• Sonuç bulunamadı

79

80

çalışma ile yürütülmüştür. Bu sayede üretim tekrarlanabilirliği ve ölçüm takrarlanabilirliği yüksek olan deneyler başarıyla gerçekleştirilmiştir.

Üretilen sensörlerin farklı Kİ aralıklarındaki hassasiyeti araştırılmıştır. Sensörler, yüksek hassasiyetle hazırlanmış farklı konsantrasyonlara sahip bal/su çözeltilerinde test edilmiştir. Her bir çözeltinin konsantrasyonu ve kırılma indisi, bir dizi hacmi ayarlanabilir laboratuar ekipmanı kullanılarak, indis değerleri çok küçük oranlarda artan test numuneleri elde edilmiştir. Yedi damarlı MCF' nin hendek destekli tasarımı ile oldukça yüksek duyarlılıkta Kİ sensörü elde edilmiş ve deneysel olarak test edilmiştir. Bu sensörün 1.4430–1.442 Kİ aralığında duyarlılığı 35089.28 nm/RIU olarak tespit edilmiştir. Elde edilen sonuçlar simülasyon sonuçları ile de uyum göstermektedir.

Ayrıca, çalışmada hendek tabakasının Kİ duyarlılığı üzerindeki rolü analiz edilmiştir.

Simülasyon sonuçları, TAMCF 'nin damarlarındaki kılıf ve hendek katmanlarının inceltme işlemi sonucunda sensör duyarlılığının arttığını göstermiştir.

Önerilen sensör basit yapı, sağlamlık ve nispeten düşük maliyet avantajlarına sahip olup biyolojik analiz, gıda işleme, kimyasal ve biyomedikal gibi uygulama alanlarında Kİ ölçümüne dayalı pek çok fiziksel büyüklüğün ölçümünde kullanılabilir. Bu tezde sunulan çalışma ve elde edilen bulgular, optik fiber kullanarak Kİ algılama alanında yapılacak yeni çalışmalara ışık tutacaktır.

Gelecek çalışmalar için aşağıdaki fikirler araştırılabilir:

 Önerilen konik TAMCF sensörünün deneysel çalışması, sıcaklık, eğilme ve gerilme gibi başka parametreleri ölçmek için genişletilebilir.

 Üretilen sensör, ticari ortamda kullanılmak üzere geliştirilebilir.

 Konik TAMCF sensörünün elde edilen hassasiyeti, sensörün bel bölgesinde çok sayıda bir mikro–konik yapılar geliştirilebilir ve böylelikle LPG tekniği ile sensörün performansı daha da iyileştirilebilir ve uygulama alanı genişletilebilir.

81

KAYNAKLAR

AL-Mashhadani, Z.A.A., Navruz, I., 2018. Ultrahigh sensitive refractive index sensor based on tapered multicore optical fiber. Commun.Fac.Sci.Univ.Ank.Series A2-A3 60, 1–14.

AL-Mashhadani, Z.A.A., Navruz, I., 2019. Highly sensitive measurement of surrounding refractive index using tapered trench–assisted multicore fiber. Opt. Fiber Technol. 48, 76–83.

Amma, Y., Sasaki, Y., Takenaga, K., Matsuo, S., Tu, J., Saitoh, K., Koshiba, M., Morioka, T., Miyamoto, Y., 2015. High-density Multicore Fiber with Heterogeneous Core Arrangement 2, Th4C.4.

Anonymous. 2016. Chiral photonics, Web Sitesi:

https://www.chiralphotonics.com/products/multicore–fiber–fanout. Erişim Tarihi 10. 04. 2019.

Anonymous. 2017. Sumitomo Electric Industries. Success of ultra–high capacity optical fiber transmission breaking the world record by a factor of five and reaching a 10 Petabits per Second, web Sitesi: https://www.kddi–

research.jp/english/newsrelease/2017/092201.html . Erişim Tarihi 10.04.2019 Arregui, F.J., Del Villar, I., Zamarreño, C.R., Zubiate, P., Matias, I.R., 2016. Giant

sensitivity of optical fiber sensors by means of lossy mode resonance. Sensors Actuators, B Chem. 232, 660–665.

Ascorbe, J., Corres, J., Arregui, F., Matias, I., 2017. Recent Developments in Fiber Optics Humidity Sensors. Sensors 17, 893.

Chen, J., Liu, B., Zhang, H., 2011. Review of fiber Bragg grating sensor technology.

Front. Optoelectron. China 4, 204–212.

Correia, R., James, S., Lee, S.W., Morgan, S.P., Korposh, S., 2018. Biomedical application of optical fibre sensors. J. Opt. (United Kingdom) 20, 1–6.

Demas, J., Grogan, M.D.W., Alkeskjold, T., Ramachandran, S., 2013. Sensing with optical vortices in photonic-crystal fibers. Opt. Lett. 37, 3768.

Ding, Z., Wang, C., Liu, K., Jiang, J., Yang, D., Pan, G., Pu, Z., Liu, T., 2018. Distributed optical fiber sensors based on optical frequency domain reflectometry: A review. Sensors (Switzerland) 18, 1–31.

Duan, L., Zhang, P., Tang, M., Wang, R., Zhao, Z., Fu, S., Gan, L., Zhu, B., Tong, W., Liu, D., Shum, P.P., 2016. Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing. Opt. Express 24, 20210.

82

Fernandez-Vallejo, M., Lopez-Amo, M., 2012. Optical fiber networks for remote fiber optic sensors. Sensors 12, 3929–3951.

Fidanboylu, K., and Efendioğlu, H.S., 2009. Fiber optic sensors and their applications.

5th Int. Adv. Technol. Symp. (IATS’09), May 13-15, 2009, Karabuk, Turkey 1–6.

Fu, X. hu, Xiu, Y. li, Liu, Q., Xie, H. yang, Yang, C. qing, Zhang, S. yang, Fu, G. wei, Bi, W. hong, 2016. Refractive index sensors based on the fused tapered special multi-mode fiber. Optoelectron. Lett. 12, 12–15.

Gallinet, B., Martin, O.J.F., 2013. Refractive index sensing with subradiant modes: A framework to reduce losses in plasmonic nanostructures. ACS Nano 7, 6978–

6987.

Gaston, A., Lozano, I., Perez, F., Auza, F., Sevilla, J., 2003. Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors). IEEE Sens. J.

3, 806–811.

Girei, S.H., Shabaneh, A.A., Ngee-Lim, H., Hamidon, M.N., Mahdi, M.A., Yaacob, M.H., 2015. Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water. Opt. Rev. 22, 385–392.

Gupta, B.D., Verma, R.K., 2009. Surface Plasmon Resonance-Based Fiber Optic Sensors:

Principle, Probe Designs, and Some Applications. J. Sensors 2009, 1–12.

Guzman-Sepulveda, D.A.M.-A. and J.R., 2017. Fiber Optic Sensors Based on Multicore Structures. Meas. Instrum. 21, 347–371.

Guzmán-Sepúlveda, J.R., Guzmán-Cabrera, R., Torres-Cisneros, M., Sánchez-Mondragón, J.J., May-Arrioja, D.A., 2013. A highly sensitive fiber optic sensor based on two-core fiber for refractive index measurement. Sensors (Switzerland) 13, 14200–14213.

Harun, S.W., Lim, K.S., Tio, C.K., Dimyati, K., Ahmad, H., 2013. Theoretical analysis and fabrication of tapered fiber. Optik (Stuttg). 124, 538–543.

He, Y., Li, X., Que, L., 2014. A transparent nanostructured optical biosensor. J. Biomed.

Nanotechnol. 10, 767–774.

Hettrick, S.J., Wang, J., Li, C., Wilkinson, J.S., Shepherd, D.P., 2003. An experimental comparison of linear and parabolic tapered waveguide lasers. J. Light. Technol.

22, 845–849.

Hutsel, M.R., Gaylord, T.K., 2012. Inexpensive, efficient optical fiber end-face mirror.

Opt. Commun. 285, 3608–3611.

83

Hwang, T., Cheng, W.H., Su, Y.K., 2013. Characteristics and applications of tapered fiber optical sensors for 1310 nm wavelength. Jpn. J. Appl. Phys. 52.

Iadicicco, A., Campopiano, S., Cutolo, A., Giordano, M., Cusano, A., 2005. Simultaneous measurements of refractive index and temperature by non-uniform thinned fiber Bragg gratings. 17th Int. Conf. Opt. Fibre Sensors 5855, 479.

Iadicicco, A., Paladino, D., Campopiano, S., Bock, W.J., Cutolo, A., Cusano, A., 2011.

Evanescent wave sensor based on permanently bent single mode optical fiber.

Sensors Actuators, B Chem. 155, 903–908.

Irigoyen, M., Sánchez-Martin, J.A., Bernabeu, E., Zamora, A., 2017. Tapered optical fiber sensor for chemical pollutants detection in seawater. Meas. Sci. Technol.

28.

James, S.W., Tatam, R.P., 2003. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 14.

Ji, W. Bin, Tan, Y.C., Lin, B., Tjin, S.C., Chow, K.K., 2014. Nonadiabatically tapered microfiber sensor with ultrashort waist. IEEE Photonics Technol. Lett. 26, 2303–2306.

Ji, W. Bin, Tjin, S.C., Lin, B., Ng, C.L., 2013. Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings. Sensors (Switzerland) 13, 14055–14063.

Jollivet, C., Mafi, A., Flamm, D., Duparré, M., Schuster, K., Grimm, S., Schülzgen, A., 2014. Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser. Opt. Express 22, 30377.

Kim, Y.J., Yoon, M.-S., Lee, S.B., Han, Y.-G., 2015. Fabrication of in-line modal couplers based on multicore fibers and their applications to fiber optic sensors.

24th Int. Conf. Opt. Fibre Sensors 9634, 96343L.

Koshiba, M., Saitoh, K., Takenaga, K., Matsuo, S., 2011. Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory. Opt. Express 19, B102.

Latifi, H., Zibaii, M.I., Hosseini, S.M., Jorge, P., 2012. Nonadiabatic tapered optical fiber for biosensor applications. Photonic Sensors 2, 340–356.

Lecler, S., Meyrueis, P., 2012. Intrinsic Optical Fiber Sensor. Fiber Opt. Sensors.

Li, C., Ning, T., Zhang, C., Li, J., Zhang, C., Wen, X., Lin, H., Pei, L., 2016. All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications. Sensors Actuators, A Phys. 248, 148–154.

84

Liao, C.R., Wang, D.N., 2013. Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing. Photonic Sensors 3, 97–101.

Liu, D., Mallik, A.K., Yuan, J., Yu, C., Farrell, G., Semenova, Y., Wu, Q., 2015. High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure. Opt. Lett. 40, 4166.

Liu, I.-C., Chen, P.-C., Chau, L.-K., Chang, G.-E., 2018. Optofluidic refractive-index sensors employing bent waveguide structures for low-cost, rapid chemical and biomedical sensing. Opt. Express 26, 273.

Lu, J., Chen, Z., Pang, F., Wang, T., 2008. Theoretical analysis of fiber-optic evanescent wave sensors. Proc. 2008 China-Japan Jt. Microw. Conf. CJMW 2008 583–

587.

May-Arrioja, D.A., Guzman-Sepulveda, J.R., 2017. Highly Sensitive Fiber Optic Refractive Index Sensor Using Multicore Coupled Structures. J. Light.

Technol. 35, 2695–2701.

MEHRVAR, M., BIS, C., SCHARER, J.M., YOUNG, M.M.-, LUONG, J.H., 2005.

Fiber-Optic Biosensors. Trends and Advances. Anal. Sci. 16, 677–692.

Messica, A., Greenstein, A., Katzir, A., 2008. Theory of fiber-optic, evanescent-wave spectroscopy and sensors. Appl. Opt. 35, 2274.

Mohageg, M., Savchenkov, A.A., Ilchenko, V.S., Maleki, L., 2007. Measurement of the far field intensity distribution of a bent and cleaved fiber taper. Opt. Express 15, 6988.

Monzón-Hernández, D., Villatoro, J., 2006. High-resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor.

Sensors Actuators, B Chem. 115, 227–231.

Osuch, T., Jedrzejewski, K., Lewandowski, L., Jasiewicz, W., 2012. Shaping the spectral characteristics of fiber Bragg gratings written in optical fiber taper using a phase mask method. Photonics Lett. Pol. 4, 128–130.

Pan, M., Kong, L., Liu, B., Qian, K., Fang, G., Wang, S., 2013. Production of multi-walled carbon nanotube/poly(aminoamide) dendrimer hybrid and its application to piezoelectric immunosensing for metolcarb. Sensors Actuators, B Chem. 188, 949–956.

Perez-Leija, A., Hernandez-Herrejon, J.C., Moya-Cessa, H., Szameit, A., Christodoulides, D.N., 2013. Generating photon-encoded W states in multiport waveguide-array systems. Phys. Rev. A - At. Mol. Opt. Phys. 87, 1–5.

85

Pevec, S., Donlagic, D., 2014. High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature. Opt. Express 22, 16241.

Pinheiro, B.R.P., Rebola, J.L., Cartaxo, A.V.T., 2018. Impact of Inter-core Crosstalk on the Performance of Multi-core Fibers-based SDM Systems with Coherent Detection 74–81.

Prokopczuk, K., Poczesny, T., Sobotka, P., Domański, A.W., 2012. Extrinsic optical fiber sensor for medical audiometric applications. Acta Phys. Pol. A 122, 957–961.

Rajan, G., Iniewski, K.K., 2017. Optical fiber sensors: Advanced techniques and applications. Opt. Fiber Sensors Adv. Tech. Appl. 1–559.

Saffari, P., Allsop, T., Adebayo, A., Webb, D., Haynes, R., Roth, M.M., 2014. Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures. Opt. Lett. 39, 3508.

Saitoh, K., 2015. Multicore Fiber Technology. J. Light. Technol. 34, 55–66.

Saitoh, K., Matsuo, S., 2013. Multicore fibers for large capacity transmission.

Nanophotonics 2, 441–454.

Salceda-Delgado, G., Van Newkirk, A., Antonio-Lopez, J.E., Martinez-Rios, A., Schülzgen, A., Amezcua Correa, R., 2015. Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber. Opt. Lett. 40, 1468.

Schenato, L., 2017. A Review of Distributed Fibre Optic Sensors for Geo-Hydrological Applications, Applied Sciences.

Sequeira, F., Bilro, L., Rudnitskaya, A., Pesavento, M., Zeni, L., Cennamo, N., 2016.

Optimization of an Evanescent Field Sensor based on D-Shaped Plastic Optical Fiber for Chemical and Biochemical Sensing. Procedia Eng. 168, 810–813.

Shi, L., Xu, Y., Tan, W., Chen, X., 2007. Simulation of optical microfiber loop resonators for ambient refractive index sensing. Sensors 7, 689–696.

Sun, L.-P., Li, J., Gao, S., Jin, L., Ran, Y., Guan, B.-O., 2014. Fabrication of elliptic microfibers with CO_2 laser for high-sensitivity refractive index sensing. Opt.

Lett. 39, 3531.

Takara, H., Sano, A., Kobayashi, T., Kubota, H., Kawakami, H., Matsuura, A., Miyamoto, Y., 2012. Transmission with 91 . 4-b / s / Hz Aggregate Spectral Efficiency. ECOC - Eur. Conf. Exhib. Opt. Commun. 4–6.

86

Tan, F., Liu, Z., Tu, J., Yu, C., Lu, C., Tam, H.-Y., 2018. Stable Torsion Sensor with Tunable Sensitivity and Rotation Direction Discrimination Based on a tapered Trench-Assisted Multi Core Fiber 1, W1K.6.

Tan, Y., Lou, J., Xu, H., Huang, J., Shen, W., 2013. Numerical investigation of tapered optical fiber sensor based on multimode interference. Int. Symp. Photoelectron.

Detect. Imaging 2013 Fiber Opt. Sensors Opt. Coherence Tomogr. 8914, 891407.

Tang, B., Cheng, H., 2018. Application of Distributed Optical Fiber Sensing Technology in Surrounding Rock Deformation Control of TBM-Excavated Coal Mine Roadway. J. Sensors 2018, 1–10.

Tkach, R.W., Rene, B., 2012. Capacity Trends and Limits of Optical Communication Networks. Proc. IEEE 5, 1035–1055.

Tu, J., Saitoh, K., Koshiba, M., Takenaga, K., Matsuo, S., 2012. Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber 20, 15157–

15170.

Van Newkirk, A., Antonio-Lopez, J.E., Salceda-Delgado, G., Piracha, M.U., Amezcua-Correa, R., Schülzgen, A., 2015. Multicore Fiber Sensors for Simultaneous Measurement of Force and Temperature. IEEE Photonics Technol. Lett. 27, 1523–1526.

Wang, J.N., Tang, J.L., 2012. Photonic crystal fiber Mach-Zehnder interferometer for refractive index sensing. Sensors 12, 2983–2995.

Wang, Q., Li, C., Zhao, C., Li, W., 2016. Guided-mode-leaky-mode-guided-mode fiber interferometer and its high sensitivity refractive index sensing technology.

Sensors (Switzerland) 16, 1–11.

Xia, C., Bai, N., Amezcua-Correa, R., Antonio-Lopez, E., Schulzgen, A., Richardson, M., Zhou, X., Li, G., 2013. Supermodes in strongly-coupled multi-core fibers OTh3K.5.

Xia, C., Eftekhar, M.A., Correa, R.A., Antonio-Lopez, J.E., Schülzgen, A., Christodoulides, D., Li, G., 2016. Supermodes in Coupled Multi-Core Waveguide Structures. IEEE J. Sel. Top. Quantum Electron. 22.

Xia, C., Member, S., Amezcua-correa, R., Bai, N., Antonio-lopez, E., Arrioja, D.M., Schulzgen, A., Richardson, M., Liñares, J., Montero, C., Mateo, E., Zhou, X., Li, G., Member, S., Abstract, A., Design, A.F., 2012. Hole-Assisted Few-Mode Multicore Fiber for High-Density Space-Division Multiplexing. IEEE Photonics Technol. Lett. 24, 1914–1917.

87

Yadav, T.K., Narayanaswamy, R., Abu Bakar, M.H., Kamil, Y.M., Mahdi, M.A., 2014.

Single mode tapered fiber-optic interferometer based refractive index sensor and its application to protein sensing. Opt. Express 22, 22802.

Ye, F., Tu, J., Saitoh, K., Morioka, T., 2014. Simple analytical expression for crosstalk estimation in homogeneous trench-assisted multi-core fibers. Opt. Express 22, 23007.

Ye, F., Tu, J., Saitoh, K., Takenaga, K., Matsuo, S., Takara, H., Morioka, T., 2016. Design of homogeneous trench-assisted multi-core fibers based on analytical model. J.

Light. Technol. 34, 4406–4416.

Yu, H., Huang, Q., Zhao, J., 2014. Fabrication of an optical fiber micro-sphere with a diameter of several tens of micrometers. Materials (Basel). 7, 4878–4895.

Zhang, C., Ning, T., Li, J., Pei, L., Li, C., Lin, H., 2017. Refractive index sensor based on tapered multicore fiber. Opt. Fiber Technol. 33, 71–76.

Zhang, G., Zhang, Q., Shen, Y.L., Zhou, Q.L., Hu, L.L., Qiu, J.R., Chen, D.P., 2011.

Phase locking of a compact Nd-doped phosphate multicore fiber laser. Laser Phys. 21, 410–413.

Zhang, H., Wu, Z., Shum, P.P., Dinh, X.Q., Low, C.W., Xu, Z., Wang, R., Shao, X., Fu, S., Tong, W., Tang, M., 2017. Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber. Sci.

Rep. 7, 1–10.

Zhang, H., Wu, Z., Shum, P.P., Wang, R., Dinh, X.Q., Fu, S., Tong, W., Tang, M., 2016.

Fiber Bragg gratings in heterogeneous multicore fiber for directional bending sensing. J. Opt. (United Kingdom) 18.

Zhao, Z., Soto, M.A., Tang, M., Thévenaz, L., 2016. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt. Express 24, 25211.

Zhao, Z., Tang, M., Fu, S., Liu, S., Wei, H., Cheng, Y., Tong, W., Shum, P.P., Liu, D., 2013. All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing. Appl. Phys. B Lasers Opt. 112, 491–497.

Zheng, D., Madrigal, J., Chen, H., Barrera, D., Sales, S., 2017. Multicore fiber-Bragg-grating-based directional curvature sensor interrogated by a broadband source with a sinusoidal spectrum. Opt. Lett. 42, 3710.

Zhou, J., Wang, Y., Liao, C., Sun, B., He, J., Yin, G., Liu, S., Li, Z., Wang, G., Zhong, X., Zhao, J., 2015. Intensity modulated refractive index sensor based on optical fiber Michelson interferometer. Sensors Actuators, B Chem. 208, 315–319.

Zhou, S., Huang, B., Shu, X., 2017. A multi-core fiber based interferometer for high temperature sensing. Meas. Sci. Technol. 28.

88

Zhu, S., Pang, F., Huang, S., Zou, F., Dong, Y., Wang, T., 2015. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD. Opt. Express 23, 13880.

Zibaii, M.I., Latifi, H., Karami, H., Gholami, M., Hosseini, S.M., Ghezelayagh, M.H., 2010. Non-adiabatic tapered optical fiber sensor for measuring the interaction between α-amino acids in aqueous carbohydrate solution. Meas. Sci. Technol.

21.

Ziolowicz, A., Szymanski, M., Szostkiewicz, L., Tenderenda, T., Napierala, M., Murawski, M., Holdynski, Z., Ostrowski, L., Mergo, P., Poturaj, K., Makara, M., Slowikowski, M., Pawlik, K., Stanczyk, T., Stepien, K., Wysokinski, K., Broczkowska, M., Nasilowski, T., 2014. Hole-assisted multicore optical fiber for next generation telecom transmission systems. Appl. Phys. Lett. 105.

89

ÖZGEÇMİŞ

Adı Soyadı : Zinah Abbas AL–MASHADANI Doğum Yeri : Bağdat– Irak

Doğum Tarihi : 19.10.1981 Medeni Hali : Evli Yabancı Dili : İngilizce Eğitim Durumu

Lise : Tikrit Lisesi, Irak (1999)

Lisans : Bağdat Üniversitesi Al–khwarizmi Mühendislik Fakültesi Bilgi ve İletişim Mühendisliği Bölümü (2004)

Yüksek Lisans : Bağdat Üniversitesi Lazer Enstitüsü Elektronik Mühendisliği Anabilim Dalı (Eylül 2004–Temmuz 2007)

Çalıştığı Kurum/Kurumlar ve Yıl

Al–khwarizmi Mühendislik Fakültesi Bilgi ve İletişim Mühendisliği Bölümü (2007 – devam ediyor)

Yayınlar (SCI)

1. Zinah Abbas A. AL–Mashhadania, Isa Navruz, “Highly sensitive measurement of surrounding refractive index using tapered trench–assisted multicore fiber”, Optical Fiber Technology, vol. 48, pp. 76–83, 2019.

2. Isa Navruz, Fikret Ari, Mustafa Bilsel, Zinah A. AL–Mashhadani, “Enhancing refractive index sensitivity using micro–tapered long–period fiber grating inscribed in biconical tapered fiber”, Optical Fiber Technology, vol. 45, pp. 201–207, 2018.

Benzer Belgeler