• Sonuç bulunamadı

Granüler Kompozisyon

6. SONUÇ VE ÖNER LER

Arazi kullan m ve toprak yönetimi topraklar n karbon ve azot içeri ini önemli ölçüde etkilemektedir. Çal lan topraklarda genel olarak organik karbonun önemli miktar 50 µm den küçük parçac klarda tutulmu tur. Karasal organik karbonun önemli bir k sm ise her iki kullan m alt nda da kil fraksiyonunda tutuldu u tespit edilmi tir. Arazi i leme hem kil hem de silt fraksiyonunda organik karbon miktar n n azalmas na neden olmu tur. Benzer ili ki toplam toprak azotu için de geçerlidir. Orman ve mera arazilerinde olu an bakir topraklar i lenen arazilerden daha fazla organik karbon ihtiva etmektedirler. Elde edilen sonuçlara göre çal ma alan nda organik madde, toprakta kil+ silt fraksiyonu ile ili kilidir ve topraklar n ince fraksiyonlar organik maddeyi olu turduklar organo-mineral komplekslerinde mikrobiyal parçalanmaya kar korumaktad r. nce fraksiyondaki organik madde miktar kültüvasyondan daha az etkilenmektedir. Özellikle kil fraksiyondaki organik karbon toprak i leme ile olu acak de i imlere kar daha dirençlidir. Arazi kullan m ndaki de i meler karasal karbon depolanmas n önemli ölçüde etkilemektedir. Dahas ülkemiz gibi ço u geli mekte olan ülkelerde nüfus art ile tar m alanlar nda önemli art lar olmu tur ve önümüzdeki elli y l içinde bu geni leme devam edecektir. Tar m, global ölçekte sera gazlar n n atmosfere sal n m nda çok önemli rol oynamaktad r. Bu yüzden modern tar m için karbonun toprakta al konmas ve atmosfere CO2 ak m n n azalt lmas çok önemlidir. Bu çal mada da gösterildi i gibi, birçok ara t rmada arazi kullan m sera gazlar n n atmosfere sal n m nda çok önemli etkiye sahiptir. Toprakta karbonun stabilizasyonunu sa layacak ve karbon sal n m n azaltacak i lemler sayesinde karasal ekosistemlerde karbon depolanmas art r labilir. Ülkemizin önemli bir bölümünde ve çal ma alan ndaki topraklar m zda ortalama organik karbon miktar Dünya ve Avrupa ortalamas ndan oldukça dü üktür. Bu nedenle ülkemiz topraklar nda iyi arazi yönetimi, global ölçekte, karbon tutulmas ve küresel s nma probleminin çözümüne katk sa layaca gibi, ayn zamanda toprak bozunmas n n önlenmesi ve topraklar m z n sürdürülebilir kullan m na çok önemli katk lar sa layacakt r. Bunun yan nda Kyoto Protokolü geli mekte olan ülkelere karbon emisyonunu azaltma art getirmektedir. Organik karbon depolanmas n art racak arazi i lemlerinin geli tirilmesi ile söz konusu protokolün gerekleri de yerine getirilerek, daha ya anabilir bir dünya için katk sa lanm olacakt r.

43

7. KAYNAKLAR

Ahmed, M. and Oades, J.M., 1984. Distribution of Organic Matter and Adenosine Triphosphate After Fractionation of Soils By Physical Procedures. Soil Biol. Biochem., 16; 465-470.

Akman, Y., 1990. klim ve Biyo klim, Palme Yay nlar , Ankara, s. 319.

Anderson, D.W., Sagar, S., Bettany, J.R. and Steward, J.W.B., 1981. Particle Size Fractions and Their Use in Studies of Soil Organic Matter: I. The Nature and Distribution of Forms of Carbon, Nitrogen, and Sulphur. Soil Sci. Soc. Am. J.,45; 767-772 Anderson, D.W. and Paul, E.A., 1984. Organo-Mineral Complexes and Their Study By

Radiocarbon Dating. Soil Sci. Soc. Am. J. 48; 298-301.

Baldock, J.A. and Skjemstad, J.O., 2000. Role of The Soil Matrix and Minerals in Protecting Organic Materials Against Biological Attack. Organic Geochemistry, 31; 697- 710

Batjes, N.H., 2006. Soil Carbon Stocks of Jordan and Projected Changes Upon Improved Management of Croplands. Geoderma, 132; 361-371.

Bayer, C., Martin-Neto, L., Mielniczuk, J., Pillon, C.N., Sangoi, L., 2001. Changes in Soil Organic Matter Fractions Under Subtropical No-Till Cropping Systems. Soil Science Society of America Journal, 65; 1473-1478.

Bayer, C., Martin-Neto, L., Mielniczuk, J., Dieckow, J. and Amado, T.J.C., 2006. C and N Stocks and The Role of Molecular Recalcitrance and Organo Mineral Interaction in Stabilizing Soil Organic Matter in A Subtropical Acrisol Managed Under No- Tillage. Geoderma, 133; 258-268.

Bremner, J.M. and Genrich, D.A., 1990. Characterisation of The Sand, Silt, and Clay Fractions of Some Mollisols. Soil Colloids and Their Associations in Aggregates.

Breuer, L., Huisman, J.A., Keller, T. and Frede, H.G., 2006. Impact of A Conversion from Cropland to Grassland On C and N Storage and Related Soil Properties: Analysis of A 60-Year Chronosequence. Geoderma, 133; 6-18.

Burke, I.C., Yonker, C.M., Parton, W.J., Cole, C.V., Flach, K. and Schimel, D.S., 1989. Texture, Climate, and Cultivation Effects On Soil Organic Matter Content in US Grassland Soils. Soil Sci. Soc. Am. J., 53; 800-805.

Camargo, O.A., Moniz, A.C., Jorge, J.A. and Valadares, J.M.A.S., 1986. Metodos De Analise Quimica, Mineralogica E Fisica De Solos (Methods of Chemical, Mineralogical

44

and Physical Analysis of Soils Used in The Pedology Section) Do Instituto Agronomico De Campinas IAC, Campinas, SP.

Cambardella, C.A. and Elliott, E.T.,1994. Carbon and Nitrogen Dynamics of Soil Organic Matter Fractions from Cultivated Grassland Soils. Soil Sci. Soc. Am. J., 58; 123- 130.

Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E., 1994. Field-Scale Variability of Soil Properties in Central Lowa Soils. Soil Science Society of America Journal 58; 1501-1511.

Caravaca, F., Lax, A. and Albaladejo, J., 1999. Organic Matter, Nutrient Contents and Cation Exchange Capacity in Fine Fractions from Semiarid Calcareous Soils. Geoderma 93; 161-176.

Carter, M.R., Angers, D.A., Gregorich, E.G. and Bolinder, M.A, 2003. Characterizing Organic Matter Retention for Surface Soils in Eastern Canada Using Density and Particle Size Fractions. Can. J. Soil Sci., 83;11-23.

Caspersen, J.P., Pacala, S.W., Jenkins, J.C., Hurtt, G.C., Moorcroft, P.R. and Birdsey, R.A., 2000. Contributions of Land-Use History to Carbon Accumulation in U.S. Forests. Science,290; 1148-1151.

Chen, J.S. and Chiu, C.Y., 2003. Characterization of Soil Organic Matter in Different Particle-Size Fractions in Humid Sub Alpine Soils By CP/MAS 13C NMR. Geoderma, 117; 129-141.

Cheshire, M.V., Christensen, B.T. and Sorensen, L.H., 1990. Labelled and Native Sugars in Particle-Size Fractions from Soils Incubated with C Straw for 6 to 18 Years. J. Soil Sci., 41; 29-39.

Christensen, B.T., 1985. Carbon and Nitrogen in Particle Size Fractions Isolated from Danish Arable Soils By Ultrasonic Dispersion and Gravity-Sedimentation. Acta Agric. Scand.,35; 175-187.

Christensen, B.T., 1988. Effects of Animal Manure and Mineral Fertilizer On The Total Carbon and Nitrojen Contents of Soil Size Fractions. Biology and Fertility of Soils, 5; 304-307.

Christensen, B.T., 1992. Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates. Adv. Soil Sci., 20; 1-89.

Dahlgren, A.R., Bottinger, L.T., Huntington, L.G. and Amundson, A.R., 1997. Soil Development Along An Elevation Transect in The Western Sierra Nevada, California. Geoderma, 78; 207-236.

45

Dalal, R.C. and Mayer, R.J., 1986. Long-Term Trends in Fertility of Soils Under Continuous Cultivation and Cereal Cropping in Southern Queensland: IV. Loss of Organic Carbon from Different Density Fractions. Aust. J. Soil Res., 24; 293-300.

Davidson, E.A., Ackerman, I.L., 1993. Changes of Soil Carbon nventories Following Cultivation of Previously Untilled Soils. Biogeochemistry, 20; 161-193.

Edwards, A.P. and Bremner, J.M., 1967. Dispersion of Soil Particles By Sonic Vibration. J. Soil Sci., 18; 47-63.

Elliott, E.T., 1986. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cutivated Soils. Soil Sci. Soc. Am. J., 50; 627-633.

Eshetu, Z., Giesler, R., Högberg, P., 2004. Historical Land Use Affects The Chemistry of Forest Soils in The Ethiopian Highlands. Geoderma 118, 149-165.

Feller, C. and Beare, M.H., 1997. Physical Control of Soil Organic Matter Dynamics in The Tropics. Geoderma, 79; 69-116.

Field, D.J., Minasny, B. and Gaggin, M., 2006. Modeling Aggregate Liberation and Dispersion of Three Soil Types Exposed To Ultrasonic Agitation. Australian Journal of Soil Research, 44; 497-502.

Fisher, M.J., Rao, I.M., Ayarza, M.A., Lascano, C.E., Sanz, J.I., Thomas, R.J. and Vera, R.R., 1994. Carbon Storage By Introduced Deep-Rooted Grasses in the South American Savannas. Nature, 371; 236-238.

Franzluebbers, A.J. and Arshad, M.A., 1997. Soil Microbial Biomass and Mineralizable Carbon of Water-Stable Aggregates. Soil Sci. Soc. Am. J., 61; 1090-1097. Golchin, A., Baldock, J.A., Oades, J.M., 1997. A Model Linking Organic Matter

Decomposition, Chemistry, and Aggregate Dynamics. In: Lal, R., Kimble, J.M., Follett, R.F., Stewart, B.A. (Eds.), Soil Processes and The Carbon Cycle. CRC Pres, Boca Raton, Pp. 245-266.

Greenland, D.J., 1965. Interaction Between Clays and Organic Compounds in Soils : Part 1. Mechanisms of Interaction Between Clays and Defined Organic Compounds. Soils Fert., 28; 415-425.

Gregorich, E.G., Carter, M.R., Angers, V.C., Monreal, M. and Ellert, B.H., 1994. Towards A Minimum Data Set To Assess Soil Organic Matter Quality in Agricultural Soils. Can. J. SoilSci., 367-385.

46

Gregorich, E.G., Kachanoski, R.G. and Voroney, R.P., 1988. Ultrasonic Dispersion of Aggregates: Distribution of Organic Matter in Size Fractions. Can. J. Soil Sci., 68; 395-403.

Hassink, J., 1994. Effects of Soil Texture and Grassland Management On Soil Organic C and N and Rates of C and N Mineralization. Soil Biol. Biochem., 26; 1221-1231. Hassink, J., 1995. Density Fractions of Soil Macro Organic Matter and Microbial Biomass As

Predictors of C and N Mineralization. Soil Biol. Biochem., 27; 1099-1108. Hassink, J., 1997. The Capacity of Soils to Preserve Organic C and N By Their Association

with Clay and Silt Particles. Plant and Soil, 191; 77-87.

Hevia, G.G., Buschiazzo, D.E., Hepper, E.N., Urioste, A.M. and Anton, E.L., 2003. Organic Matter in Size Fractions of Soils of The Semiarid Argentina. Effects of Climate, Soil Texture and Management. Geoderma, 116; 265-277.

Hocao lu, Ö.L., 1966. Toprakta Organik Madde, Nitrojen ve Nitrat Tayini. Atatürk Üniversitesi Ziraat Fakültesi Zirai Ara t rma Enstitüsü Teknik Bülten No: 9, Erzurum.

Hontoria, C., Rodriguez-Murillo, J.C. and Saa, A., 1999. Relationships Between Soil Organic Carbon and Site Characteristics in Peninsular Spain. Soil Sci. Soc. Am. J., 63; 614-621.

Houghton, R.A., Hackler, J.L. and Lawrence, K.T., 1999. The U.S Carbon Budget; Contributions from Land-Use change. Science, 283; 1815.

Hoyos, N. and Comerford, N.B., 2005. Land Use and Landscape Effects On Aggregate Stability and Total Carbon of Andisols from The Colombian Andes. Geoderma, 129; 268-278.

Jackson, M.L. 1962. Soil Chemical Analysis. Prentice-Hall, Inc. 183, New York.

Jackson, M.L., 1979. Soil Chemical Analysis. Advanced Course. Department Of Soil Science University Of Visconsin, Madison, Vis. 53706, 468-509.

Jenny, H., 1980. The Soil Resource: Origin and Behavior, Springer, New York, P. 377.

John, B., Yamashita, T., Ludwig, B. and Flessa, H., 2005. Storage of Organic Carbon in Aggregate and Density Fractions of Silty Soils Under Different Types of Land Use. Geoderma, 128; 63-79.

Kacar, B. 1995. Bitki ve Topra n Kimyasal Analizleri. III. Toprak Analizleri. A.Ü.Z.F. E itim, Ara t rma ve Geli tirme Vakf Yay nlar No:3, Ankara.

47

Kaiser, K. and Zech, W., 1999. Release of Natural Organic Matter Sorbed to Oxides and A Subsoil. Soil Sci. Soc. Am. J., 63; 1157-1166.

Klopatek, J.M., Conant, R.T., Francis, J.M., Malin, R.A., Murphy, K.L. and Klopatek, C.C., 1998. Implications of Patterns of Carbon Pools and Fluxes Across A Semiarid Environmental Gradient. Landsc. Urban Plan., 39; 309-317.

Kononova, M.M., 1966. Soil Organic Matter, 2nd Ed. Pergamon, New York.

Lal, R., Kimble, J.M., Levine, E and Stewart, B.A., 1995. Soil and Global Change. Lewis, Boca Raton.

Lal, R., Kimble, J.M., Follett, R.F. and Cole C.V., 1998. The Potential of U.S. Cropland to Sequester Carbon end Mitigate the Greenhouse Effect. Lewis, Boca Raton, FL. Lal, R., 2002. Soil Carbon Dynamics in Cropland and Rangeland. Environ. Pollut., 116; 353

362.

Lantz, A.M., Lal, R. and Kimble, J.M., 2002. Land-Use Effects On Soil Carbon Pools in Three Major Land Resource Areas of Ohio. In: Kimble, J.M., Et Al., (Eds.), Agricultural Practices and Policies For Carbon Sequestration in Soil. Lewis Publishers. Boca Raton, FL, Pp. 165-175.

Leinweber, P., Reuter, G. and Brozio, K., 1993. Cation Exchange Capacities of Organo- Mineral Particle-Size Fractions in Soils from Long-Term Experiments. J. Soil Sci., 44; 111-119.

Lemenih, M. and Itanna, F., 2004. Soil Carbon Stock and Turnovers in Various Vegetation Types and Arable Lands Along An Elevation Gradient in Southern Ethiopia. Geoderma, 123; 177-188.

Li, G.X., Li, M.F., Zed, R., Zhan, Y.Z. and Singh, B., 2007. Soil Physical Properties and Their Relations to Organic Carbon Pools as Affected By Land Use in An Alpine Pastureland. Geoderma, 139; 98-105.

Li, Z. and Zhao, Q., 2001. Organic Carbon Content and Distribution in Soils Under Different Land Uses in Tropical and Subtropical China. Plant Soil, 231; 175-185.

Mann, L.K., 1986. Changes in Soil Carbon Storage After Cultivation. Soil. Sci., 142; 279-288 Martin, D., Srivastava, P.C., Ghosh, D. and Zech, W., 1998. Characteristics of Humic

Substances in Cultivated and Natural Forest Soils of Sikkim. Geoderma, 84; 345-362.

48

Martin, J.P. and Haider, K., 1986. Influence of Mineral Colloids On Turnover Rates of Soil Organic Carbon. In: P.M. Huang and M. Schnitzer, Interactions of Soil Minerals with Natural Organics and Microbes. Soil Sci. Soc. Am. Special Publication, 17. ASA. Madison. WI, Pp. 238-304.

Morisada, K., Ono, K. and Kanomata, H., 2004. Organic Carbon Stock in Forest Soils in Japan. Geoderma, 119; 21-32.

Mstat-C., 1980. MStat User s Quides Statistics (Version 5 ed.) Michigan State Universty. Michigan, USA.

Newman, R.H. and Tate, K.R., 1991. C NMR Characterization of Humic Acids from A Soil Development Sequence. J. Soil Sci., 42; 39-46.

Nichols, J.D., 1984. Relation of Organic Carbon to Soil Properties and Climate in The Southern Great Plains. Soil Sci. Soc. Am. J., 48; 1382-1384.

Oades, J.M., 1988. The Retention of Organic Matter in Soils. Biogeochemistry, 5; 35-70. Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A., 1954. Estimation of Available

Phosphorus in Soils By Extraction with Sodium Bicarbonate. United States Department of Agriculture, Washington, DC, Circular 939.

Oren, R., Ellsworth, D.S., Johnsen, K.H., Phillips, N., Ewers, B.E., Maier, C., Schafer, K.V.R., McCarthy, H., Hendrey, G., McNulty, S.G. and Katul, G.G., 2001. Soil Fertility Limits Carbon Sequestration By Forest Ecosystems in A CO2 Enriched Atmosphere. Nature, 411; 469-472.

Parfitt, R.L., Theng, B.K.G., Whitton, J.S. and Shepherd, T.G., 1997. Effects of Clay Minerals and Land Use On Organic Matter Pools. Geoderma, 75; 1-12.

Parton, W.J., Schimel, D.S., Ojima, D.S. and Cole, C.V., 1994. A General Model for Soil Organic Carbon Dynamics: Sensitivity to Litter Chemistry, Texture and Management. In: Bryant, R.B., (Ed.), Quantitative Modeling of Soil Forming Processes. Soil Sci. Soc. Am. J., Pp. 147-168.

Post, W.M., King, A.W. and Wullschleger, S.D., 1996. Soil Organic Matter Models and Global Estimates of Soil Organic Carbon. In: Poulson, D.S., Et Al., (Eds.), Evaluation of Soil Organic Matter Models. NATO-ASI Series I: Global Environmental Change Vol. 38. Springer, Berlin, Pp, 201-222.

Puget, P., Chenu, C. and Balesdent, J., 2000. Dynamics of Soil Organic Matter Associated with Particle-Size Fractions of Water-Stable Aggregates. Eur. J. Soil Sci., 51; 595-605.

49

Quideau, S.A., Graham, R.C., Chadwick, O.A. and Wood, H.B., 1998. Carbon Sequestration Under Chaparral and Pine After Four Decades of Soil Development. Geoderma, 83; 227-242.

Rasmussen, P.E. and Collins, H.P., 1991. Long-Term Impacts of Tillage Fertilizer, and Crop Residue On Soil Organic Matter in Temperate Semiarid Regions. Adv. Agron., 45; 93-134.

Rasmussen, P.E., Albrecht, S.L. and Smiley, R.W., 1998. Soil C and N Changes Under Tillage and Cropping Systems in Semi-Arid Pacific Northwest Agriculture. Soil Tillage Res., 47; 197-205.

Rhoades, C.C., Eckert, G.E. and Coleman, D.C., 2000. Soil Carbon Differences Among Forest, Agriculture and Secondary Vegetation in Lower Montane Ecuador. Ecol. Appl., 10; 497-505.

Robertson, G.P., Paul, E.A. and Harwood, R.R., 2000. Greenhouse Gases in Intensive Agriculture; Contributions of Individual Gases to the Radiative Forcing of the Atmosphere. Science, 289; 1922-1925.

Römkens, P.F.A.M., Van Der Pflicht, J. and Hassink, J., 1999. Soil Organic Matter Dynamics After The Conversion of Arable Land to Pasture. Biol. Fertil. Soils, 28; 277-284. Sagar, S., Parshotam, A., Sparling, G.P., Feltham, C.W. and Hart, P.B.S., 1996. C-Labelled

Rygrass Turnover and Residence Times in Soils Varying in Clay Content and Mineralogy. Soil Biology & Biochemistry, 28; 1677-1686.

Schimel, D.S., Braswell, B.H., Holland, E.A., Mckeown, R., Ojima, D.S., Painter, T.H., Parton, W.J. and Townsend, A.R., 1994. Climatic, Edaphic, and Biotic Controls Over Storage and Turnover of Carbon in Soils. Glob. Biogeochem., 8; 279-293. Schjonning, R., Thomsen, I.K., Moberg, J.P., De Jonge, H., Kristensen, K. and Christensen,

B.T., 1999. Turnover of Organic Matter in Differently Textured Soils: I. Physical Characteristics of Structurally Disturbed and Intact Soils. Geoderma, 89; 177-198.

Schmidt, M.W.I., Rumpel, C. and Knabner, I.K., 1999. Evaluation of An Ultrasonic Dispersion Procedure To Isolate Primary Organo Mineral Complexes from Soils. European Journal of Soil Science, 50; 87-94.

Schulten, H.R., Leinweber, P. and Theng, B.K.G., 1996. Characterization of Organic Matter in An Interlayer Clay-Organic Complex from Soil By Pyrolysis Methylation- Mass Spectrometry. Geoderma, 69; 105-118.

50

Six , J., Elliott, E.T. and Paustian, K., 1999. Aggregate and Soil Organic Matter Dynamics Under Conventional and No-Tillage Systems. Soil Sci. Soc. Am. J., 63; 1350- 1358.

Sombrock, W.G, Nachtergaele, F.O. and Hebel, A., 1993. Amounts, Dynamics and Sequestering of Carbon in Tropical and Subtropical Soils. Ambio, 22(7); 417- 426.

Tan, Z.X., Lal, R., Smeck, N.E. and Calhoun F.G., 2004. Relationships Between Surface Soil Organic Carbon Pool and Site Variables. Geoderma, 121; 187-195.

Tang, H., Qiu, J., Ranst, E.V., and Li, C., 2006. Estimations of Soil Organic Carbon Storage in Cropland of China Based On DNDC Model. Geoderma, 134; 200-206.

Tiessen, H., Stewart, W.B. and Moir, J.O., 1983. Changes in Organic and Inorganic Phosphorus Composition of Two Grassland Soils and Their Particle Size Fractions During 60-90 Years of Cultivation. J. Soil Sci., 34; 815-823.

Tisdale, J.M. and Oades, J.M., 1982. Organic Matter and Water Stable Aggregates in Soils. J. Soil Sci., 33; 141-163.

Urioste, A.M., Hevia, G.G., Hepper, E.N., Anton, L.E., Bono, A.A. and Buschiazzo, D.E., 2006. Cultivation Effects On The Distribution of Organic Carbon, Total Nitrogen and Phosphorus in Soils of The Semiarid Region of Argentinian Pampas. Geoderma, 136; 621-630.

Van Veen, J.A. and Paul, E.A., 1981. Organic Carbon Dynamics in Grassland Soils: I. Background Information and Computer Simulation. Can. J. Soil Sci., 61; 185- 201.

Wang, J., Fu, B., Qiu, Y. and Chen, L., 2003. Analysis On Soil Nutrient Characteristics for Sustainable Land Use in Danangou Catchment of The Loess Plateau, China. Catena, 54; 17-29.

Wang, X., Li, M.H., Liu, S. and Liu, G., 2006. Fractal Characteristics of Soils Under Different Land-Use Patterns in The Arid and Semiarid Regions of The Tibetan Plateau, China. Geoderma, 134; 56-61.

Wattel-Koekkoek, E.J.W., van Genuchten, P.P.L., Buurman, P. and van Langen, B., 2001. Amount and Composition of Clay-Associated Soil Organic Matter in A Range of Kaolinitic and Smectitic Soils. Geoderma, 99; 27-49.

Wiseman, C.L.S. and Püttmann, W., 2006. Interactions Between Mineral Phases in The Preservation of Soil Organic Matter. Geoderma, 134; 109-118.

51

Yimer, F., Ledin, S. and Abdelkadir, A., 2006. Soil Organic Carbon and Total Nitrogen Stocks As Affected By Topographic Aspect and Vegetation in The Bale Mountains, Ethiopia. Geoderma, 135; 335-344.

Zhang, H., Thompson, M.L. and Sandor, J.A., 1988. Compositional Differences in Organic Matter Among Cultivated and Uncultivated Argiudolls and Hapludalfs Derived from Ioess. Soil Sci. Soc. Am. J., 52; 216-222.

Zhao, L., Sun, Y., Zhang, X., Yang, X. and Drury, C.F., 2006. Soil Organic Carbon in Clay and Silt Sized Particles in Chinese Mollisols: Relationship to The Predicted Capacity. Geoderma, 132; 315-323.

Zinn, Y.L., Lal, R. and Resck, D.V.S., 2005. Texture and Organic Carbon Relations Described By A Profile Pedotransfer Function for Brazilian Cerrado Soils. Geoderma, 127; 168-173.

Benzer Belgeler