1995.

[42] Babiker A., Cuzick J., A simple frailty model for family studies with covariates, Statistics in Medicine, 13, 1679-1692, 1994.

[43] Pickles, A., Crouchley, R., Simonoff, E., Eaves, L., Meyer, J., Rutter, M., Hewitt, J., Silberg, J., Survival Models for Developmental Genetic Data: Age of Onset of Puberty and Antisocial Behavior in Twins, Genetic Epidemiology, 11, 155 – 170, 1994.

[44] Iachine, I., Holm, N., Harris, J., Begun, A., Iachina, M., Laitinen, M., Kaprio, J., Yashin, A., How heritable is individual susceptibility to death: The results of an analysis of survival data on Danish, Swedish and Finnish twins, Twin Research 1, 196–205, 1998.

[45] Petersen, J. H., An additive frailty model for correlated lifetimes, Biometrics 54, 646–661, 1998.

[46] Spiegelhalter, D.J., Thomas, A., Best, N.G., WinBUGS Version 1.2. User Manual, 1999.

[47] Hougaard, P. () Analysis of Multivariate Survival Data, Springer, New York, 2000.

83

[48] Vaupel P., Schlenger K., Hoeckel M., Blood Flow and Tissue Oxygenation of Human Tumors: An Update Oxygen Transport to Tissue XIV Advances in Experimental Medicine and Biology 317, 139-151, 1992

[49] Clayton, D., A Model For Association in Bivariate Life Tables and Its Applications in Epidemiological Studies Of Familial Tendency in Chronic Disease Incidence, Biometrika, 65, 141–151, 1978.

[50] Hougaard, P., Survival models for heterogeneous populations derived from stable distributions. Biometrika 73, 387–396, 1986.

[51] Whitmore, G.A, Lee,M.L.T., A Multivariate Survival Distribution Generated by an Inverse Gaussian Mixture of Exponentials, Technometrics, 33, 39–50, 1991.

[52] Sahu, S.K., Dey, D.K., Aslanidou, H., Sinha, D., A Weibull Regression Model with Gamma Frailties for Multivariate Survival Data, Lifetime Data Analysis, 3, 123–137, 1997.

[53] Xue, X., Brookmeyer, R., Bivariate frailty model for the analysis of multivariate survival time, Lifetime Data Analysis 2, 277-289, 1996.

[54] Ibrahim, J. G., Chen, M., and Sinha, D., Bayesian Survival Analysis, Springer, New York, 2001.

[55] Klein, J. P. and Moeschberger, M. L., Survival Analysis: Techniques for Censored and Truncated Data, 2nd edition, Springer, New York, 2003.

[56] Yashin, A.I., Vaupel, J.W., Iachine, I.A., Correlated Individual Frailty: An Advantageous Approach to Survival Analysis of Bivariate data, Mathematical Population Studies, 5, 145 – 159, 1995.

[57] Yashin, A.I., Iachine, I.A., How frailty models can be used for evaluating longevity limits: Taking advantege of an interdisciplinary approach, Demography, 34, 31-48, 1997.

[58] Yashin, A.I., Iachine, I.A., Vaupel, J.W., De Benedictis, G., Tan, Q., Andreev, K.F., Bonafe M., Deluca M., Valensin, S., Carotenuto, L., Franceschi, C., Genes, demography and lifespan: The contribution of demographic data in genetic studies on aging and longevity, AJHG, 65, 1178-1193, 1999.

84

[59] Wienke, A., Christensen, K., Holm, N., Yashin, A., Heritability of death from respiratory diseases: an analysis of Danish twin survival data using a correlated frailty model. In: Medical Infobahn for Europe. A. Hasman et al.

(eds.), IOS Press, Amsterdam, 407–411, 2000.

[60] Wienke, A., Holm, N.V., Skytthe, A., Yashin, A.I., The heritability of mortality due to hearth diseases: A correlated frailty model applied to danish twins, Twin Research, 4, 266-274, 2001.

[61] Wienke, A., Yashin, I.A., Zdravkovic, S., Pedersen, N.L., Marenberg, M.E., De Faire, U., Heritability of death from coronary hearth disease: A 36-year follow-up of 20966 Swedish twins, Journal of Internal Medicine, 252, 247-254, 2002.

[62] Wienke, A., Lichtenstein, P., Yashin, A.I., A bivariate frailty model with a cure fraction for modelling familial correlations in diseases, Biometrics, 59, 1178-1183, 2003.

[63] Wienke, A., Yashin, I.A., Zdravkovic, S., Pedersen, N.L., Marenberg, M.E., De Faire, U., Genetic influences on CHD-Death and the impact of known risk factors: Comparison of two frailty models, Behavior Genetics, 34, 585-592, 2004.

[64] Wienke, A., Yashin, I.A., Arbeev, K.G., Locatelli, I., A comparison of different bivariate correlated frailty models and estimation strategies, Mathematical Biosciences, 198, 1-13, 2005.

[65] Wienke, A., Ripatti, S., Palmgren, J., Yashin, A.I., A bivariate survival model with compound Poisson frailty, Statistics in Medicine, 29, 275–83, 2010.

[66] Iachine, I.A., Yashin, A.I., Identifiability of Bivariate Frailty Models based on Additive Independent Components. Research Report 8,Department of Statistics and Demography, University of Southern Denmark, Odense, 1998.

[67] Oakes, D., A concordance test for independence in the presence of censoring. Biometrics 38, 451–455, 1982.

[68] Congdon, P., Modelling Frailty in Area Mortality, Statistics in Medicine, 14, 1859-1874, 1995.

85

[69] Hougaard, P., A class of multivariate failure time distributions, Biometrika 73, 671–678, 1986.

[70] Aalen, O.O., Heterogeneity in Survival Analysis, Statistics in Medicine 7, 1121 – 1137, 1988.

[71] Aalen, O.O., Modelling Heterogeneity in Survival Analysis by the Compound Poisson Distribution, Annals of Applied Probability, 4 (2), 951 – 972, 1992.

[72] Aalen, O. O., Tretli, S., Analyzing incidence of testis cancer by means of a frailty model”, Cancer Causes and Control,10, 285–292, 1999.

[73] Klein, J.P., Semiparametric estimation of random effects using the Cox model based on the EM algorithm. Biometrics 48, 795–806, 1992.

[74] Keiding, N., Andersen, P., Klein, J., The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates. Statistics in Medicine 16, 215–224, 1997.

[75] Price, D.L., Manatunga, A.K., Modelling survival data with a cured fraction using frailty models. Statistics in Medicine 20, 1515–1527, 2001.

[76] Economou, P., Caroni, C., Graphical tests for the assumption of gamma and inverse Gaussian frailty distributions, Lifetime Data Analysis 11, 565–

582, 2005.

[77] Kheiri, S., Kimber, A., Meshkani, M.R., Bayesian analysis of an inverse Gaussian correlated frailty model, Computational Statistics and Data Analysis 51, 5317–5326, 2007.

[78] Duchateau, L., Janssen, P., The Frailty Model, Springer, New York, 2007.

[79] Wassell, J.T., Moeschberger, M.L., A bivariate survival model with modified gamma frailty for assessing the impact of interventions. Statistics in Medicine 12, 241–248, 1993.

[80] Yashin, A.I., Iachine, I., What difference does the dependence between durations make: Insights for population studies of aging. Lifetime Data Analysis 5, 5–22, 1999.

[81] Noh, M., Ha, I.D., Lee, Y., Dispersion frailty models and HGLMs. Statistics in Medicine 25, 1341–1354, 2006.

86

[82] Oakes, D., Jeong, J.-H., Frailty models and rank tests, Lifetime DataAnalysis 4, 209–228, 1998.

[83] Yau, K.K.W., McGilchrist, C.A., ML and REML estimation in survival analysis with time dependent correlated frailty. Statistics in Medicine

17, 1201–1213, 1998.

[84] Pankratz, V. S., de Andrade, M. and Thernau, T. M., Random Effects Cox Proportional Hazard Model: General Variance Components Methods for time-to-event data, Genetic Epidemology, 28, 97-109, 2005.

Benzer Belgeler