• Sonuç bulunamadı

Bu çalışmanın rölatif limitasyonu, referans metot olarak BIA alınmasıdır. BT ve MRG’ın pahalı tetkikler olması, BT ve DXA’nın radyasyon maruziyeti bulunması nedeniyle çok hasta ile yapılan bir çalışmada geçerliliği yapılmış ve klinik pratikte uygulanan BIA kullanılmıştır (87-89). BIA’nın DXA ile karşılaştırıldığı çalışmalarda sınıf içi korelasyon katsayısı oldukça yüksek (0.89-0.99) olarak belirtilmiştir (70).

Sonuç olarak, kas iskelet sistemi US’si vücut kompozisyonunu değerlendirmede kullanışlı bir yöntemdir. Özellikle yaşlı popülasyonda sık görülen sarkopeni değerlendirmesi için pratik, radyasyon içermeyen, taşınabilir bir yöntem olarak kullanılmaktadır. Hem kantitatif değer vermek için hem de mikromimari değerlendirmesi ve fonksiyonel değerlendirmeler için uygun bir alternatif olabilir.

 Yürüme hızı kadınlarda kas kitlesi ile ilişkili iken, erkeklerde ilişkili bulunamamıştır.

 Hem kadın hem de erkeklerde gastroknemius kas kalınlığı ile pennasyon açısı arasında korelasyon bulunmamıştır. Her iki cinsiyette de pennasyon açısı ile SMMI arasında korelasyon tespit edilmiştir.

 Erkeklerde fasikül uzunluğu ile gastroknemius kas kalınlığı arasında ilişki bulunurken kadınlarda kas kalınlıkları ile ilişki yoktur. Her iki cinsiyette de fasikül uzunluğu ile kas kitlesi arasında korelasyon bulunamamıştır.

 Çalışmamız özellikle sarkopeni tanısı açısından kolayca ulaşılabilen, ucuz ve pratik bir yöntem olan kas iskelet sistemi ultrasonografisinin kas kitlesi, mikromimarisi ve fonksiyonunu değerlendirmede uygun bir yöntem olabileceğini desteklemekte ve ileride yapılacak çalışmalara ışık tutmaktadır.

KAYNAKLAR

1. Madden AM, Smith S. Body composition and morphological assessment of nutritional status in adults: a review of anthropometric variables. J Hum Nutr Diet. 2016;29:7-25.

2. Wagner DR. Ultrasound as a tool to assess body fat. J Obes. 2013;2013:280713.

3. Behnke AR. Physiologic studies pertaining to deep sea diving and aviation, especially in relation to the fat content and composition of the body: the Harvey lecture, March 19, 1942. Bull N Y Acad Med 1942; 18: 561-585.

4. Behnke AR. Comment on the determination of whole body density and a resume of body composition data. In: Brožek J, Henschel A (eds). Techniques for Measuring Body Composition. National Academy of Sciences/National Research Council:

Washington, DC, 1961, pp. 118-133.

5. Siri WE (ed.). Gross Composition of the Body. In: Advances in Biological and Medical Physics, Vol. IV. Academic Press: New York, 1956.

6. Siri WE. Body composition from fluid spaces and density: Analysis of methods. In:

Brožek J, Henschel A (eds). Techniques for Measuring Body Composition. National Academy of Sciences/ National Research Council: Washington, DC, 1961, pp. 223-244.

7. Selinger A The body as a three component system. Unpublished Doctoral Dissertation. University of Illinois, Urbana, IL. 1977.

8. Wang Z, Pi-Sunyer FX, Kotler DP et al. Multicomponent methods: evaluation of new and traditional soft tissue mineral models by in vivo neutron activation analysis. Am J Clin Nutr. 2002; 76: 968–974.

9. Heymsfield SB, Ebbeling CB, Zheng J, Pietrobelli A, Strauss BJ, Silva AM, Ludwig DS.

Multi-component molecular-level body composition reference methods: evolving concepts and future directions. Obes Rev. 2015;16:282-94.

10. Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition:

advances in models and methods. Annu Rev Nutr. 1997;17:527-58.

11. Thibault R, Genton L, Pichard C. Body composition: why, when and for who? Clin Nutr. 2012;31:435-47.

12. Bazzocchi A, Diano D, Ponti F, Salizzoni E, Albisinni U, Marchesini G, Battista G. A 360-degree overview of body composition in healthy people: relationships among

anthropometry, ultrasonography, and dual-energy x-ray absorptiometry. Nutrition.

2014;30:696-701.

13. Wang ZM, PiersonRNJr,Heymsfield SB. The five level model: a new approach to organizing body composition research. Am. J. Clin. Nutr. 1992 56:19-28.

14. Heymsfield SB, Waki M, Kehayias J, Lichtman S, Dilmanian FA, et al. 1991. Chemical and elemental analysis of humans in vivo using improved body composition models.

Am. J. Physiol. 261:E190-98.

15. Shizgal HM, Spanier AH, Humes J,Wood CD. Indirect measurement of total exchangeable potassium. Am. J. Physiol. 1977. 233:F253-59.

16. Rubbieri G, Mossello E, Di Bari M. Techniques for the diagnosis of sarcopenia. Clin Cases Miner Bone Metab. 2014;11:181-4.

17. Connor Gorber, S., Tremblay, M., Moher, D. & Gorber, B. A comparison of direct vs self-report measures for assessing height, weight and body mass index: a systematic review. Obes. Rev. 2007;8:307-326.

18. Kuk, J.L., Katzmarzyk, P.T., Nichaman, M.Z., Church, T.S., Blair, S.N. & Ross, R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity. 2006;14:336-341.

19. Schlecht I, Wiggermann P, Behrens G, Fischer B, Koch M, Freese J, Rubin D, Nöthlings U, Stroszczynski C, Leitzmann MF. Reproducibility and validity of ultrasound for the measurement of visceral and subcutaneous adipose tissues. Metabolism.

2014;63:1512-9.

20. Flegal, K.M. & Graubard, B.I. Estimates of excess death associated with body mass index and other anthropometric variables. Am. J. Clin. Nutr. 2009;89:1213-1219.

21. Rolland, Y., Lauwers-Cances, V., Cournot, M., Nourshashemi, F., Reynish, W., Riviere, D., Vellas, B. & Grandjean, H. Sarcopenia, calf circumference and physical function of elderly women: a cross sectional study. J. Am. Geriatr. Soc. 2003;51:1120-1124.

22. Stewart, A.D. & Sutton, L. Body Composition in Sport,Exercise and Health. Abingdon:

Routledge. (2012)

23. Gradmark AM, Rydh A, Renström F, De Lucia-Rolfe E, Sleigh A, Nordström P, Brage S, Franks PW. Computed tomography-based validation of abdominal adiposity

measurements from ultrasonography, dual-energy X-ray absorptiometry and anthropometry. Br J Nutr. 2010;104:582-8.

24. Bazzocchi A, Filonzi G, Ponti F, Albisinni U, Guglielmi G, Battista G. Ultrasound: Which role in body composition? Eur J Radiol. 2016;85:1469-80.

25. Armellini F, Zamboni M, Rigo L, Todesco T, Bergamo-Andreis IA, Procacci C, Bosello O.

The contribution of sonography to the measurement of intra-abdominal fat. J Clin Ultrasound. 1990;18:563-7.

26. G. Tornaghi, R. Raiteri, C. Pozzato, et al., Anthropometric or ultrasonicmeasurements in assessment of visceral fat? A comparative study, Int. J. Obes.Relat. Metab. Disord.

1994; 18:771-775.

27. R. A. Booth, B. A. Goddard, and A. Paton, “Measurement of fat thickness in man: a comparison of ultrasound, Harpenden calipers and electrical conductivity,” British Journal of Nutrition, vol. 20, no. 4, pp. 719-725, 1966.

28. B. A. Bullen, F. Quaade, E.Olessen, and S. A. Lund, “Ultrasonic reflections used for measuring subcutaneous fat in humans,” Human Biology, vol. 37, no. 4, pp. 375–384, 1965.

29. Vlachos IS, Hatziioannou A, Perelas A, Perrea DN. Sonographic assessment of regional adiposity. AJR Am J Roentgenol. 2007;189:1545-53.

30. Pineau JC, Guihard-Costa AM, Bocquet M. Validation of ultrasound techniques applied to body fat measurement. A comparison between ultrasound techniques, air displacement plethysmography and bioelectrical impedance vs. dual-energy X-ray absorptiometry. Ann Nutr Metab. 2007;51:421-7.

31. C Toomey, K McCreesh, S Leahy, P Jakeman. Technical considerations for accurate measurement of subcutaneous adipose tissue thickness using B-mode ultrasound.

Ultrasound. 2011;19:91-96.

32. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M;

European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412-23.

33. Rosenberg IH. Summary comments. Am J Clin Nutr. 1989;50:1231-3. 11.

34. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127(5 Suppl):990S-991S.

35. Morley JE. Sarcopenia: diagnosis and treatment. J Nutr Health Aging 2008; 12: 452–6.

36. J. Lexell, C.C. Taylor, M. Sjöström, What is the cause of the ageing atrophy?Total number, size and proportion of different fiber types studied in wholevastus lateralis muscle from 15- to 83-year-old men, J. Neurol. Sci. 1988;84:275-294

37. Sergi G, Trevisan C, Veronese N, Lucato P, Manzato E. Imaging of sarcopenia. Eur J Radiol. 2016;85:1519-24.

38. Miljkovic N, Lim JY, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Ann Rehabil Med. 2015;39:155-62.

39. Beaudart C, Reginster JY, Slomian J, Buckinx F, Dardenne N, Quabron A, Slangen C, Gillain S, Petermans J, Bruyère O. Estimation of sarcopenia prevalence using various assessment tools. Exp Gerontol. 2015;61:31-7.

40. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69:547-58.

41. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences.

International working group on sarcopenia. J Am Med Dir Assoc. 2011;12:249-56.

42. Bohannon RW, Chu J, Steffl M. Association of older women's limb circumferences and muscle mass as estimated with bioelectrical impedance. J Phys Ther Sci.

2016;28:1016-9.

43. Boutin RD, Yao L, Canter RJ, Lenchik L. Sarcopenia: Current Concepts and Imaging Implications. AJR Am J Roentgenol. 2015;205:W255-66.

44. Sanada K, Kearns CF, Midorikawa T, Abe T. Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. Eur J Appl Physiol.

2006;96:24-31.

45. Abe T, Loenneke JP, Young KC, Thiebaud RS, Nahar VK, Hollaway KM, Stover CD, Ford MA, Bass MA, Loftin M. Validity of ultrasound prediction equations for total and regional muscularity in middle-aged and older men and women. Ultrasound Med Biol. 2015 ;41:557-64.

46. Abe T, Thiebaud RS, Loenneke JP, Young KC. Prediction and validation of DXA-derived appendicular lean soft tissue mass by ultrasound in older adults. Age (Dordr).

2015;37:114.

47. Takai Y, Ohta M, Akagi R, Kato E, Wakahara T, Kawakami Y, Fukunaga T, Kanehisa H.

Applicability of ultrasound muscle thickness measurements for predicting fat-free mass in elderly population. J Nutr Health Aging. 2014;18:579-85.

48. Abe T, Sakamaki M, Yasuda T, Bemben MG, Kondo M, Kawakami Y, Fukunaga T. Age-related, site-specific muscle loss in 1507 Japanese men and women aged 20 to 95 years. J Sports Sci Med. 2011;10:145-50. eCollection 2011.

49. Minetto MA, Caresio C, Menapace T, Hajdarevic A, Marchini A, Molinari F, Maffiuletti NA. Ultrasound-Based Detection of Low Muscle Mass for Diagnosis of Sarcopenia in Older Adults. PM R. 2016;8:453-62.

50. Abe T, Ogawa M, Thiebaud RS, Loenneke JP, Mitsukawa N. Is muscle strength ratio a criterion for diagnosis of site-specific muscle loss? Geriatr Gerontol Int. 2014;14:837-44.

51. Frontera WR, Reid KF, Phillips EM, Krivickas LS, Hughes VA, Roubenoff R, Fielding RA Muscle fiber size and function in elderly humans: a longitudinal study. J Appl Physiol.

2008;105:637-642.

52. Abe T, Thiebaud RS, Loenneke JP, Loftin M, Fukunaga T. Prevalence of site-specific thigh sarcopenia in Japanese men and women. Age (Dordr). 2014;36:417-26.

53. Abe T, Patterson KM, Stover CD, Geddam DA, Tribby AC, Lajza DG, Young KC. Site-specific thigh muscle loss as an independent phenomenon for age-related muscle loss in middle-aged and older men and women. Age (Dordr). 2014;36:9634.

54. Abe T, Loenneke JP, Thiebaud RS, Fukunaga T. Age-related site-specific muscle wasting of upper and lower extremities and trunk in Japanese men and women. Age (Dordr). 2014;36:813-21.

55. Abe T, Loenneke JP, Thiebaud RS. Ultrasound assessment of hamstring muscle size using posterior thigh muscle thickness. Clin Physiol Funct Imaging. 2016;36:206-10.

56. Strasser EM, Draskovits T, Praschak M, Quittan M, Graf A. Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. Age (Dordr). 2013;35:2377-88.

57. Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV. In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol. 2005;99:1050-1055.

58. Cadore EL, Izquierdo M, Pinto SS, Alberton CL, Pinto RS, Baroni BM, Vaz MA, Lanferdini FJ, Radaelli R, González-Izal M, Bottaro M, Kruel LF. Neuromuscular

adaptations to concurrent training in the elderly: effects of intrasession exercise sequence. Age (Dordr). 2013;35:891-903.

59. Abe T, Fukashiro S, Harada Y, Kawamoto K. Relationship between sprint performance and muscle fascicle length in female sprinters. J Physiol Anthropol Appl Human Sci.

2001;20:141-7.

60. Abe T, Kumagai K, Brechue WF. Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sports Exerc. 2000;32:1125-9.

61. Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol (1985).

2000;88:811-6.

62. Abe T. Fascicle length of gastrocnemius muscles in monozygous twins. J Physiol Anthropol Appl Human Sci. 2002;21:291-5.

63. Watanabe Y, Yamada Y, Fukumoto Y, Ishihara T, Yokoyama K, Yoshida T, Miyake M, Yamagata E, Kimura M. Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men. Clin Interv Aging. 2013;8:993-8.

64. Smith S, Madden AM. Body composition and functional assessment of nutritional status in adults: a narrative review of imaging, impedance, strength and functional techniques. J Hum Nutr Diet. 2016 May 3.

65. Aubrey J, Esfandiari N, Baracos VE et al. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. 2014;201, 489–497.

66. Andreoli A, Garaci F, Cafarelli FP, Guglielmi G. Body composition in clinical practice.

Eur J Radiol. 2016;85:1461-8.

67. Befroy DE & Shulman GI Magnetic resonance spectroscopy studies of human metabolism. Diabetes. 2011;60,1361-1369.

68. Kyle UG, Bosaeus I, De Lorenzo A et al., Bioelectrical impedance analysis – part II:

utilization in clinical practice. Clin Nutr. 2004;1430-1453.

69. Mialich MS, Sicchieri JMF & Junior AAJ Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. Int J Clin Nutr. 2014;2:1-10.

70. Ling CH, de Craen AJ, Slagboom PE, Gunn DA, Stokkel MP, Westendorp RG, Maier AB.

Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin Nutr. 2011;30:610-5.

71. Bullen BA, Quaade F, Olsen F, et al. Ultrasonic reflections used for measuring subcutaneous fat in humans. Hum Biol. 1965;37:375-84.

72. Booth RAD, Goddard BA, Paton A. Measurement of fat thickness in man: a

comparison of ultrasound, harpenden calipers and electrical conductivity. Br J Nutr 1966;20:719-25.

73. Müller W, Horn M, Fürhapter-Rieger A, Kainz P, Kröpfl JM, Maughan RJ, Ahammer H.

Body composition in sport: a comparison of a novel ultrasound imaging technique to measure subcutaneous fat tissue compared with skinfold measurement. Br J Sports Med. 2013;47:1028-35.

74. Ishida H, Watanabe S. Influence of inward pressure of the transducer on lateral abdominal muscle thickness during ultrasound imaging. J Orthop Sports Phys Ther.

2012;42:815-8.

75. Müller W, Horn M, Fürhapter-Rieger A, Kainz P, Kröpfl JM, Ackland TR, Lohman TG, Maughan RJ, Meyer NL, Sundgot-Borgen J, Stewart AD, Ahammer H. Body

composition in sport: interobserver reliability of a novel ultrasound measure of subcutaneous fat tissue. Br J Sports Med. 2013;47:1036-43.

76. Cadore EL, Izquierdo M, Conceicao M, et al. Echo intensity is associated with skeletal muscle power and cardiovascular performance in elderly men. Exp Gerontol.

2012;47:473-478.

77. Fukumoto Y, Ikezoe T, Yamada Y, et al. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol. 2012;112:1519-1525.

78. Bahat G, Tufan A, Tufan F, Kilic C, Akpinar TS, Kose M, Erten N, Karan MA, Cruz-Jentoft AJ. Cut-off points to identify sarcopenia according to European Working Group on Sarcopenia in Older People (EWGSOP) definition. Clin Nutr. 2016 Feb 11.

pii: S0261-5614(16)00058-3.

79. Arts IM, Pillen S, Schelhaas HJ, Overeem S, Zwarts MJ. Normal values for quantitative muscle ultrasonography in adults. Muscle Nerve. 2010;41:32-41.

80. Wilson A, Hides JA, Blizzard L, Callisaya M, Cooper A, Srikanth VK, Winzenberg T.

Measuring ultrasound images of abdominal and lumbar multifidus muscles in older adults: A reliability study. Man Ther. 2016;23:114-9.

81. Leahy S, Toomey C, McCreesh K, O'Neill C, Jakeman P. Ultrasound measurement of subcutaneous adipose tissue thickness accurately predicts total and segmental body fat of young adults. Ultrasound Med Biol. 2012;38:28-34.

82. Duz S, Kocak M, Korkusuz F, Evaluation of body composition using three different methods compared to dual-energy X-ray absorptiometry. European Journal Of Sport Science. 2009;9:181-190

83. Al-Gindan YY, Hankey CR, Govan L, Gallagher D, Heymsfield SB, Lean ME. Derivation and validation of simple anthropometric equations to predict adipose tissue mass

and total fat mass with MRI as the reference method. Br J Nutr. 2015:14;114:1852-67.

84. Abe T, Kondo M, Kawakami Y, Fukunaga T. Prediction equations for body composition of Japanese adults by B-mode ultrasound. Am J Hum Biol. 1994;6, 161-170.

85. Miyatani M, Kanehisa H, Azuma K, Kuno S, Fukunaga T. Site-related differences in muscle loss with aging. A cross-sectional survey on the muscle thickness in Japanese men aged 20 to 79 years. Int J Sport Health Sci. 2003;1:34-40.

86. Kawakami Y, Abe T, Kanehisa H, Fukunaga T. Human skeletal muscle size and architecture: variability and interdependence. Am J Hum Biol. 2006;18:845-8.

87. Faria SL, Faria OP, Cardeal MD, Ito MK. Validation study of multi-frequency bioelectrical impedance with dual-energy X-ray absorptiometry among obese patients. Obes Surg. 2014;249:1476-80.

88. Buckinx F, Reginster JY, Dardenne N, Croisiser JL, Kaux JF, Beaudart C, Slomian J, Bruyère O. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study. BMC Musculoskelet Disord. 2015;16:60.

89. Esco MR, Snarr RL, Leatherwood MD, Chamberlain NA, Redding ML, Flatt AA, Moon JR, Williford HN. Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes. J Strength Cond Res.

2015;29:918-25.

Antropometrik Değerlendirmede Kas İskelet Sistemi Ultrasonografisinin Yeri

Adı Soyadı: Dosya no:

Yaş: Ek Hastalık:

Kilo: Boy:

Sigara:

Bel çevresi: Kalça çevresi:

Orta üst kol çevresi: Baldır çevresi:

Biyoelektrik impedans analiz

FM: FFM:

BFMI: FFMI:

US ile Kas kalınlığı Dermis/sc yağ kalınlığı Kaliper ile kalınlık

Biseps/Brakialis Triseps

FDS/FDP ECR

Paraspinal kaslar Rektus abdominis Rektus femoris Biseps femoris Tibialis anterior Gastroknemius Trokanter yağ:

Gastroknemius pennat açısı:

Gastroknemius fasikül uzunluğu:

Fonksiyonel Değerlendirme El kavrama kuvveti:

Yürüme hızı:

Benzer Belgeler