• Sonuç bulunamadı

Bu tez çalışmasında, Pr+3 katkılı TiO2 foto-anotlar kullanılarak boya duyarlı güneş

pillerinin verimliliğini arttırmak amaçlanmıştır. Saf ve Pr+3 katkılı TiO

2 numuneler, sol-

jel yöntemi kullanılarak sentezlenmiş ve TiO2 nanotozlar yardımıyla pastalar

oluşturulmuştur. Oluşturulan pastalar BDGP’nde foto-anot üretiminde kullanılmıştır. Saf ve %1(M) Pr+3 katkılı TiO2 foto-anotların yapısal, optiksel analizinin yapılması.

Bunun için X-ışını kırınımı (XRD), taramalı elektron mikroskobu (SEM) ve elementlerin kantitatif analizi için enerji dağılımı x-ışını spektroskopisi yapılmıştır. XRD analizinden elde edilen sonuçlara göre tanecik boyutunda küçülme görülmektedir. Bu durum boyanın yapıya daha iyi yerleşmesini sağlamaktadır. Boya, yapı içerisinde daha geniş yüzey alanı bulduğunda daha fazla ışık soğurur. Ayrıca, yapılan katkılama ile Eg (yasak bant aralığı) değerinde azalma meydana gelmiştir. Bu durumun soğurma miktarını arttırdığı görülmektedir. EDX analizinden elde edilen sonuçlarda Pr+3 yapıdaki

varlığını ispatlamaktadır (Tablo 5.3). SEM analiz sonuçları ise XRD analiz sonuçlarıyla uyuşmakta olup TiO2 parçacık boyutunun katkılama ile küçüldüğünü göstermiştir.

Saf ve Pr+3 katkılı TiO

2 foto-anotlar Pt kaplı foto-katotlar ile birleştirilerek

BDGP’leri üretilmiştir. Üretilen boya duyarlı güneş pillerinin maksimum akım yoğunluğu (Jmax), açık devre gerilimi (Voc), kısa devre akım yoğunluğu (Jsc), dolum faktörü (FF) ve verimlilik (η) gibi parametreleri J-V eğrilerinden faydalanılarak hesaplanmıştır. J-V analizinden elde edilen sonuçlar doğrultusunda saf ve %1 (M) Pr+3

katkılıTiO2 foto-anotlar karşılaştırılmıştır. %1 (M) Pr+3 katkılı TiO2 foto-anottan % 6,20

güç dönüşüm verimliliği elde edilmiş, saf TiO2 foto-anotunda ise güç dönüşüm

verimliliği %5,40 olarak hesaplanmıştır. Beklenildiği gibi katkılama ile birlikte verimde artış söz konusudur. Verim değerinde katkılama ile meydana gelen artışın ağırlıklı olarak Jsc’deki değişimden kaynaklandığı düşünülmektedir.

ÖNERİLER

Literatürde boya duyarlı güneş pillerinin verimliliğini arttırmak amacıyla yapılan pek çok çalışma mevcuttur. Hazırlanan tez çalışmasında, saf TiO2’nin Pr+3 ile

katkılanmasının sonucuna bağlı olarak TiO2 foto-anotların morfolojik, yapısal ve

optiksel özelliklerinde iyileşme meydana gelmiş ve buna bağlı olarak pil performansında artış gözlemlenmiştir. Bu tez çalışmasının, Pr+3 gibi lantanit katkılı

TiO2 malzemeler kullanılarak üretilen cihazlar için uygulanan teknik ve yöntem

KAYNAKLAR

Adeloye, A. O., & Ajibade, P. A. 2011. A high molar extinction coefficient mono- anthracenyl bipyridyl heteroleptic ruthenium (II) complex: Synthesis, photophysical and electrochemical properties. Molecules, 16(6), 4615-4631. Ahn, K. S., Kang, M. S., Lee, J. K., Shin, B. C., & Lee, J. W. 2006. Enhanced electron

diffusion length of mesoporous Ti O 2 film by using Nb 2 O 5 energy barrier for dye-sensitized solar cells. Applied physics letters, 89(1), 013103.

Andorka, F. 2014. CIGS Solar Cells Simplified. Solar Power World. Archived from the original on, 16.

Badawy, W. A. 2015. A review on solar cells from Si-single crystals to porous materials and quantum dots. Journal of advanced research, 6(2), 123-132.

Bhagwat, S., Dani, R., Goswami, P., & Kerawalla, M. A. K. 2017. Recent advances in optimization of photoanodes and counter electrodes of dye-sensitized solar cells. Current Science,113(2), 228.

Bagher, A. M., Vahid, M. M. A., & Mohsen, M. 2015. Types of solar cells and application. American Journal of optics and Photonics, 3(5), 94-113.

Barnes, P. R., Anderson, A. Y., Koops, S. E., Durrant, J. R., & O’Regan, B. C. 2009. Electron Injection Efficiency and Diffusion Length in Dye-Sensitised Solar Cells Derived from Incident Photon Conversion Efficiency Measurements. The Journal of Physical Chemistry C, 113(28), 12615-12615.

Bertolli, M. 2008. Solar cell materials. Course: Solid State II. Department of Physics, University of Tennessee, Knoxville.

Boschloo, G., Häggman, L., & Hagfeldt, A. 2006. Quantification of the effect of 4-tert- butylpyridine addition to I-/I3-redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. The Journal of Physical Chemistry B, 110(26), 13144-13150.

Carlucci, C., Xu, H., Scremin, B. F., Giannini, C., Altamura, D., Carlino, E.,& Ciccarella, G. 2014. Selective synthesis of TiO2 nanocrystals with morphology control with themicrowave-solvothermal method. CrystEngComm, 16(9), 1817-1824.

Chen, C. Y., Wang, M., Li, J. Y., Pootrakulchote, N., Alibabaei, L., Ngoc-le, C. H., & Zakeeruddin, S. M. 2009. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS nano, 3(10), 3103-3109.

Cherepy, N. J., Smestad, G. P., Grätzel, M., & Zhang, J. Z. 1997. Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. The Journal of Physical Chemistry B, 101(45), 9342-9351.

Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., & Han, L. 2006. Dye- sensitized solar cells with conversion efficiency of 11.1%. Japanese journal of applied physics, 45(7L), L638.

Chitra, S., Easwaramoorthy, D., 2015, Effect of Divalent Metal Dopant on the Structural and optical Properties of Tio2 Quantum Dots, International Journal of ChemTech Research,Vol.7, No.4,1930-1937.

Choubey, P. C., Oudhia, A., & Dewangan, R. 2012. A review: Solar cell current scenario and future trends. Recent Research in Science and Technology, 4(8). Cook, T. R., Dogutan, D. K., Reece, S. Y., Surendranath, Y., Teets, T. S., & Nocera, D.

G. 2010. Solar energy supply and storage for the legacy and nonlegacy worlds. Chemical reviews, 110(11), 6474-6502.

Davies, K. 2004. Plant pigments and their manipulation. Blackwell Publishing.

Devi, M., Panigrahi, M. R., & Singh, U. P. 2015. Microstructures, optical and electrical properties of TiO 2 thin films prepared by unconventional sol–gel route. Journal of Materials Science: Materials in Electronics, 26(2), 1186-1191.

Diamant, Y., Chen, S. G., Melamed, O., & Zaban, A. 2003. Coreshell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core. The Journal of Physical Chemistry B, 107(9), 1977-1981.

Figgemeier, E., & Hagfeldt, A. 2004. Are dye-sensitized nano-structured solar cells stable? An overview of device testing and component analyses. International journal of photoenergy, 6(3), 127-140.

Forissier, S., Roussel, H., Chaudouet, P., Pereira, A., Deschanvres, J. L., & Moine, B. 2012. Thulium and ytterbium-doped titanium oxide thin films deposited by ultrasonic spray pyrolysis. Journal of thermal spray technology, 21(6), 1263- 1268.

Ganesh, B. N. V. S., Supriya, Y. V., & Vaddeswaram, G. 2013. Recent advancements and techniques in manufacture of solar cells: organic solar cells. International Journal of Electronics and Computer Science Engineering, 2(2), 565-573.

Gong, J., Liang, J., & Sumathy, K. 2012. Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 5848-5860.

Grätzel, M., 1991 Review article photo-electrochemical Cells, Nature 414, 338–344. Grätzel, M., 2000. Perspectives for dye-sensitized nanocrystalline solar cells. Progress

in photovoltaics: research and applications, 8(1), 171-185.

Grätzel, M. 2004. Conversion of sunlight to electric power by nanocrystalline dye- sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164(1-3), 3-14.

Grätzel, M., and Durrant, J. R. 2008. Dye sensitized mesoscopic solar cells. In Nanostructured and photoelectrochemical systems for solar photon conversion (pp. 503-536).

Graetzel, M., Janssen, R. A., Mitzi, D. B., & Sargent, E. H. 2012. Materials interface engineering for solution-processed photovoltaics. Nature, 488(7411), 304. Hafez, H., Saif, M., & Abdel-Mottaleb, M. S. A. 2011. Down-converting lanthanide

doped TiO2 photoelectrodes for efficiency enhancement of dye-sensitized solar cells. Journal of Power Sources, 196(13), 5792-5796.

Hao, S., Wu, J., Huang, Y., & Lin, J. 2006. Natural dyes as photosensitizers for dye- sensitized solar cell. Solar energy, 80(2), 209-214.

Hernandez-Martinez, A. R., Estevez, M., Vargas, S., Quintanilla, F., & Rodríguez, R. 2012. Natural pigment-based dye-sensitized solar cells. Journal of applied research and technology, 10(1), 38-47.

Huang, S. Y., Schlichthörl, G., Nozik, A. J., Grätzel, M., & Frank, A. J. 1997. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. The Journal of Physical Chemistry B, 101(14), 2576-2582.

Imamzai, M., Aghaei, M., Thayoob, Y. H. M., & Forouzanfar, M. 2012, November. A review on comparison between traditional silicon solar cells and thin-film CdTe solar cells. In Proceedings of National Graduate Conference (Nat-Grad (pp. 1-5). Jayakumar, P., 2009. Solar Energy Resource Assessment Handbook. Renewable Energy

Jiao, Y., Wang, Y., Li, M., Liu, Y., Mao, P., & Yang, Y. 2017. Visible Light Excited Catalysis and Reusability Performances of TiO2@ Pr: Y2SiO5 Upconversion Materials. Journal of Nanomaterials, 2017.

Jose, R., Thavasi, V., & Ramakrishna, S. 2009. Metal oxides for dye‐sensitized solar cells. Journal of the American Ceramic Society, 92(2), 289-301.

Jung, H. S., Lee, J. K., Nastasi, M., Lee, S. W., Kim, J. Y., Park, J. S., & Shin, H. 2005. Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir, 21(23), 10332-10335. Kishimoto, S., Maoka, T., Sumitomo, K., & Ohmiya, A. 2005. Analysis of carotenoid

composition in petals of calendula (Calendula officinalis L.). Bioscience, biotechnology, and biochemistry, 69(11), 2122-2128.

Kong, F. T., Dai, S. Y., & Wang, K. J. 2007. Review of recent progress in dye- sensitized solar cells. Advances in OptoElectronics, 2007.

Kopidakis, N., Neale, N. R., & Frank, A. J. 2006. Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation. The journal of physical chemistry B, 110(25), 12485-12489.

Lee, C. H., Shie, J. L., Yang, Y. T., & Chang, C. Y. 2016. Photoelectrochemical characteristics, photodegradation and kinetics of metal and non-metal elements co-doped photocatalyst for pollution removal. Chemical Engineering Journal, 303, 477-488.

Li, B., Wang, L., Kang, B., Wang, P. ve Qiu, Y. 2006. Review of Recent Progress in Solid-State Dye-Sensitized Solar Cells. Solar Energy Materials and Solar Cells, 90,549-573.

Li, J., H., Yang,. X. et al., 2009. Appl. Surf.Sci., 255, 3731-3738.

Li, P. and Tang, Q. 2016. Highly transparent metal selenide counter electrodes for bifacial dye-sensitized solar cells. J. Power Sources, , 317, 43–48.

Liang, C., Liu, C. et al. 2009. Chem.Eng.J., 147, 219-225.

Liang, M., Xu, W., Cai, F.S., Chen, P.Q., Peng, B., Chen, J. and Li, Z.M. 2007. New Triphenylamine-Based Organic Dyes for Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 111, 4465-4472.

Ludin, N.A., Al-Alwani Mahmoud, A.M., Mohamad, A., Kadhum, A.H., Sopian, K., Abdul Karim, N. S. 2014. Review on the development of natural dye photosensitizer for dye-sensitized solar cells, Renewable and Sustainable Energy Reviews 31: 386–396.

Luque, A. and Hegedus, S. 2003. Handbook of Photovoltaic Science and Engineering. 2nd Edition, John Wiley & Sons, Ltd., Hoboken.

Luo, W., Q., Liu, Y., S., et al., 2015. Lanthanide-Doped Semiconductor Nanocrystals: Electronic Structures And Optical Properties, Science China-Materials, Volume 58, 819-850.

Maehlum, M.A. 2015. Energy Informative The Homeowner’s Guide To Solar Panels, Best Thin Film Solar Panels-Amorphous, Cadmium Telluride or CIGS? Last updated 6 April 2015.

Maicu, M., Gloess, D., et al., 2015. Photocatalytic Properties of TiO2 Thin Films Modified With Ag And Pt Nanoparticles Deposited By Gas flow Sputerring, Journal of Nanoscience And Nanotechnology, Volume 5, 6478-6486.

Mehmood, et al., 2016. Improvement in photovoltaic performance of dye-sensitized solar cell using activated carbon-TiO2 composites based photoanode. IEEE J. Photovolt., , 6, 1191–1195.

Mehmood, U., Rahman, S. U., Harrabi, K., Hussein, I. A., & Reddy, B. V. S. 2014. Recent advances in dye sensitized solar cells. Advances in Materials Science and Engineering, 2014.

Moon, E., Blaauw, D. 2017. Infrared Energy Harvesting in Millimeter-Scale GaAs Photovoltaics, View Journal Impact, Volume 64, 4554-4560.

Nazeeruddin, M.K., Péchy, P., Renouard, T. 2001. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2 based solar cells. J Am Chem Soc., 123:1613–24.

Nemashkalo, A., Busko, T., et al., 2016. Electronic Band Structure Studies of Anatase TiO2 Thin films Modified With Ag, Au, or ZrO2 Nanophases, Physica Status Solidi B-Basic Solid State Physics, Volume 253, 1754-1764.

Nishantha M.R., Yapa YPYP, Perera VPS. 2012. Sensitization of photoelectrochemical solar cells with a natural dye extracted from Kopsia flavida fruit. Proceed Tech Sess., 28:54–8.

Oregan, B., Gratzel, M. 1991. A Low Cost High-Efficiency Solar-Cell Based on Dye Sensitized Colloidal TiO2 Thin films, View Researcher ID and ORCID, Volume 353, 737-740.

O’regan, B., Gratzel, M. 1991, A- low cost, high efficiency solar cell based on dye sensitized colloidal TiO2 films, nature, 353(6346),737.

Ozturk, T., Gulveren, B., Gulen, M.,Akman, E., Sonmezoglu, S. 2017. An insight into titania nanopowders modifying with manganese ions: A promising route for highly efficient and stable photoelectrochemical solar cells

Pahtan, H.M., Lokhande, C.D Bull Mater.Sci.27(2004)85-111.

Pan, G., Jing, W., Qing-Ju, L., & Wen-Fang, Z. 2010. First-principles study on anatase TiO2 codoped with nitrogen and praseodymium. Chinese Physics B, 19(8), 087103.

Panigrahi, M., R., Devi, M. 2017. Effect of Annealing Temperature on Structural And Optical Properties of Fe Doped TiO2 Thin films Prepared By Modified Sol-Gel Method, 61st Dae Solid State Physics Symposium, Volume 1832, DOI:10.1063/1.4980566.

Park, N. G., Van de Lagemaat, J., & Frank, A. A. 2000. Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B, 104(38), 8989-8994.

Philipps, S.P., Bett, A.W., Horowitz, K. and Kurtz, S. 2015. Current Status of Concentrator Photovoltaics (CPV) Technology. Report Version 1.2, Fraunhofer Institute for Solar Energy Systems (NREL), September 2015.

Rasoulnezhad, H., Kavei, G.,et al., 2017. Visible Light Photocatalytic Degration of Paraoxon And Parathion Pesticides on Carbon-Doped TiO2 Nanorod Thin films, Journal of Materials Science-Materials In Electronics, Volume28, 18337-18347. Roh, S., Mane, R. S., Min, S., Lee, W., Lokhande, C. D. and Han, S. 2006. ‘‘Achieve- ment of 4.51% Conversion Efficiency Using ZnO Recombination Barrier Layer inTiO2Based Dye-Sensitized Solar Cells,’’Appl. Phy. Lett.,89, 253512.

Saif, M., Abdel-Mottaleb, M.S.A. 2006. Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm:characterization and potential applications.

Sarma, M., P., Kalita, J., M., et al., 2017. Chemical Bath Deposited Nanocrystalline TiO2 Thin film As X-Ray Radiation Sensor, Materials Research Express, Volume 4, DOI:10.1088/2053-1591/aa6a91.

Senthil, T., S., Muthukumarasamy, N., et al., 2011. Light Conversion Efficiency of Flower Like Structure TiO2 Thin film Solar Cells, Journal of Sol-Gel Science

And Technology, Volume 58, 296-301.

Shim, Y., S., Moon, H., G., et al., 2011. Sens.Actuators, B, 160, 357-363.

Shim, J. H., Bae, I.T., Cho, J. 2018. Microstructure development of hydrothermally grown TiO2 thin films with vertically aligned nanorods, Journal of the american ceramic society vol:101, 1(50-60).

Sima, C., Grigoriu, C., Antohe, S. 2010. Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films;519(2):595–7.

Singh, R., Kumar, M., et al., 2017. Growth of TiO2 Thin films on Chemically Textured

Si For Solar Cell Applications As a Hole-Blocking And Antireflection Layer, Appl. Surf. Sci., Volume 418, 225-231.

Smestad, G. P., and Gratzel, M. 1998. Demonstrating electron transfer and nanotechnology: a natural dye sensitized nanocrystalline energy converter. Journal of chemical education, 75(6), 752.

Spadavecchia, F., Cappelletti, G., Ardizzone, S., Ceotto, M., Azzola, M. S., Presti, L. L., ... & Falciola, L. 2012. Role of Pr on the Semiconductor Properties of Nanotitania. An Experimental and First-Principles Investigation. The Journal of Physical Chemistry C, 116(43), 23083-23093.

Suhaimi, S., Shahimin, M.M., Alahmed, Z.A., Chyský, J. and Reshak, A.H. 2015. Materials for Enhanced Dye-Sensitized Solar Cell Performance: Electrochemical Application. International Journal of Electrochemical Science, 10, 28-59.

Tauc, J., Grigorovici, R., Vancu, A., Physica status solidi (b) 15 (1966) 627–637. Tributsch, H. 1972. Reaction of Excited Chlorophyll Molecules at Electrodes and in Photosynthesis; Photochem. Photobiol., 16, 261-269.

Vlachopoulos, N., Liska, P., Augustynski, J., and Graetzel, M., 1988. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films, J. Am. Chem. Soc., , 110 (4), 1216–1220.

Wang, Y., Chang, H., et al., 2000. The Preparation, characterization, Photoelectrochemical and Photocatalytic Properties of Lanthanide Metal Ion Doped TiO2 Nanoparticles , Journal of Molecular Catalysis A: Chemical, 205- 216.

Wu, J., Quingju L.,et al., 2011. Influence of praseodymium and nitrogen co-doping on the photocatalytic activity of TiO2.

Xing, L., Jia, J., B., et al., (2013) Lanthanide-Doped TiO2 Nanoparticles Modified Electrode For Photoelectrocatalytic Degradation of Dye, Enviromental Progress&Sustainable Energy, Volume 32, 302-306.

Yao, et al., 2016. Reduced interfacial recombination in dye-sensitized solar cells assisted with NiO : Eu3+, Tb3+ coated TiO2 film. Sci. Rep., 6, 31123.

Ye, Q. L., Yang, X., Li, C., Li, Z. 2013. Synthesis of UV/NIR photocatalysts by coating TiO2 shell on peanut-like YF3:Yb, Tm upconversion nanocrystals. Materials letters, 106: 238-241.

Yuancheng Q, Peng Q. 2012. Review articles: Ruthenium sensitizers and their application in dye sensitized solar cells. Int. J Photoenergy, 2012: 21 (Article ID291579).

Zaban, A., Chen, S. G., Chappel, S. and Gregg, B. A. 2000. ‘‘Bilayer Nanoporous Electrodes for Dye Sensitized Solar Cells,’’Chem. Commun. (Cambridge), [22] 2231–2

Zhaoqi Yang, Xiaosheng Tang, Yuanfa Liu, 2015. Enhanced performance of dye- sensitized solar cells with fluorine doped nanocrystalline TiO2 as photoanode. Zakeeruddin, S. M., Nazeeruddin, M. K., Pechy, P., Rotzinger, F. P., Humphry-Baker,

R.,Kalyanasundaram, K., Grätzel, M., Shklover, V. and Haibach,T. 1997. Molecular Engineering of Photosensitizers for Nanocrystalline Solar Cells: Synthesis and Characterization of Ru Dyes Based on Phosphonated Terpyridines, Inorg. Chem., 36 (25), 5937–5946.

Zalas, M., Klein, M., 2012. The Influence of Titania Electrode Modification With Lanthanide Ions Containing Thin Layer on The Performance of Dye-Sensitized Solar Cells, International Journal of Photoenergy, DOI: 10.1155/2012/927407. Zanni MT, Greenblatt BJ, Davis AV, Neumark DM. 1999. Photodissociation of gas

phase I using femtosecond photoelectron spectroscopy. Journal of Chemical Physics; 111(7) : 2991.

Zhang, Y., Gao, Y., et al., 2010. Structural Engineering of Thin films of Vertically Aligned TiO2 Nanorods, Materials Letters, Volume 64, 1614-1617.

Zelazowska, E., Rysiakiewicz, P., et al., 2012. Sol-Gel Derived Hybrid Materials Multi- Doped With Rare-Earth Metal Ions, Materials Science-Poland, Volume 30, 105- 120.

ÖZGEÇMİŞ

KİŞİSEL BİLGİLER

Adı Soyadı : Besime BİLGİÇ

Uyruğu : T.C.

Doğum Yeri ve Tarihi : Konya/MERAM, 01.01.1991

Telefon : 0553 669 26 11

Faks :

e-mail : besimebilgicgr@gmail.com

EĞİTİM

Derece Adı, İlçe, İl Bitirme Yılı

Lise : Muhittin Güzel Kılıç Lisesi, Meram, Konya 2009 Üniversite : Selçuk Üniversitesi, Selçuklu, Konya 2014 Yüksek Lisans : Selçuk Üniversitesi, Selçuklu, Konya 2019

Doktora : - -

İŞ DENEYİMLERİ

Yıl Kurum Görevi

2017-2018 Çumra Arıkören Orta Okulu Ücretli Öğretmen

2018-2019 Çumra Mesleki Ve Teknik Anadolu

Lisesi Ücretli Öğretmen

2019-2020 Selçuk Üniversitesi BAP Bursiyer

YABANCI DİLLER

İngilizce

YAYINLAR

1- Besime Bilgiç, Ahmet Emre Kavruk, Teoman Öztürk, Mücahit Yılmaz, Berna Gülveren Effect of Using Praseodymium (Pr+3) Doped TiO

2 Photoanodes on the Photovoltaic Performance of Dye Sensitized Solar Cells‘ International Science and Academic Congress, (insac ’19) 19-20 April 2019, Konya-Turkey (Oral Presentation/ Abstract)

Benzer Belgeler