• Sonuç bulunamadı

Bu tez çalışması 3-fazlı şebekeye bağlı ada modlu ve şebeke etkileşimli çalışabilen akıllı eviricinin analizi, denetimi ve MATLAB/Simulink benzetimini içermektedir. Hibrit güç üretim sisteminde güneş ve rüzgâr yenilenebilir enerji kaynağı olarak kullanılmaktadır. Evirici farklı çalışma durumlarını otomatik gerçekleştiren ve şebeke senkronizasyonu sağlayabilen bir enerji yönetim algoritmasına sahip olup daha çok düşük güçlü uygulamalara yönelik olarak tasarlanmıştır.

RG HGÜS için 3-fazlı ada modu ve şebeke etkileşimli akıllı eviricinin MATLAB/Simulink modeli oluşturulmuş ve akıllı evirici çalışma durumları için benzetim sonuçları sunulmuştur.  Akıllı evirici çalışma durumları; Şebeke bağlantılı çalışma durumları olarak RG HGÜS’ün gücü yükün gücünden büyük ise fazla gücün bataryaya ve şebekeye aktarılması, RG HGÜS’ün gücü yükün gücünden küçük ise eksik gücün bataryadan ve şebekeden karşılanması, RG HGÜS devre dışı iken bataryanın şebekeden şarj edilmesidir.

MATLAB/Simulink benzetim sonuçlarından GKE çıkış akımının sinüzoidal dalga şeklinde ve şebeke gerilimi ile aynı fazda olduğu, akım harmoniklerinin de IEEE 519 standardında belirtilen %5 sınır değerin altında olduğu görülmüştür.

İleriki çalışmalarda akıllı evirici yapısı için farklı akım, gerilim kontrol ve farklı DGM yöntemleri incelenebilir. Ayrıca evirici yapısında 2-seviyeli GKE yerine çok seviyeli GKE kullanılarak verim artışı sağlanabilir. Batarya grubuna paralel olarak ultra- kapasitör bağlanarak batarya grubunun şarj deşarj durumu optimize edilebilir. Çift yönlü batarya dönüştürücüsü için modern kontrol teknikleri kullanılarak güç aktarımı performansı iyileştirilebilir.

 

52

 

6. KAYNAKLAR

[1] Kethani A., Marwali M., Smart Power Grids, Springer, (2011).

[2] Anonim, http://www.microgrids.eu/index.php (Erişim Tarihi: 15 Eylül 2015). [3] Dağ B., Aydemir T.M., Nadar A., Yerleşim bölgeleri için evirici arayüzlü hibrid

yenilenebilir enerji kaynaklari içeren bir mikro ağ felsefesi, II. Elektrik Tesisat Ulusal Kongresi, ETUK 2011, (2011) 296-302.

[4] Anonim, http://www.microgrids.eu/micro2000/presentations/19.pdf (Erişim Tarihi: 10 Ağustos 2015).

[5] Barton J.P., Infield D.G., Energy storage and its use with intermittent renewable energy, IEEE Trans. Energy Convers, 19 (2), (2004) 441-448.

[6] Connolly D., A review of energy storage technologies for the integration of fluctuating renewable energy, Ph.D Dissertation, University of Limerick, (2009). [7] Alamri, B.R., Alamri, A.R., Technical review of energy storage technologies

when integrated with intermittent renewable energy, International Conference on

Sustainable Power Generation and Supply, SUPERGEN, (2009) 1-5.

[8] Yeleti S., Yong Fu, Impacts of energy storage on the future power system, North

American Power Symposium (NAPS), (2010) 1-7.

[9] Wade N.S., Taylor P.C., Lang P.D., Jones P.R., Evaluating the benefits of an electrical energy storage system in a future smart grid, Energy Policy, 38 (11) (2010) 7180-7188.

[10] Roberts B.P., Sandberg C., The role of energy storage in development of smart grids, Proceedings of the IEEE, 99, (6), (2011) 1139-1144.

[11] Molina M.G., Distributed energy storage systems for applications in future smart grids, Sixth IEEE/PES Transmission and Distribution: Latin America Conference

and Exposition, (2012) 1-7.

[12] Wei Z., Garrett D., Butkowski J., Yang W., Overview of distributive energy storage systems for residential communities, IEEE Energytech, (2012) 1-6.

 

53

 

[13] Tan X., Li Q., Wang H., Advances and trends of energy storage technology in Microgrid, International Journal of Electrical Power & Energy Systems, 44 (1), (2013) 79-191.

[14] Baoquan L., Fang Z., Xianwen B., Control method of the transient compensation process of a hybrid energy storage system based on battery and ultra-capacitor in micro-grid, 21st IEEE International Symposium on Industrial Electronics (ISIE), (2012) 28-31.

[15] Liu B., Zhuo F., Bao X., Fuzzy control for hybrid energy storage system based on battery and ultra-capacitor in micro-grid, 7th International Power Electronics and

Motion Control Conference (IPEMC), 2 (2012) 778-782.

[16] Zhou H., Bhattacharya T., Tran D., Siew T.S.T., Khambadkone A.M., Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications, IEEE Transactions on Power Electronics, 26 (3) (2011) 923-930.

[17] Singo T.A., Martinez A., Saadate S, Design and implementation of a photovoltaic system using hybrid energy storage, 11th International Conference on

Optimization of Electrical and Electronic Equipment, (2008) 389-394.

[18] Singo T.A., Martinez A., Saadate S., Rael S., An optimized photovoltaic system using an effective energy conversion, 8th International Symposium on Advanced

Electromechanical Motion Systems, (2009) 376-381.

[19] Habib M.A, Said, S.A.M. El-Hadidy, M.A. I. Al-Zaharna, Optimization procedure of a hybrid photovoltaic wind energy system, Energy, 24 (1999), 919-929.

[20] Hans George Bayer, Christian Langer, A method for the identification of configurations of PV/wind hybrid systems for the reliable supply of small loads,

Solar Energy, 57 (5), (1996) 3381-3911.

[21] Liu F.C., Liu J.J., Zhou L.Y., A novel control strategy for hybrid energy storage system to relieve battery stress, 2nd IEEE International Symposium on Power

Electronics for Distributed Generation Systems (PEDG), (2010) 929-934.

[22] Han X.J., Chen F., Cui X.W., Li Y., Li X.J., A power smoothing control strategy and optimized allocation of battery capacity based on hybrid storage energy technology, Energies, 5(5) (2012) 1593-1612.

 

54

 

[23] Engler, A. Control of parallel operating battery inverters, PV Hybrid Power Syst., (2000).

[24] Engler A., Osika O., Barnes M., Jenkins N., Arulampalam A., Large scale integration of micro-generation to low voltage grids, Microgrids Project

DB1:Local Microsource Controller Strategies and Algorithms, (2004).

[25] Mohd A., Ortjohann E., Sinsukthavorn W., Lingemann M., Hamsic N., Morton D., Supervisory control and energy management of an Inverter-based Modular Smart Grid, Power Systems Conference and Exposition, PSCE’09. (2009) 1-6. [26] 1547.1 IEEE standard conformance test procedures for equipment interconnecting

distributed resources with electric power systems, IEEE Std. 1547.1-2005, (2005). [27] IEEE recommended practices and requirements for harmonic control in electrical

power systems, IEEE Std 519-1992, (1993).

[28] Teodorescu R., Liserre M., and Rodriguez P., Grid Converters for Photovoltaic

and Wind Power Systems, John Wiley and Sons, (2011).

[29] Yazdani A., and Iravani R., Voltage-Sourced Converters in Power Systems:

Modeling, Control, and Applications, John Wiley and Sons, (2010) 451.

[30] Teodorescu R. and Blaabjerg F., Flexible control of small wind turbines with grid failure detection operating in stand-alone and grid-connected mode, IEEE

Transactions on Power Electronics 19 (5) (2004) 1323-1332.

[31] Blaabjerg F., Teodorescu R., Liserre M., and Timbus A.V., Overview of control and grid synchronization for distributed power generation systems, IEEE

Transactions on Industrial Electronics, 53(5) (2006) 1398-1409.

[32] Jian W., Xing-yuan L., Xiao-yan Q., Power system research on distributed generation penetration, Automation of Electric Power Systems, 29(24) (2005) 90- 97.

[33] IEA International Energy Agency, Evaluation of islanding detection methods for photovoltaic utility interactive power systems, Task V Report, (2002).

[34] D. Velasco, et al., Review of anti-islanding techniques in distributed generators.

 

55

 

[35] Xuancai Z., et al., Analysis of the non-detection zone with passive islanding detection methods for current control DG system, Applied Power Electronics

Conference and Exposition, (2009).

[36] Liserre M., Blaabjerg F., Teodorescu R., Grid impedance estimation via excitation of LCL-filter resonance, IEEE Transactions on Industry Applications, 43(5) (2007) 1401-1407.

[37] M. Ciobotaru, R. Teodorescu, P. Rodriguez, Online grid impedance estimation for single-phase grid-connected systems using PQ variations, Power Electronics

Specialists Conference, pp: 2306-2312, (2007).

[38] Bayrak G, Cebeci M., Şebeke bağlantılı PV güç sistemlerinde ada modlu çalışma (ADMÇ) ve tespit yöntemleri, Otomatik Kontrol Ulusal Toplantısı, TOK2013, (2013).

[39] Woyte A., De Brabandere K., Dommelen D. Van, Belmans R., and Nijs J., International harmonization of grid connection guidelines: adequate requirements for the prevention of unintentional islanding, Progress in Photovoltaics: Research

and Applications, 11(6) (2003) 407-424.

[40] Xu W., Mauch K., and Martel S., An assessment of distributed generation islanding detection methods and issues for Canada, CANMET Energy Technology

Centre-Varennes, (2004).

[41] Velasco D., et al., Review of anti-islanding techniques in distributed generators,

Renewable and Sustainable Energy Reviews, 14(6) (2010) 1608-1614.

[42] Xuancai Z., et al., Analysis of the non-detection zone with passive islanding detection methods for current control DG system, Applied Power Electronics

Conference and Exposition, (2009).

[43] Reznik A., Analysis and design of a smart-inverter for renewable energy interconnection to the grid, Colorado School of Mines, MSc Thesis in Electrical

Engineering, (2013).

[44] Meersman B., De Kooning J., Vandoorn T., Degroote L., Renders B., and Vandevelde L., Overview of PLL methods for distributed generation units,

Energy, (2010).

 

56

 

[46] Park R. H., Two-reaction theory of synchronous machines generalized method of analysis-part I, Transactions of the American Institute of Electrical Engineers, 48, (3), (1929) 716-727.

[47] Park R. H., Two-reaction theory of synchronous machines-II, Transaction of the

American Institute of Electrical Engineers, 52(2), (1933) 352-354.

[48] Torrey D. A. and Sozer Y., Control of utility interactive inverters, Advanced

Energy Conversion, LLC, (2006) 1-13.

[49] Ye Z., Walling R., Miller N., Du P., Nelson K., Li L., Zhou R., Garces L., General M. D., Corporate E., and York N., Reliable, low-cost distributed generator utility system interconnect, NREL/SR-560-38017, (2006).

 

57   

ÖZGEÇMİŞ

Kişisel Bilgiler

Soyadı, adı : ŞAN Ender Sinan Uyruğu : TC

Doğum tarihi ve yeri : 1976 KARASU Telefon : 0 (506) 359 65 71 E-posta : endersinan@gmail.com

Eğitim

Derece Eğitim Birimi Mezuniyet tarihi

Yüksek Lisans Düzce Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü

Lisans Sakarya Üniversitesi Teknik Eğitim Fakültesi Elektronik ve Bilgisayar Eğitimi Bölümü

İş Deneyimi

Yıl Yer Görev 2002-2015 SAKARYA ÖĞRETMEN

Yayınlar

1. Tutkun N, San E.S., Optimal power scheduling of an off-grid renewable hybrid system used for heating and lighting in a typical residential house, 13th

International Conference on Environment and Electrical Engineering (EEEIC)

Benzer Belgeler