• Sonuç bulunamadı

4-BULGULAR VE TARTIŞMA

H- NMR spektroskopisi, GC ve GC-MS spektroskopisi ile belirlendi.

Şekil 4.2.1. Hidrojen transfer katalitik sistemi

Çizelge 4.2.1 Keton ve aldehitlerin iso-PrOH içerisinde 3a-c kompleksleri ile

indirgenmesi

Deney No Katalizör Substrat a Dönüşüm %

1 3a 4-kloroasetofenon 100

2 3b 4-kloroasetofenon 97

3 3c 4-kloroasetofenon 92

5 3b 4-Metilasetofenon 10 6 3c 4-Metilasetofenon 89 7 3a Asetofenon 93 8 3b Asetofenon 96 9 3c Asetofenon 89 10 3a Siklohekzanon 100 11 3b Siklohekzanon 100 12 3c Siklohekzanon 100 13 3a 4-klorobenzaldehid 100 14 3b 4-klorobenzaldehid 100 15 3c 4-klorobenzaldehid 100 16 3a 4-Metilbenzaldehid 100 17 3b 4-Metilbenzaldehid 100 18 3c 4-Metilbenzaldehid 100 19 3a 4-kloroasetofenon 93c 20 3b 4-kloroasetofenon 97c 21 3c 4-kloroasetofenon 90c 22 3c 4-kloroasetofenon 14d 23 3b 4-kloroasetofenon 19d 24 3a 4-kloroasetofenon 1e

25 3b 4-kloroasetofenon 3e

26 3c 4-kloroasetofenon 1e

27 3c 4-kloroasetofenon 65b

28 Katalizör yok 4-kloroasetofenon 20f

29 Katalizör yok Asetofenon 15f

30 Katalizör yok Siklohekzanon 30f

aReaksiyon şartları: Reaksiyonda kullanılan substrate/catalyst/base(S/C/base) molar oranı (1 : 0.0075 : 4), i-PrOH (5 mL), KOH (4 mmol), 3a-c (0.0075 mmol), 80 o

C, 30 dakika. Dönüşümler GC and GC-MS ile belirlendi. (Her bir reaksiyon 3 kere tekrarlandı. b

Normal atmosferik koşullarda kurutulmamış 2-propanol kullanıldı, c 0.00375 mmol katalizör konsantrasyonu kullanıldı, d at 50 oC, e oda sıcaklığı, f katalizör kullanılmadı

5-SONUÇ

Bu çalışma sonucunda değişik sterik ve elektronik özelliklere sahip 5 farklı NHC öncülü (1a-e) ve bu öncüllerden sentezlenen Ag-NHC (2a-e) ile Ru-NHC kompleksleri (3a-e) sentezlenmiştir. Sentezi gerçekleştirilen Ru-NHC komplekslerinin C-H aktivasyon deneylerindeki aktiviteleri araştırılmış ve literatürde var olan çalışmalar ve katalizör sistemleri ile karşılaştırmaları yapılıp aktivite göstermediği görülmüştür. B planı olarak bu sentezlenen komplekslerin hidrojen transfer deneylerindeki aktiviteleri araştırılmış ve oldukça iyi sonuçlar elde edilmiştir. Elde edilen sonuçlar literatüre göre oldukça iyi ve tatminkârdır. Bu çalışma sonucunda elde edilen bulgular kısa sürede yayınlanacaktır. Sentezi gerçekleştirilen Ag-NHC komplekslerinin ise değişik medikal uygulamalarda gösterebileceği aktivitelerin incelenmesi ileriki günlerde yapılacak ve sonuçlar tatminkâr olması durumunda yayımlanacaktır.

6-KAYNAKLAR

Beck, E. M., Gaunt, M. J. 2010., Pd-Catalyzed C–H Bond Functionalization on the Indole and Pyrrole Nucleus.Top. Curr. Chem., (292), 85-121.

Lyons, T. W.; Sanford, M. S., 2010., Carbon hydrogen bond activation. Chem. Rev., (110), 1147-1169.

Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S., 2010., C—H Bond Activation in Transition Metal Species from a Computational Perspective. Chem. Rev., (110), 749- 823.

Sun, C. L.; Li, B. J.; Shi, Z. J., 2010., Pd-catalyzed oxidative coupling with organometallic reagents via C–Hactivation. Chem. Commun., (46), 677-685.

Chen, X.; Engle, K. M.; Wang, D. H.; Yu, J. Q. 2009., Palladium(II)-Catalyzed C–H Activation/C–C Cross-Coupling Reactions: Versatility and Practicality. Angew. Chem., Int. Ed., (48), 5094-5115.

Colby, D. A.; Bergman, R. G.; Ellman, J. A., 2010., Rhodium-Catalyzed C−C Bond Formation via Heteroatom-Directed C−H Bond Activation. Chem. Rev. , (110), 624- 655.

Bouffard, J.; Itami, K.,2010., Rhodium-catalyzed C-H bond arylation of arenes. Top. Curr. Chem., (292), 231-280.

Lewis, J. C.; Bergman, R. G.; Ellman, J. A., 2008., Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C−H Bond Activation. Acc. Chem. Res., (41), 1013-1025.

Fagnou, K.; Lautens, M., 2003., Asymmetric Synthesis with Chemical and Biological Methods. Chem. Rev., (103), 169.

Davies, H. M. L.; Beckwith, R. E., 2003., Carbene mediated C-H activation and insertion. J. Chem. Rev., (103), 2861-2878.

Wendlandt, A. E.; Suess, A. M.; Stahl, S. S., 2011., Copper-catalyzed aerobic oxidative C-H functionalizations: trends and mechanistic insights. Angew. Chem., Int. Ed., (50), 11062-11087.

Sun, C. L.; Li, B. J.; Shi, Z., 2011., Dierct C-H Transformation via Iron Catalysis. J. Chem. Rev., (111), 1293-1314.

Nakao, Y., 2011., Transition-Metal-Catalyzed C–H Functionalization for the Synthesis of Substituted Pyridines. Synthesis., 3209-3219.

Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F., 2010., Chem. Rev., (110), 890.

Messaoudi, S.; Brion, J. D.; Alami, M., 2010., Transition-Metal-Catalyzed Direct C–H Alkenylation, Alkynylation, Benzylation, and Alkylation of (Hetero)arenes. Eur. J. Org. Chem. 2010, 6495-6516.

Gunay, A.; Theopold, K. H., 2010., C−H Bond Activations by Metal Oxo Compounds. Chem. Rev., (110), 1060-1081.

McGlacken, G. P.; Bateman, L. M., 2009., Recent advances in aryl–aryl bond formation by direct arylation. Chem. Soc. Rev., (38), 2447-1464.Bergman, R. G., 2007., Organometallic chemistry: C–H activation. Nature., (446), 391-394.

Godula, K.; Sames, D., 2006., C-H Bond Functionalization in Complex Organic Synthesis. Science, (312), 67-72.

Kakiuchi, F.; Kochi, T., 2008., Transition-Metal-Catalyzed Carbon-Carbon Bond Formation via Carbon-Hydrogen Bond Cleavage. Synthesis, (2008), 3013-3039.

Kakiuchi, F.; Chatani, N., 2003., Catalytic Methods for C H Bond Functionalization: Application in Organic Synthesis. Adv. Synth. Catal., (345), 1077-1101.

Kakiuchi, F.; Uetsuhara, T.; Tanaka, Y.; Chatani, N.; Murai, S., 2002., Ruthenium- catalyzed addition of olefinic C–H bonds in conjugate enones to acetylenes to give conjugate dienones. J. Mol. Catal. A: Chem., (182), 511-514.

Kakiuchi, F.; Murai, S., 2002., Catalytic C−H/Olefin Coupling. Acc. Chem. Res., (35), 826-834.

Ackermann, L., 2011., Carboxylate-Assisted Transition Metal-Catalyzed C–H Bond Functionalizations: Mechanism and Scope. Chem. Rev., (111), 1315-1345.

Ackermann, L.; Vicente, R., 2010., Ruthenium-Catalyzed Direct Arylations Through C–H Bond Cleavages. Top. Curr. Chem., (292), 211-229.

Ackermann, L.; Vicente, R.; Kapdi, A. R., 2009., Transition-Metal-Catalyzed Direct Arylation of (Hetero)Arenes by C H Bond Cleavage. Angew. Chem. Int. Ed., (48), 9792-9826.

Hartwig, J. F., 2008., Carbon–Heteroatom Bond Formation Catalysed by Organometallic Complexes. Nature, (455), 314-322.

Yu, J. Q.; Giri, R.; Chen, X., 2006., σ-Chelation-directed C–H functionalizations using Pd(II) and Cu(II) catalysts: regioselectivity, stereoselectivity and catalytic turnover, Org. Biomol. Chem., (4), 4041-4047.

Crabtree, R. H., 2001., Alkane C−H activation and functionalization with homogeneous transition metal catalysts: a century of progress – a new millennium in prospect. J. Chem. Soc., Dalton Trans., (17), 2437-2450.

Dyker, G., 1999., Transition Metal Catalyzed Coupling Reactions under C−H Activation. Angew. Chem., Int. Ed., (38), 1698-1712.

Djukic, J. P.; Sortais, J. B.; Barloy, L.; Pfeffer, M., 2009., Cycloruthenated Compounds – Synthesis and Applications. Eur. J. Inorg. Chem., (7), 817-853.

Boutadla, Y.; Al-Duaij, O.; Davies, D. L.; Griffith, G. A.; Singh, K., 2009., Mechanistic Study of Acetate-Assisted C−H Activation of 2-Substituted Pyridines with [MCl2Cp*]2 (M = Rh, Ir) and [RuCl2(p-cymene)]2. Organometallics, (28), 433-440. Dupont, J.; Consorti, C. S.; Spencer, J., 2005., The Potential of Palladacycles:  More Than Just Precatalysts. Chem. Rev., (105), 2527-2572.

Zhang, S. Y.; Zhang, F. M.; Tu, Y. Q., 2011., Direct Sp3α-C-H activation and functionalization of alcohol and ether. Chem. Soc. Rev., (40), 1937-1949.

Li, H.; Lia, B. J.; Shi, Z. J., 2011., Challenge and progress: palladium-catalyzed sp3 C– H activation. Catal. Sci. Technol., (1), 191-206.

Choi, J.; Choliy, Y.; Zhang, X. W.; Emge, T. J.; Krogh- Jespersen, K.; Goldman, A. S., 2009., Cleavage of sp3 C−O Bonds via Oxidative Addition of C−H Bonds. J. Am. Chem. Soc., (131), 15627-15629.

Bolig, A. D.; Brookhart, M., 2007., Activation of sp3 C−H Bonds with Cobalt(I):  Catalytic Synthesis of Enamines. J. Am. Chem. Soc., (129), 14544-14545.

Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N., 1993., Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins. Nature, (366), 529-530.

Oi, S.; Fukita, S.; Hirata, N.; Watanuki, N.; Miyano, S.; Inoue, Y., 2001., Ruthenium Complex-Catalyzed Direct Ortho Arylation and Alkenylation of 2-Arylpyridines with Organic Halides. Org. Lett., (3), 2579-2581.

Oi, S.; Ogino, Y.; Fukita, S.; Inoue, Y., 2002., Ruthenium Complex Catalyzed Direct Ortho Arylation and Alkenylation of Aromatic Imines with Organic Halides. Org. Lett., (4), 1783-1785.

Ackermann, L.; Althammer, A.; Born, R., 2006., Catalytic Arylation Reactions by C H Bond Activation with Aryl Tosylates. Angew. Chem., (45), 2619-2622.

Ackermann, L., 2005., Phosphine Oxides as Preligands in Ruthenium-Catalyzed Arylations via C−H Bond Functionalization Using Aryl Chlorides. Org. Lett., (7), 3123- 3125.

Ozdemir, I.; Demir, S.; Cetinkaya, B.; Gourlaouen, C.; Maseras, F.; Bruneau, C.; Dixneuf, P. H., 2008., Direct arylation of arene C-H bonds by cooperative action of NHCarbene-ruthenium(II) catalyst and carbonate via proton abstraction mechanism. J. Am. Chem. Soc., (130), 1156-1157.

Lapointe, D.; Fagnou, K., 2010., Overview of the Mechanistic Work on the Concerted Metallation–Deprotonation Pathway. Chem. Lett., (39), 1118-1126.

Ke, Z. F.; Cundari, T. R., 2010., Palladium-Catalyzed C-H Activation/C-N Bond Formation Reactions: DFT Study of Reaction Mechanisms and Reactive Intermediates. Organometallics, (29), 821.

Garcia-Cuadrado, D.; de Mendoza, P.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M., 2007., Proton-Abstraction Mechanism in the Palladium-Catalyzed Intramolecular Arylation:  Substituent Effects. J. Am. Chem. Soc., (129), 6880-6886.

Lane, B. S.; Brown, M. A.; Sames, D., 2005., Direct Palladium-Catalyzed C-2 and C-3 Arylation of Indoles:  A Mechanistic Rationale for Regioselectivity. J. Am. Chem. Soc., (127), 8050-8057.

Davies, D. L.; Macgregor, S. A.; Poblador-Bahamonde, A. I., 2010., Computational study of ethene hydroarylation at [Ir(κ(2)-OAc)(PMe3)Cp]+.. Dalton Trans., (39), 10520-10527.

Balcells, D.; Clot, E.; Eisenstein, O., 2010., C—H Bond Activation in Transition Metal Species from a Computational Perspective. Chem. Rev., (110), 749-823.

Pozgan, F.; Dixneuf, P. H., 2009., Ruthenium(II) Acetate Catalyst for Direct Functionalisation of sp2-CH Bonds with Aryl Chlorides and Access to Tris- Heterocyclic Molecules. Adv. Synth. Catal., (351), 1737-1743.

Ackermann, L.; Vicente, R.; Althammer, A., 2008., Assisted Ruthenium-Catalyzed C−H Bond Activation: Carboxylic Acids as Cocatalysts for Generally Applicable Direct Arylations in Apolar Solvents. Org. Lett., (10), 2299-2302.

Jaouhari, R.; Guenot, P.; Dixneuf, P. H., 1986., Carbon–carbon coupling and alkylation of furan and thiophene, involving C–H bond activation, with ruthenium catalysts in alcohols. J. Chem. Soc., Chem. Commun., (16), 1255-1256.

Oi, S.; Sakai, K.; Inoue, Y., 2005., Ruthenium-Catalyzed Arylation of 2- Alkenylpyridines with Aryl Bromides:  Alternative E,Z-Selectivity to Mizoroki−Heck Reaction. Org. Lett., (7), 4009-4011.

Oi, S.; Aizawa, E.; Ogino, Y.; Inoue, Y., 2005., Ortho-Selective Direct Cross-Coupling Reaction of 2-Aryloxazolines and 2-Arylimidazolines with Aryl and Alkenyl Halides Catalyzed by Ruthenium Complexes. J. Org. Chem., (70), 3113-3119.

Oi, S.; Funayama, R.; Hattori, T.; Inoue, Y., 2008., Nitrogen-directed ortho-arylation and -heteroarylation of aromatic rings catalyzed by ruthenium complexes. Tetrahedron, (64), 6051-6059.

Oi, S.; Tanaka, Y.; Inoue, Y., 2006., Ortho-Selective Allylation of 2-Pyridylarenes with Allyl Acetates Catalyzed by Ruthenium Complexes. Organometallics, (25), 4773-4778. Ackermann, L.; Pospech, J.; Potukuchi, H. K., 2012., Well-Defined Ruthenium(II) Carboxylate as Catalyst for Direct C–H/C–O Bond Arylations with Phenols in Water. Org. Lett., (14), 2146-2149.

Demerseman, B.; Mbaye, M. D.; Semeril, D.; Toupet, L.; Bruneau, C.; Dixneuf, P. H., 2006., Direct Preparation of [Ru(η2-O2CO)(η6-arene)(L)] Carbonate Complexes (L = Phosphane, Carbene) and Their Use as Precursors of [RuH2(p-cymene)(PCy3)] and [Ru(η6

-arene)(L)(MeCN)2][BF4]2: X-ray Crystal Structure Determination of [Ru(η2- O2CO)(p-cymene)(PCy3)]·1/2CH2Cl2 and [Ru(η2-O2CO)(η6-C6Me6)(PMe3)]·H2O. Eur. J. Inorg. Chem., 1174-1181.

Yaşar, S.; Dogan, Ö.; Özdemir, I.; Çetinkaya, B., 2008., Ruthenium N-heterocyclic- carbene catalyzed diarylation of arene C-H bond. Appl. Organomet. Chem., (22), 314- 318.

Arockiam, P.; Poirier, V.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H., 2009., Diethyl carbonate as a solvent for ruthenium catalysed C–H bond functionalisation. Green Chem., (11), 1871-1875.

Arockiam, P. B.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H., 2010., C H Bond Functionalization in Water Catalyzed by Carboxylato Ruthenium(II) Systems. Angew. Chem., (49), 6629-6632.

Benzer Belgeler