• Sonuç bulunamadı

1. Hurtado CG, Wan F, Housseau F, Sears CL. Roles for Interleukin 17 and Adaptive Immunity in Pathogenesis of Colorectal Cancer. Gastroenterology 2018;155:1706–1715

2. Wang J., Xu K.,Wu J., Luo C., Li Y., Wu X. et al.The changes of Th17 cells and the related cytokines in the progression of human colorectal cancers. BMC Cancer 2012, 12:418.

3. Mlecnik B, Tosolini M, Charoentong P, et al. Biomolecular network reconstruction identifies T-cell homing factors associated with survi-val in colorectal cancer. Gastroenterology 2010;138:1429–40.

4. Galon J, Fridman WH and Pages F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res, 2007. 67(5): p. 1883-6.

5. Kojima M, Ochiai A. Special cancer microenvironment in human colonic cancer: Concept of cancer microenvironment formed by peritoneal invasion (CMPI) and implication of subperitoneal fibroblast in cancer progression.

Pathol Int. 2016. 66(3): 123–131.

6. Hanahan D., Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144: 646–74.

7. Chao H, Hong L, Xiuli G, Bin W, Dan C, Jinyuan L, Fengliang H. Analysis of different components in the peritumoral tissue microenvironment of colorectal cancer: A potential prospect in tumorigenesis. Molecular Medicine R. 2016. 14:p 2555-65.

8. Danese S, Malesci A, Vetrano S. Colitis-associated cancer: the dark side of inflammatory bowel disease. Gut, 2011. 60(12):1609-10

9. Omrane I, Benammar-Elgaaied A. The immune microenvironment of the colorectal tumor: Involvement of immunity genes and microRNAs belonging to the TH17 pathway. Biochim Biophys Acta. 2015. 1856(1):28-38.

10. Naschberger E V - N P ve ark. Matricellular protein SPARCL1 regulates tumor microenvironment-dependent endothelial cell heterogeneity in colorectal carcinoma. J Clin Invest. 2016. 126(11):4187-4204

11. Abbas A.K, Lichtman A.H., Pillai S. Cellular and Molecular Immunology.

Seventh Edition (2012).

12. Diller ML, Kudchadkar RR, Delman KA, Lawson DH, Ford ML. Exogenous IL-2 Induces FoxP3+ Th17 Cells In Vivo in Melanoma Patients. J Immunother.

2016. 39(9):355-366

13. West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat. Rev. Immunol. 2015. 15, 615–629.

14. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B: TGF-β in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006, 24:179–189

15. Fabre J, Giustiniani J, Garbar C, Antonicelli F, Merrouche Y, Bensussan A ve ark. Targeting the Tumor Microenvironment: The Protumor Effects of IL-17 Related to Cancer Type. Int J Mol Sci. 2016. 30;17(9).

16. Cui G, Yuan A, Goll R, Florholmen J. IL-17A in the tumor microenvironment of the human colorectal adenoma-carcinoma sequence. Scand. J.

Gastroenterol. 2012. 47, 1304–1312.

17. Mohan SM, Pierre M, Srini VK, Jagadeesh B. Th17 Cells Biology, Pathogenesis of Autoimmune and Inflammatory Diseases, and Therapeutic Strategies. The American Jour. of Pathology, 2012, 181:8-18

18. Ankathatti MM, Deng Y, Mulligan SJ, Xiang J. Th17 and Th17- C 8⁺

T cells play a distinct role in Th17-induced preventive and therapeutic antitumor immunity. Cancer Immunol Immunother. 2011. 60(10):1473-84.

19. Punt S, Fleuren GJ, Kritikou E, Lubberts E, Trimbos JB, Jordanova ES, Gorter A. Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. Oncoimmunology. 2015. 4(1):e984539.

20. Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu Rev Immunol 2009. 27:485–517

21. Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD ve ark. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007. 8:950-957.

22. Geginat J, Paroni M, Kastirr I, Larghi P, Pagani M, Abrignani S. Reverse plasticity: TGF-β I -6 induce Th1-to-Th17-cell transdifferentiation in the gut. Eur J Immunol. 2016. 46(10):2306-2310.

23. Bettelli E., Carrier Y, Gao W, Korn T, Strom TB, Oukka M, ve ark. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature 2006. 441: p. 235–8.

24. Geis AL, Fan H, Wu X, Wu S, Huso DL, Wolfe JL ve ark. Regulatory T-cell Response to Enterotoxigenic Bacteroides fragilis Colonization Triggers IL17-Dependent Colon Carcinogenesis. Cancer Discov. 2015. 5(10):1098-109.

25. Diller ML, Kudchadkar RR, Delman KA, Lawson DH, Ford ML. Exogenous IL-2 Induces FoxP3+ Th17 Cells In Vivo in Melanoma Patients. J Immunother.

2016. 39(9):355-366.

26. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S ve ark. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood. 2009. 114:1141–1149.

27. Darmochwal-Kolarz D, Kludka-Sternik M, Tabarkiewicz J, Kolarz B, Rolinski J, Leszczynska-Gorzelak B, Oleszczuk J. The predominance of Th17 lymphocytes and decreased number and function of Treg cells in preeclampsia. Reprod Immunol. 2012 Mar; 93(2):75-81.

28. Hart AL, Al-Hassi HO, Rigby RJ, Bell SJ, Emmanuel AV, Knight SC, ve ark.

Characteristics of intestinal dendritic cells in inflammatory bowel diseases.

Gastroenterology 2005; 129:50-65.

29. Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006. 203:1685–1691

30. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 2006. 177:566–573

31. Sakuraba A, Sato T, Kamada N, Kitazume M, Sugita A, Hibi T. Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn's disease. Gastroenterology. 2009 Nov; 137(5):1736-45.

32. Esplugues E, Huber S, Gagliani N, Hauser AE, Town T, Wan YY, ve ark. Control of TH17 cells occurs in the small intestine. Nature 2011, 475:514–518

33. Zenewicz LA, Antov A, Flavell RA. CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med 2009, 15:199–207

34. P V T W R Batf-dependent Th17 cells critically regulate IL-23 driven colitis-associated colon cancer. Gut. 2016. 65(7):1139-50

35. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009. 9(8):556-67.

36. Zou W, Restifo NP. T(H)17 cells in tumour immunity and immunotherapy.

Nat Rev Immunol. 2010. 10:248–256

37. Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell. 2010. 140:845–858.

38. Deng Z, Mu J, Tseng M, Wattenberg B, Zhuang X, Egilmez NK, ve ark.

Enterobacteria-secreted particles induce production of exosome-like S1P-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. Nat Commun. 2015. 24;6:6956.

39. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 1986. 136, 2348–

2357.

40. Ghilardi N, Ouyang W. Targeting the development and effector functions of Th17 cells. Semin. Immunol. 2007. 19, 383–393.

41. Ilarreg J J C j C G í -Vallejo JJ, van Kooyk Y. New Roles for CD14 and IL-β I C IL-17 Production in Memory CD4+ T Cells. Immunol Cell Biol 2016. 94 (10), 907-916

42. Liu Z, Huang Y, Cao BB, Qiu YH, Peng YP. Th17 Cells Induce Dopaminergic Neuronal Death via LFA-1/ICAM-1 Interaction in a Mouse Model of Parkinson's Disease. Mol Neurobiol. 2016. 14

43. Shimada M, Andoh A, Hata K, Tasaki K, Araki Y, Fujiyama Y, Bamba T. IL-6 secretion by human pancreatic periacinar myofibroblasts in response to inflammatory mediators. JImmunol 2002;168: 861–8.

44. Chabaud M, Lubberts E, Joosten L, Den Berg W, Miossec P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res 2001;3:168–77.

45. Hsieh HG, Loong CC, Lui WY, Chen A, Lin CY. IL-17 expression as a possible predictive parameter for subclinical renal allograft rejection. Transpl Int.

2001;14:289–98.

46. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, ve ark. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature immunology. 2005. 6:1133–1141.

47. Kim BS, Park YJ, Chung Y. Targeting IL-17 in autoimmunity and inflammation.

Arch Pharm Res. 2016. 39(11):1537-1547.

48. Monin L, Gaffen SL. Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harb Perspect Biol. 2018 Apr 2;10(4)

49. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, ve ark.

Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 2009. 30, 108–119.

50. Chung AS, Wu X, Zhuang G, Ngu H, Kasman I, Zhang J, ve ark. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 2013. 19:1114-1123.

51. Fujino S, Andoh A, Bamba S, Ogawa A, Hata K, Araki Y, ve ark. Increased expression of interleukin 17 in inflammatory bowel disease. Gut. 2003.

52:65–70.

52. Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, ve ark. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol 2005. 175:6177–6189

53. Ye J, Livergood RS, Peng G. The role and regulation of human Th17 cells in tumor immunity. Am J Pathol 2013. 182:10-20.

54. Shapiro M, Nandi B, Pai C, Samur MK, Pelluru D, Fulciniti M, ve ark.

Deficiency of IL-17A, but Not the Prototypical Th17 Transcription Factor R Rγ I T C Immunol Immunother 2015. 65 (1), 13-24.

55. Liu Z, Yang L, Cui Y, Wang X, Guo C, Huang Z, ve ark. IL-21 enhances NK cell activation and cytolytic activity and induces Th17 cell differentiation in inflammatory bowel disease. Inflamm Bowel Dis. 2009. 15(8):1133-44 56. Wurster AL, Rodgers VL, Satoskar AR, Whitters MJ , Young DA , Collins M ,

Grusby MJ. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differen T γ-producing Th1 cells. J Exp Med. 2002. 196: 969–977.

57. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, Sprecher C, Gross JA, ve ark. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature. 2000. 408:57–63.

58. Maeda M, Yanagawa Y, Iwabuchi K, Minami K, Nakamaru Y, Takagi D, Fukuda S, Onoe K. IL-21 enhances dendritic cell ability to induce interferon-gamma production by natural killer T cells. Immunobiology, 2007. 212(7): p. 537-47.

59. Mantovani A. Cancer: Inflaming metastasis. Nature, 2009. 457(7225): p. 36-37.

60. Jauch D, Martin M, Schiechl G, Kesselring R, Schlitt HJ, Geissler EK, Fichtner-Feigl S. Interleukin 21 controls tumour growth and tumour immunosurveillance in colitis-associated tumorigenesis in mice. Gut, 2011.

60(12): p. 1678-86.

61. Rutz S, Eidenschenk C, Ouyang W. IL-22, not simply a Th17 cytokine.

Immunol Rev. 2013. 252(1):116-32

62. Sonnenberq GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces of IL-22. Nat Immunol, 2011. 12:383–90.

63. Spits H, Di Santo J.P. The expanding family of innate lymphoid cells:

regulators and effectors of immunity and tissue remodeling. Nat. Immunol, 2011. 12:21–27.

64. Wolk K, W W W I -22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol, 2006. 36:1309–1323.

65. Zenewicz L.A, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity, 2008. 29:947–957.

66. Wu T, Cui L, Liang Z, Liu C, Liu Y, Li J. Elevated serum IL 22 levels correlate with chemoresistant condition of colorectal cancer. Clin. mmunol. 2013.

147: 38–39

67. Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, Harrison O, Powrie F. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. The Journal of Experimental Medicine, 2013. 210:917–931

68. Zhu X, Mulcahy LA, Mohammed RA, et al. IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res. 2008;10:R95

69. Sharp SP, Avram D, Stain SC, Lee EC. Local and systemic Th17 immune response associated with advanced stage colon cancer. J Surg Res. 2017 Feb;208:180-186

70. Tosolini M, Kirilovsky A, Mlecnik B, ve ark. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res 2011;71:1263–1271.

71. De Visser KE, Eichten A, Coussens LM. Paradoxical roles of the immune system during cancer development. Nat Rev Cancer. 2006 Jan;6(1):24-37.

72. Karczmarczyk A, Karp M, Giannopoulos K.The role of Th17 cells in tumor immunity.Acta Haematologica Polonica.2014 June; 45(2): 155-160

73. Harpaz N, S.R.M.S.P.I.W.N., Cote RJ, Suster S, Weiss LM. Gastrointestinal Tract, Large Intestine. Vol 1, 1 st ed: Saunders Elsevier 2003.

74. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016.

66(1):7-30.

75. Z G T C R T i : ; 2010.

76. Netter F.H. The Netter Collection of Medical Illustrations,Vol 3, Digestive System Part II. 9th ed. New York, USA: Saunders- Elsevier Inc.; 2006.

77. Gordon P.H, Nivatvongs S. Neoplasm of the Colon, Rectum and Anus. 2nd ed. New York, USA:Informa Healthcare USA,Inc; 2007.

78. j T J -. Kolorektal Kanserde Histopatoloji,Kolorektal Özel Sayısı. Türkiye Klinikleri Journal of Surgery 2004; 9: 25- 7. 2004.

79. Douaiher J, Ravipati A, Grams B, et al. Colorectal cancer- global burden, trends, and geographical variations. J Surg Oncol 2017;115:619–630.

80. Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome.

Science 2006; 313:1960–1964.

81. Asadzadeha Z, Mohammadi H, Safarzadeh E, Hemmatzadeh M et all.The paradox of Th17 cell functions in tumor immunity.Cellular Immunology 322 (2017) 15–25

82. Liu X, Jin H, Zhang G, et al. Intratumor IL-17-positive mast cells are the major source of the IL-17 that is predictive of survival in gastric cancer patients.

PLoS One. 2014;9:e106834.

83. Iida T, Iwahashi M, Katsuda M, et al. Tumor- C 4þ T 17 produce IL-17 in tumor microenvironment and promote tumor progression in human gastric cancer. Oncol Rep. 2011;25:1271-1277.

84. Kato T, Furumoto H, Ogura T, et al. Expression of IL-17 mRNA in ovarian cancer. Biochem Biophys Res Commun. 2001;282:735-738.

85. Chen X, Wan J, Liu J, et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer.

2010;69:348e354.

86. Tosolini M, Kirilovsky A, Mlecnik B, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4): 1263–1271.

87. Camus M, Tosolini M, Mlecnik B, et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 2009;69:2685–93.

88. Mlecnik B, Tosolini M, Charoentong P, et al. Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 2010;138:1429–40

89. Hurtado CG, Wan F, Housseau F, Sears CL. Roles for Interleukin 17 and Adaptive Immunity in Pathogenesis of Colorectal Cancer. Gastroenterology 2018;155:1706–1715

90. De Simone V, Pallone F, Monteleone G, Stolfi C. Role of TH17 cytokines in the control of colorectal cancer. Oncoimmunology. 2013 Dec 1;2(12):e26617 91. Amicarella F, Muraro MG, Hirt C, et al. Dual role of tumour-infiltrating T

helper 17 cells in human colorectal cancer. Gut 2017;66:692–704.

92. Maniati E, Soper R, Hagemann T. Up for Mischief? IL-17/Th17 in the tumour microenviroment. Oncogene October 2010. 29(42):5653-62

93. Wang J, Xu K , Wu J, Luo C, Li Y, Wu X ve ark.The changes of Th17 cells and the related cytokines in the progression of human colorectal cancers. BMC Cancer 2012, 12:418.

8.EKLER

EK-1. Tez Çalışması Etik Kurul İzni

EK-2. Tez Çalışması Orijinallik Raporu

%

8

BENZERLIK ENDEKSI

%

6

ĠNT ERNET KAYNAKLARI

%

4

YAYINLAR

%

1

ÖĞRENCI ÖDEVLERI

1 %

1

2 %

1

3 %

1

4

<

%

1

5

<

%

1

6

<

%

1

Kolorektal Kanserlerde Th17 ĠliĢkili IL-17, IL-21 ve IL-22 Sitokinlerinin Ekspresyon Düzeylerinin Belirlenmesi

ORIJINALLIK RAPORU

BIRINCIL KAYNAKLAR

www.spandidos-publications.com

Ġnt ernet Kaynağı

www.turkcerrahi.com

Ġnt ernet Kaynağı

www.istanbulsaglik.gov.tr

Ġnt ernet Kaynağı

www.saglik-bilgisi.net

Ġnt ernet Kaynağı

www.worldacademicunion.com

Ġnt ernet Kaynağı

Pehlivan, Erkan, Nese Karakas, Gulsen Gunes, and Ali Ozer. "Investigation of

sociodemographic and health characteristics of mothers in low birth weight newborns in

Malatya city center", Medicine Science | International Medical Journal, 2013.

Yayın

EK-3.Dijital Makbuz

Gönderen:

Ödev baĢlığı:

Gönderi BaĢlığı:

Dosya adı:

Dosya boyutu:

Sayf a sayısı:

Kelime sayısı:

Karakter sayısı:

Gönderim Tarihi:

Gönderim Numarası:

Dijital Makbuz

Bu makbuz ödevinizin T urnitin'e ulaĢtığını bildirmektedir. Gönderiminize dair bilgiler Ģöyledir:

Gönderinizin ilk sayf ası aĢağıda gönderilmektedir.

Nurlana İbrahimli T ez Deneme

Kolorektal Kanserlerde T h17 ĠliĢkili…

Nurlana_I_brahimli_T ez.docx 3.31M

58 9,046 62,459

11-ġub-2019 03:17PM (UTC+0300) 10763327 15

Co pyright 20 19 Turnitin. Tüm hakları saklıdır.

Benzer Belgeler