• Sonuç bulunamadı

SONUÇ

Belgede Fr e ka n s (sayfa 168-181)

Geli¸stirilen bu yöntem ile gerçek zamanlı olarak frekans tespiti ve frekans de˘gi¸sime ba˘glı olarak modülasyon örüntüsü çıkarılabilmektedir. Bu tez çalı¸smasında ayrıca özgün olarak gerçek zamanlı olarak ultra geni¸sbantta spektrum algılama yapabilen ve çok kanallı ADC yapılarında kullanılabilecek ayarlanabilir FFT modülü FPGA ortamında gerçeklenerek radar sinyal simülatöründe üretilen ara frekans analog LPI radar sinyalleri i¸sleyebilen panoramik sayısal almaç yapısı olu¸sturulmu¸stur. Geli¸stirilen UWB-FFT yapısı farklı FPGA kartlarında gerçeklenebilir oldu˘gundan sayısal teknolojideki de˘gi¸simlerine paralel olarak anlık i¸slenebilecek bant geni¸slikleri arttırılabilecektir.

Yo˘gun ve karma¸sık çoklu i¸saret ortamında panoramik sayısal almaç LPI radar i¸saretlerinin bütüncül olarak analiz edilmesi ve parametrelerinin çıkarılması mümkün olmaktadır. Çoklu ADC kullanımı ile ilgili analizlerden elde edilen sonuçlara göre anlık bant geni¸sliklerinin ADC sayısı kadar arttırılması sa˘glanabilmektedir.

Çoklu i¸saret ortamında alınan LPI radar sinyallerinin öncelikle ayrı¸stırılması sa˘glanmı¸stır. Özgün olarak, ortamda bulunan radar sayısını bilmeden denetimsiz sınıflandırma yöntemleri ile sinyallerin parametrelerine göre DB-SCAN algoritmasını kullanarak kümeleme gerçekle¸stirilmi¸stir ve farklı SNR seviyelerinde kümelerin da˘gılımına yönelik ölçümler gerçekle¸stirilmi¸stir. Ayrı¸stırılan sinyal kümelerinin daha önceden e˘gitilmi¸s CNN yapılarıyla makine ö˘grenmesi tabanlı denetimli sınıflandırma gerçekle¸stirilmi¸stir. Bu tez çalı¸smasında özgün olarak alınan sinyallerin sınıflandırma i¸slemlerini kendi SNR seviyelerinde olu¸sturulmu¸s veri setleriyle e˘gitilmi¸s kaysayılarla gerçele¸stirilmesinin yüksek sınıflandırma do˘grulu˘gunu sa˘gladı˘gı görülmü¸stür. LPI radar sinyallerinden FM ve PM modülasyonların oldu˘gu 19 sınıf bulunan benzetim ortamında LPI radar tespit için iyi bir seviye olan 10 dB SNR’da %93.47 ve normal seviye olan 0 dB SNR’da %88.47 sınıflandırma ba¸sarımı sa˘glanmı¸stır.

KAYNAKLAR

Adamy, D. 2001. EW 101: A first course in electronic warfare (Vol. 101). Artech House, 330, USA.

Akyildiz, I. F., Lee, W. Y., Vuran, M. C. and Mohanty, S. 2008. A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4); 40-48.

Alom, M. Z., Godder, T. K., Morshed, M. N. and Maali, A. 2017. Enhanced spectrum sensing based on Energy detection in cognitive radio network using adaptive threshold. International Conference on Networking, Systems and Security (NSysS), 5-8 January, Dhaka, Bangladesh.

Anjaneyulu, L., Murthy, N. S. and Sarma, N. V. S. N. 2008. Identification of LPI radar signals by higher order spectra and neural network techniques. International Conference on Electronic Design, 1-3 December, Penang, Malaysia.

Anonymous. 2019. Web Sitesi: https://www.curtisswrightds.com/products/cots-boards/

fpga-cards/6u-fpga-processors/champ-wb.html Eri¸sim Tarihi: 05.02.2019

Anonymous. 2019. Web Sitesi: https://www.vadatech.com/media/AMC591_AMC591_

Datasheet.pdf Eri¸sim Tarihi: 08.03.2019

Anonymous. 2019. Web Sitesi: https://www.vadatech.com/category.php?catid_2=448

&catid_1=0&arcid=9 Eri¸sim Tarihi: 02.04.2019

Anonymous. 2019. Web Sitesi: https://www.abaco.com/products/vp430-rfsoc-board Eri¸sim Tarihi: 15.06.2019

Anonymous. 2019. Web Sitesi: http://www.apissys.com/products/product/av129/25 Eri¸sim Tarihi: 15.06.2019

Ardoino, R. and Megna, A. 2009. LPI radar detection: SNR performances for a dual channel cross-correlation based ESM receiver. European Radar Conference (EuRAD), 30 September-2 October, Rome, Italy.

Arjoune, Y. and Kaabouch, N. 2019. A comprehensive survey on spectrum sensing in cognitive radio networks: Recent advances, new challenges, and future research directions. Sensors, 19(1); 126.

Bansal, M. and Nakhate, S. 2018. Implementation of fast FFT design for 128-point using Radix-22 CFA. International Journal of Engineering and Technology, 7(4);

2646-2650.

Barbarossa, S. 1995. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Transactions on Signal Processing, 43(6);

1511-1515.

Barbarossa, S. and Lemoine, O. 1996. Analysis of nonlinear FM signals by pattern recognition of their time-frequency representation. IEEE Signal Processing Letters, 3(4); 112-115.

Camuso, P., Foglia, G., and Pistoia, D. 2009. A comprehensive analysis on detection performances of LPI signals filtering strategies. European Radar Conference (EuRAD), 30 September-2 October, Rome, Italy.

Carpenter, G. A., Grossberg, S. and Rosen, D. B. 1991. Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural networks, 4(6); 759-771.

Chen, T., Liu, L. and Huang, X. 2018. LPI radar waveform recognition based on multi-branch MWC compressed sampling receiver. IEEE Access, 6;

30342-30354.

Cone, A. 2019. Web Sitesi: http://www.upi.com/Defense-News/2019/07/08/BAE -nets-47M-by-DARPA-to-integrate-machine-learning-into-RF-signals-detection/

5261562595628/ Eri¸sim Tarihi: 15.09.2019

De Carvalho, F. B., Lopes, W. T. and Alencar, M. S. 2015. Performance of cognitive spectrum sensing based on energy detector in fading channels. Procedia Computer Science, 65; 140-147.

De Luigi, C. and Jauffret, C. 2005. Estimation and classification of FM signals using time frequency transforms. IEEE Transactions on Aerospace and Electronic Systems, 41(2); 421-437.

Denk, A. 2006. Detection and jamming low probability of intercept (LPI) radars.

Master’s Thesis, Naval Postgraduate School, Electrical Engineering Department, 123, Monterey, California, USA.

Dobre, O. A., Abdi, A., Bar-Ness, Y. and Su, W. 2007. Survey of automatic modulation classification techniques: classical approaches and new trends. IET Communications, 1(2); 137-156.

Dubois, C., Davy, M., and Idier, J. 2005. Tracking of time-frequency components using particle filtering. IEEE International Conference on Acoustics, Speech, and Signal Processing, 3-25 March, Philadelphia, USA.

Erdogan, A. Y., Gulum, T. O., Durak-Ata, L., Yildirim, T. and Pace, P. E. 2013. Defining the effective threshold using modified wigner-hough transform in FMCW-signal detection. IEEE 21st Signal Processing and Communications Applications

Conference (SIU), 24-26 Nisan, Haspolat.

Erdogan, A. Y., Gulum, T. O., Durak-Ata, L. ve Yildirim, T. 2014. Digital chirp rate adaptation for optimum FMCW interception using Wigner-Hough transform.

IEEE 22nd Signal Processing and Communications Applications Conference (SIU), 23-25 Nisan, Trabzon.

Erdogan, A. Y., Gulum, T. O., Durak-Ata, L., Yildirim, T. and Pace, P. E. 2014. Digital chirp rate adaptation for increased FMCW interception performance in Hough based transforms. IEEE International Radar Conference, 13-17 October, Lille, France.

Erdo˘gan, A. Y. 2015. Fmcw lpi radar signal detection and parameter extraction methods based on wigner hough transform. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, ˙Istanbul.

Erdo˘gan, A. Y., Gulum, T. O., Durak-Ata, L., Yildirim, T. and Pace, P. E. 2017. FMCW signal detection and parameter extraction by cross Wigner–Hough transform.

IEEE Transactions on Aerospace and Electronic Systems, 53(1); 334-344.

Ester, M., Kriegel, H. P., Sander, J. and Xu, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. Second International Conference on Knowledge Discovery and Data Mining, 2-4 August, Portland, USA.

Farahmand, A. and Zahabi, M. R. 2014. An energy efficient, high speed analog FFT processor for MB-OFDM UWB receivers. International Congress on Technology, Communication and Knowledge (ICTCK), 26-27 November, Mashhad, Iran.

Frank, T., Kraiss, K. F. and Kuhlen, T. 1998. Comparative analysis of fuzzy ART and ART-2A network clustering performance. IEEE Transactions on Neural Networks, 9(3); 544-559.

García, J. A., Fdez-Valdivia, J., Cortijo, F. J. and Molina, R. 1995. A dynamic approach for clustering data. Signal Processing, 44(2); 181-196.

Geroleo, F. G. and Brandt-Pearce, M. 2012. Detection and estimation of LFMCW radar signals. IEEE Transactions on Aerospace and Electronic Systems, 48(1);

405-418.

Gulum, T. 2007. Enhanced lpi waveform representations for digital electronic warfare intercept receivers. Master’s Thesis, Naval Postgraduate School, Electrical Engineering Department, 217, Monterey, California, USA.

Gulum, T. O., Pace, P. E. and Cristi, R. 2008. Extraction of polyphase radar modulation parameters using a Wigner-Ville distribution-Radon transform. IEEE International Conference on Acoustics, Speech and Signal Processing, 31 March

- 4 April, Las Vegas, USA.

Gulum, T. O., Erdogan, A. Y., Yildirim, T. ve Ata, L. D. 2011. Parameter extraction of FMCW modulated radar signals using Wigner-Hough Transform. IEEE 12th International Symposium on Computational Intelligence and Informatics (CINTI), 21-22 November, Budapest, Hungary.

Gulum, T. O., Erdogan, A. Y., Durak-Ata, L., Yildirim, T. and Pace, P. E. 2013. Elliptic Gaussian filtering for time-frequency signal analysis. IEEE Radar Conference (RadarConf), 29 April-3 May 2013, Ottawa, Canada.

Gulum, T. O., Erdogan, A. Y., Guner, K. K., Durak-Ata, L., Yildirim, T. and Pace, P. E.

2014. PWVD resolution considerations for LFMCW signal detection by WHT.

20th International Conference on Microwaves, Radar and Wireless Communications (MIKON), 16-18 June, Gdansk, Poland.

Gulum, T. O. 2015. Enhanced lpi waveform representations for digital electronic warfare intercept receivers. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, ˙Istanbul.

Gulum, T. O., Erdogan, A. Y., Ata, L. D., Yildirim, T. and Pace, P. E. 2017. Enhanced LPI waveform representation by ambiguity-domain elliptical Gaussian filtering.

IEEE Transactions on Aerospace and Electronic Systems, 53(2); 762-777.

Guner, K. K., Erkmen, B., Gulum, T. O., Erdogan, A. Y., Yildirim, T. ve Ata, L. D. 2015.

Improving Wigner-Hough Transform for hardware implementation to intercept LFMCW signals. IEEE 23nd Signal Processing and Communications Applications Conference (SIU), 16-19 May, Malatya.

Guner, K. K., Erkmen, B., Gulum, T. O., Erdogan, A. Y., Yıldırım, T. and Ata, L. D.

2016. Implementation aspects of Wigner-Hough Transform based detectors for LFMCW signals. 39th International Conference on Telecommunications and Signal Processing (TSP), 27-29 June, Vienna, Austria.

Guo, Q., Yu, X. and Ruan, G. 2019. LPI Radar Waveform Recognition Based on Deep Convolutional Neural Network Transfer Learning. Symmetry, 11(4); 540.

He, K., Gkioxari, G., Dollár, P. and Girshick, R. 2017. Mask r-cnn. IEEE international conference on computer vision (ICCV), 22-29 October, Venice, Italy.

Hoang, L. M., Kim, M. J. and Kong, S. H. 2019. Deep Learning Approach to LPI Radar Recognition. IEEE Radar Conference (RadarConf), 22-26 April, Boston, USA.

Hoang, L. M., Kim, M. and Kong, S. H. 2019. Automatic Recognition of General LPI Radar Waveform using SSD and Supplementary Classifier. IEEE Transactions on Signal Processing, 67(13); 3516-3530.

Ilyas, I., Paul, S., Rahman, A. and Kundu, R. K. 2016. Comparative evaluation of cyclostationary detection based cognitive spectrum sensing. IEEE 7th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 20-22 October, New York, USA.

Ioffe, S. and Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. ArXiv Preprint ArXiv:1502.03167.

Jarpa, P. 2002. Quantifying the differences in low probability of intercept radar waveforms using quadrature mirror filtering. Master’s Thesis, Naval Postgraduate School, Electrical Engineering Department, 155, Monterey, California, USA.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R. and Fei-Fei, L. 2014.

Large-scale video classification with convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 24-27 June, Columbus, USA.

Keller, J. 2019. Web Sitesi: https://www.curtisswrightds.com/news/articles/mae-apr13 -radar-ew.html Eri¸sim Tarihi: 13.08.2019

Khalaf, T. A., Abdelsadek, M. Y. and Farrag, M. 2015. Compressed measurements based spectrum sensing for wideband cognitive radio systems. International Journal of Antennas and Propagation, 2015; 1-7.

Kishore, G. R. and Sangeetha B. 2017. A New Approach of Area Efficient High Speed 1024 FFT/IFFT Processor. International Journal for Research in Applied Science and Engineering Technology (IJRASET), 5(12); 1550-1559.

Kocaadam, E. ve Ozkcazanc, Y. 2007. LPI Radar Sinyallerinin Ozimge Yaklasimi ile Siniflandirilmasi Classification of LPI Radar Signals via Eigenimage Approach.

IEEE 15th Signal Processing and Communications Applications (SIU), 11-13 Haziran, Eskisehir.

Kocaadam, E. 2009. Çokfazlı ve çokzamanlı LPI radar sinyallerinin özimge yöntemleri ile sınıflandırılması. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Elektrik-Elektronik Mühendisli˘gi, 300, Ankara.

Kocaadam, E. ve Özkazanç, Y. 2010. Classification of polyphase and polytime LPI radar signals with eigenimage methods. IEEE 18th Signal Processing and Communications Applications Conference (SIU), 22-24 Nisan, Diyarbakır.

Kong, S. H., Kim, M., Hoang, L. M. and Kim, E. 2018. Automatic LPI radar waveform recognition using CNN. IEEE Access, 6; 4207-4219.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems (NIPS), 3-8 December, Lake Tahoe, USA.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. 1998. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11); 2278-2324.

Lima Jr, A. 2002. Analysis of Low Probability of Intercept (LPI) Radar Signals Using Cyclostationary Processing. Master’s Thesis, Naval Postgraduate School, Electrical Engineering Department, 187, Monterey, California, USA.

Lin, Y. W., Liu, H. Y. and Lee, C. Y. 2005. A 1-gs/s fft/ifft processor for uwb applications. IEEE Journal of Solid-state Circuits, 40(8); 1726-1735.

Liu, L., Ren, J., Wang, X. and Ye, F. 2007. Design of low-power, 1GS/s throughput FFT processor for MIMO-OFDM UWB communication system. IEEE International Symposium on Circuits and Systems, 27-30 May, New Orleans, USA.

Liu, Y., Xiao, P., Wu, H. and Xiao, W. 2015. LPI radar signal detection based on radial integration of Choi-Williams time-frequency image. Journal of Systems Engineering and Electronics, 26(5); 973-981.

Liu, F., Masouros, C., Petropulu, A., Griffiths, H. and Hanzo, L. 2019. Joint radar and communication design: Applications, state-of-the-art, and the road ahead.

Preprint:1906.00789.

López-Risueño, G., Grajal, J. and Sanz-Osorio, A. 2005. Digital channelized receiver based on time-frequency analysis for signal interception. IEEE Transactions on Aerospace and Electronic Systems, 41(3); 879-898.

Lunden, J., Terho, L., and Koivunen, V. 2005. Waveform recognition in pulse compression radar systems. IEEE Workshop on Machine Learning for Signal Processing, 28 September, Mystic, USA.

Lundén, J. and Koivunen, V. 2007. Automatic radar waveform recognition. IEEE Journal of Selected Topics in Signal Processing, 1(1); 124-136.

Lundén, J. 2009. Spectrum sensing for cognitive radio and radar systems. PhD Dissertation, Helsinki University of Technology, Faculty of Electronics, Communications and Automation, 124, Espoo, Finland.

Mahdavi, N., Teymourzadeh, R. and Othman, M. B. 2007. VLSI implementation of high speed and high resolution FFT algorithm based on radix 2 for DSP application.

5th Student Conference on Research and Development. 11-12 December, Selangor, Malaysia.

Munjuluri, S. and Garimella, R. M. 2015. Towards faster spectrum sensing techniques in cognitive radio architectures. Procedia Computer Science, 46; 1156-1163.

Nair, V. and Hinton, G. E. 2010. Rectified linear units improve restricted boltzmann

machines. 27th International Conference on Machine Learning (ICML-10), 21-24 June, Haifa, Israel.

Ong, P. G. and Teng, H. K. 2001. Digital LPI radar detector. Master’s Thesis, Naval Postgraduate School, Electrical Engineering Department, 96, Monterey, California, USA.

Orduyılmaz, A., Kara, G., ˙Ispir, M. ve Yıldırım, A. 2013. Electronic attack techniques validation environment. IEEE 21st Signal Processing and Communications Applications Conference (SIU), 24-26 Nisan, Haspolat.

Özdil, Ö., ˙Ispir, M., Onat, E. ve Yıldırım, A. 2012. Implementation of a FPGA-based overlap-add filter. IEEE 20th Signal Processing and Communications Applications Conference (SIU), 18-20 Nisan, Mu˘gla.

Özdil, Ö., Íspir, M., Onat, E. ve Yıldırım, A. 2012. Implementation of FPGA-based FFT convolution. IET International Conference on Radar Systems, 22-25 October, Glasgow, UK.

Pace, P. E. 2009. Detecting and classifying low probability of intercept radar. Artech House, 893, London, UK.

Persson, C. 2003. Classification and analysis of low probability of intercept radar signals using image processing. Master’s Thesis, Naval Postgraduate School, Electrical Engineering Department, 149, Monterey, California, USA.

Polo, Y. L., Wang, Y., Pandharipande, A. and Leus, G. 2009. Compressive wide-band spectrum sensing. IEEE International Conference on Acoustics, Speech and Signal Processing ,19-24 April, Taipei, Taiwan.

Pritha, N. and Kalaiyarasi, D. 2016. An effective design of 128 point FFT/IFFT processor UWB application utilizing radix-(16+ 8) calculation. International Journal of Engineering Trends and Technologies(IJETT), 5; 233-238.

Ranjan, A. and Singh, B. 2016. Design and analysis of spectrum sensing in cognitive radio based on energy detection. International Conference on Signal and Information Processing (IConSIP), 6-8 October, Vishnupuri, India.

Rosenberg, A. and Hirschberg, J. 2007. V-measure: A conditional entropy-based external cluster evaluation measure. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 28-30 June, Prague, Czech Republic.

Ruan, L., Li, Y., Cheng, W. and Wu, Z. 2015. A robust threshold optimization approach for energy detection based spectrum sensing with noise uncertainty. IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), 15-17 June, Auckland, New Zenland.

Sachin, A. R., Ambat, S. K. and Hari, K. V. S. 2017. Analysis of intra-pulse frequency-modulated, low probability of interception, radar signals. S¯adhan¯a, 42(7); 1037-1050.

Sanchez, M. A., Garrido, M., Lopez-Vallejo, M. and Grajal, J. 2008. Implementing FFT-based digital channelized receivers on FPGA platforms. IEEE Transactions on Aerospace and Electronic Systems, 44(4); 1567-1585.

Scaglione, A. and Barbarossa, S. 1998. On the spectral properties of polynomial-phase signals. IEEE Signal Processing Letters, 5(9); 237-240.

Seffers, G. I. 2019. Web Sitesi: https://www.afcea.org/content/smarter-ai-electronic-warfare Eri¸sim Tarihi: 03.04.2019

Serin, M., Yılmaz, A. E. ve Navruz, ˙I. 2010. A comparison on the new electronic attack techniques against pulse compression radars. IEEE 18th Signal Processing and Communications Applications Conference(SIU), 22-24 Nisan, Diyarbakır.

Skolnik, M. 2008. Radar Handbook, Third Edition. McGraw-Hill Education, 1352, New York, USA.

Smith, S. W. 1999. The Scientist and Engineer’s Guide to Digital Signal Processing.

California Technical Publishing, 469, San Diego, California, USA.

Sun, H., Nallanathan, A., Wang, C. X. and Chen, Y. 2013. Wideband spectrum sensing for cognitive radio networks: a survey. IEEE Wireless Communications, 20(2);

74-81.

Taboada, F. 2002. Detection and classification of LPI radar signals using parallel filter arrays and higher order statistics. Master’s Thesis, Naval Postgraduate School, Electrical Engineering Department, 297, Monterey, California, USA.

Tezel, C. ve Ozkazanc, Y. 2006. Methods for analysis of LPI radar signals. IEEE 14th Signal Processing and Communications Applications (SIU), 17-19 Nisan, Antalya.

Tezel, C. 2006. LPI radar sinyallerinin analizi. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Elektrik-Elektronik Mühendisli˘gi, 153, Ankara.

Tian, Z., Tafesse, Y. and Sadler, B. M. 2011. Cyclic feature detection with sub-Nyquist sampling for wideband spectrum sensing. IEEE Journal of Selected topics in signal processing, 6(1); 58-69.

Tilghman, P. 2019. Web Sitesi: ttps://www.darpa.mil/attachments/RFMLSIndustryDay publicreleaseapproved.pdf Eri¸sim Tarihi: 03.04.2019

Tilghman, P. 2019. Web Sitesi: http://www.darpa.mil/program/adaptive-radar-countermeasures Eri¸sim Tarihi: 15.09.2019

Tsui, J. B. 2004. Digital techniques for wideband receivers (Vol. 2). SciTech Publishing, 640, USA.

Tsui, J. B. 2010. Special design topics in digital wideband receivers. Artech House, 440, USA.

Wan, J., Yu, X. and Guo, Q. 2019. LPI radar waveform recognition based on CNN and TPOT. Symmetry, 11(5); 725.

Wang, H., Diao, M. and Gao, L. 2018. Low probability of intercept radar waveform recognition based on dictionary leaming. 10th International Conference on Wireless Communications and Signal Processing (WCSP), 18-20 October, Hangzhou, China.

Wang, L., Zhang, Y. and Feng, J. 2005. On the Euclidean distance of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8); 1334-1339.

Wiley, R. G. 2006. ELINT: The interception and analysis of radar signals. Artech House, 469, London.

Yang, J. and Sarkar, T. K. 2006. Doppler-invariant property of hyperbolic frequency modulated waveforms. Microwave and Optical Technology Letters, 48(6);

1174-1179.

Yawada, P. S. and Wei, A. J. 2016. Cyclostationary Detection Based on Non-cooperative spectrum sensing in cognitive radio network. IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 19-22 June, Chengdu, China.

Yucek, T. ve Arslan, H. 2009. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1); 116-130.

Zeng, Y. and Liang, Y. C. 2007. Covariance based signal detections for cognitive radio.

2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 17-20 April, Dublin, Ireland.

Zeng, Y. and Liang, Y. C. 2008. Spectrum-sensing algorithms for cognitive radio based on statistical covariances. IEEE Transactions on Vehicular Technology, 58(4);

1804-1815.

Zeng, Y. and Liang, Y. C. 2009. Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 57(6); 1784-1793.

Zhang, M., Liu, L. and Diao, M. 2016. LPI radar waveform recognition based on

time-frequency distribution. Sensors, 16(10); 1682-1702.

Zhang, X., Chai, R. and Gao, F. 2014. Matched filter based spectrum sensing and power level detection for cognitive radio network. IEEE Global Conference on Signal and Information Processing (GlobalSIP), 3-5 December, Atlanta, USA.

Zhu, J., Zhao, Y., and Tang, J. 2013. Automatic recognition of radar signals based on time-frequency image character. IET International Radar Conference, 14-16 April 2013, Xian, China.

Zilberman, E. R. and Pace, P. E. 2006. Autonomous time-frequency morphological feature extraction algorithm for LPI radar modulation classification. International Conference on Image Processing, 8-11 October, Atlanta, USA.

ÖZGEÇM˙I ¸S

Adı Soyadı : Adnan ORDUYILMAZ Do˘gum Yeri : ˙Izmir

Do˘gum Tarihi : 27/08/1981 Medeni Hali : Evli Yabancı Dili : ˙Ingilizce

E˘gitim Durumu

Lise : Bursa A.O.S. Fen Lisesi

Lisans : Bilkent Üniversitesi Mühendislik Fakültesi Elektrik-Elektronik Mühendisli˘gi (1999-2004)

Yüksek Lisans : Mississippi Eyalet Üniversitesi Mühendislik Fakültesi Elektrik Mühendisli˘gi (A˘gustos 2004 - 2006)

Doktora : Ankara Üniversitesi Mühendislik Fakültesi

Elektrik-Elektronik Mühendisli˘gi (A˘gustos 2008 - Mart 2020)

Çalı¸stı˘gı Kurum

Tübitak Bilgem ˙Iltaren - Ba¸suzman Ara¸stırmacı (2006 - Devam Ediyor)

Uluslararası Kongre

Yar, E., Kocamis, M B., Orduyilmaz, A., Serin, M., Efe, M. 2019. A Complete Framework of Radar Pulse Detection and Modulation Classification for Cognitive EW. 27th Europian Signal Processing Conference (EUSIPCO), 2-6 September 2019, Coruna, Spain.

Orduyilmaz, A., Ispir, M., Serin, M., Efe, M. 2019. Ultra Wideband Spectrum Sensing for Cognitive Electronic Warfare Applications. IEEE Radar Conference (RADARCONF), 22-26 April, Boston, USA.

Orduyilmaz, A., Kara, G., Serin, M., Yildirim, A., Gürbüz, A. C., Efe, M. 2015. Real Time Pulse Compression Waveform Generation and Matched Filtering, IEEE

Belgede Fr e ka n s (sayfa 168-181)