• Sonuç bulunamadı

Chan, Y.N., Peng, G.F., Anson, M. (1999). Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high tempratures. Cement Concrete Comp. 21, 23-27.

Chen, B., Li, C., Chen, L. (2009). Experimental study of mechanical properties of normal-strength concrete expose to high temperatures at an early age. Procedia Eng. 135, 476-481

Chen, B., Liu, J. (2004). Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high tempertatures. Cement Concrete Res. 34, 1065-1069.

Choe, G., Kim, G., Gucunski, N., Lee, S. (2015). Evaluation of the mechanical properties of 200 MPa ultra-high-strength concrete at elevated temperatures and residual strength of column. Constr. Build. Mater. 86, 159-168.

Correia, J.R., Lima, J.S., Brito J. (2014). Post-fire mechanical performance of concrete made with selected plastic waste aggregates. Cement Concrete Comp.

53, 187-199.

Demirel, B., Keleştemur, O. (2010). Effect of elevated temprature on the mechanical properties of concrete produced with finely ground pumice and silica fume.

Fire Safety J. 45, 385-391.

Ergün, A., Kürklü, G., Başpınar, M.S., Mansour, M.Y. (2013). The effect of cement dosage on mechanical properties of concrete exposed to high temperatures.

Fire Safety J. 55, 160-167.

Georgali, B., Tsakiridis, P.E. (2005). Microstructure of fire-damaged concrete. A case study. Cement Concrete Comp. 27, 255-259.

Gibert, B, Mainprice, D. (2009). Effect of crystal preferred orientations on the thermal diffusivity of quartz polycrystalline aggregates at high temperature.

Tectonophysics. 465, 150-163.

78

Gülce C. (2009). Farklı Çimentolarla Üretilen Harçların Yüksek Sıcaklık ve Değişik Soğutma Koşulları Altındaki Özelikleri. Yüksek lisans tezi, Osmangazi Üniversitesi, Eskişehir.

Güler S. (2010). Mineral katkılı harçlarda yüksek sıcaklığın mekanik özelliklere etkisi. Yüksek lisans tezi, Osmangazi Üniversitesi, Eskişehir.

Hameed, A.H. (2009). The effect of curing condition on compressive strength in high strength concrete. Diyala J. Eng. Scien. 2, 35-48.

Handoo, S.K., Agarwal, S., Agarwal, S.K. (2002). Physicochemical, mineralogical, and morphological characteristics of concrete exposed to elevated temperatures. Cement Concrete Res. 32, 1009-1018.

Hernandez-Olivares, F., Barluenga, G. (2004). Fire performance of recycled rubber-filled high-strength concrete. Cement Concrete Res. 34, 109-117.

Hertz, K.D. (2003). Limits of spalling of fire exposed concrete. Fire Safety J. 38(2), 103-116.

Husem, M. (2006). The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Safety J. 41, 155-163.

ISO (1975). Fire Resistance Tests-elements of Building Construction Part 1-9. ISO-834. Cenevre, İsviçre: International Standards Organisation.

Ju, Y., Wang, L., Liu, H., Tian, K. (2015). An experimental investagation of the thermal spalling of polypropylene-fibered reactive powder concrete exposed to elevated tempratures. Sci. Bull. 60(23), 2022-2040.

Karanfil, H. (2007). Yüksek sıcaklık etkisi altında kalan betonarme yapılarda çelik donatı özelik değişimine pas payı kalınlığının etkisi. Yüksek lisans tezi, Osmangazi Üniversitesi, Eskişehir.

Khalaf, J., Huang, Z. (2016). Analysis of the bond behaviour between prestressed strands and concrete in fire. Constr. Build. Mater. 128, 12-23.

79

Khan, M.I. (2002). Factors affecting the termal properties of concrete and applicability of its prediction models. Build. Environ. 37, 607-614.

Kızılkanat A. B. (2010). Yüksek sıcaklık etkisinde kalan betonun basınç dayanımı renk değişimi ilişkisinin araştırılması. Doktora tezi, Yıldız Teknik Üniversitesi, İstanbul.

Kızılkanat, A.B., Yüzer, N., Kabay, N. (2013). Thermo-physical properties of concrete exposed to high temperature. Constr. Build. Mater. 45, 157-161.

Kızılkaya, N. (2011). Pirofillitin seramik bünyelerde kullanım özelliklerinin araştırılması ve değerlendirilmesi. Yüksek Lisans Tezi, İnönü Ünivesitesi, Malatya.

Kızılkaya, N., Onal, M., Depci, T., Yucel, A. (2016). Usability of Malatya Pyrophyllite in the Traditional Ceramic Industry. Earth. Environ.. Scien. 44, 1315-1755.

Kodur, V.K.R., Agrawal, A. (2016). An approach for evaluating residual capacity of reinforced concrete beams exposed to fire. Eng. Struc. 110, 293-306.

Kodur, V.K.R., Phan, L. (2007). Critical factors governing the fire performance of high strength concrete systems. Fire Safety J. 42, 482-488.

Kodur, V.K.R., Sultan, M.A. (2003). Effect of temprature on thermal properties of high strenght concrete. J. Mater. Civil Eng. 15(2), 101-107.

Laneyrie, C., Beaucour, A.L., Green, M.F., Hebert, R.L., Ledesert, B., Noumowe, A.

(2016). Influence of recycled coarse aggregates on normal and high performance concrete subjected to elevated temperatures. Constr. Build. Mater.

11, 368-378.

Lea, F.C., Stradling, R.E. (1922). The Resistance to fire of concrete and reinforced concrete. Engineering. 144, 341-344.

80

Li, Min., Qian, C., Sun, W. (2004). Mechanical properties of high-strength concrete after fire. Cement Concrete Res. 34, 1001-1005.

Liu, C., Huang, J. (2009). Fire performance highly flowable reactive powder concrete. Constr. Build. Mater. 23, 2072-2079.

Lizancos, M.V., Lage, I.M., Azenha, M., Burgo, P.V. (2016). Influence of temperature in the evolution of compressive strength and in its correlations with UPV in eco-concretes with recycled materials. Constr. Build. Mater. 124, 276-286.

Mendes, A., Sanjayan, J.G., Gates, W.P., Collins, F. (2012). The influence of water absorption and porosity on the deterioration of cement paste and concrete exposed to elevated temperatures, as in a fire event. Cement Concrete Comp.

34, 1067-1074.

Mohammed, T.U., Mahmood, A.H. (2016). Effects of maximum aggregate size on UPV of brick aggregate concrete. Ultrasonic. 69, 129-136.

Mohammed, T.U., Rahman, M.N. (2016). Effect of types of aggregate and sand-to-aggregate volume ratio on UPV in concrete. Constr. Build. Mater. 125, 832-841.

Mousa, M. Constr. Build. Mater I. (2017). Effect of elevated temperature on the properties of silica fume and recycled rubber-filled high strength concretes (RHSC). HBRC J. 13, 1-7.

Netinger, I., Kesegic, I., Guljas, I. (2011). The effect of high temperatures on the mechanical properties of concrete made with different type of aggregates. Fire Safety J. 46, 425-430.

Netinger, I., Varevac, D., Bjegovic, D., Moric, D. (2013). Effect of high temperature on properties of steel slag aggregate concrete. Fire Safety J. 59, 1-7.

Neville, A.M. (2011). Properties of Concrete. Pearson Education Limited, Edinburgh, England, 1239 p.

81

Noumowe, A., Siddique, R., Ranc, G. (2009). Thermo-mechanical characteristics of concrete at elevated temperatures up to 310 °C. Nucl. Eng. Des. 239, 470-476.

Nuruddin, M.F., Azmee, N.M., Yung, C.K. (2014). Effect of fire flame exposure on ductile self-compacting concrete (DSCC) blended with MIRHA and fly ash.

Constr. Build. Mater. 50, 388-393.

Omer, S.A., Demirboga, R., Khushefati, W.H. (2015). Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures. Constr. Build. Mater. 94, 189-195.

Özkaya, H. (2011). Malatya Pütürge yöresinde çıkarılan pirofillit malzemesinin beton agregası olarak kullanılabilirliğinin incelenmesi. Yüksek Lisans Tezi, Fırat Üniversitesi, Elazığ.

Pliya, P., Beaucour, A.L., Noumowe, A. (2011). Contrubution of cocktail of polypropylene and steel fibres in improving the behaviour of high stregth concrete subjected to high temprature. Constr. Build. Mater. 25, 1926-1934.

Santos, C.C., Rodrigues, J.P.C. (2016). Calcareous and granite aggregate concretes after fire. J. Building Eng. 8, 231-242.

Savva, A., Manita, P., Sideris, K.K. (2005). Influence of elevated temperatures on the mechanical properties of blended cement concretes prepared with limestone and siliceous aggregates. Cement Concrete Comp. 27, 239-248.

Seçer O, (2008). Yüksek sıcaklık etkisinden hasar görmüş lifli, hava sürükleyici katkılı ve perlit agregalı betonların dayanım özellikleri ve gfrp ile onarımı ve güçlendirilmesi. Yüksek lisans tezi, Atatürk Üniversitesi, Erzurum.

Shariq, Mohd., Prasad, J., Masood, A. (2013). Studies in ultrasonic pulse velocity of concrete containing GGBFS. Constr. Build. Mater. 40, 944-950.

Tanaçan, L., Ersoy, H.Y., Arpacıoğlu, U. (2009). Effect of high temprature and cooling conditions on aerated concrete properties. Constr. Build. Mater. 23, 1240-1248.

82

TSE (2006). Beton yapıların tasarımı- Bölüm 1-2: Genel kurallar- Yapısal yangın tasarımı (eurocode 2). TS EN 1992-1-2. Ankara, Türkiye: Türk Standartları Enstitüsü.

TSE (2010). Beton –Sertleşmiş beton deneyleri- Bölüm 2: Dayanım deneylerinde kullanılacak deney numunelerinin hazırlanması ve küre tabi tutulması. TS EN 12390-2. Ankara, Türkiye: Türk Standartları Enstitüsü

TSE (2012). Agregaların geometrik özellikleri için deneyler bölüm 1: tane büyüklüğü dağılımı tayini- eleme metodu. TS EN 933-1:2012(EN) Ankara, Türkiye: Türk Standartları Enstitüsü.

TSE (2013). Agregaların mekanik ve fiziksel özellikleri için deneyler bölüm 6: Tane yoğunluğu ve su emme oranının tayini. TS EN 1097-6. Ankara, Türkiye: Türk Standartları Enstitüsü.

TSE (2014). TS EN 206-1’in uygulamasına yönelik tamamlayıcı standard. TS 13515.

Ankara, Türkiye: Türk Standartları Enstitüsü.

TSE (2016). Beton karışımı hesap esasları. TS 802. Ankara, Türkiye: Türk Standartları Enstitüsü.

TSE (2016). Hafif agregalar- beton için. TS 13055. Ankara, Türkiye: Türk Standartları Enstitüsü.

Uçarkoşar B, (2013). Pirinç kabuğu katkılı yüksek dayanımlı betonun yüksek sıcaklık performansı. Yüksek lisans tezi, Yıldız Teknik Üniversitesi, İstanbul.

Uygun, A., Solakoğlu, B. (2002). Pütürge (Malatya) masifindeki pirofillit yataklarının araştırılması. MTA Der. 123-124, 13-19.

Ünverdi, A. (2006). Yüksek sıcaklık altında gazbeton kırıklı betonların dayanımlarının incelenmesi. Yüksek Lisans Tezi, Osmangazi Üniversitesi, Eskişehir.

83

Vieira, J.P.B., Correia, J.R., Brito, J. (2011). Post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates. Cement Concrete Res. 41, 533-541.

Xiao, Z., Ling, T., Poon, C., Kou, S., Wang, Q., Huang, R. (2013). Properties of partition Wall blocks prepared with high percentages of recycled clay brick after exposure to elevated temperatures. Constr. Build. Mater. 49, 56-61.

Xing, Z., Beaucour, A., Hebert, R., Noumowe, A., Ledesert, B. (2015). Aggregate’s influence on thermophysical concrete properties at elevated temprature. Constr.

Build. Mater. 95, 18-28.

Xiong, Y., Deng, S., Wu, D. (2016). Experimental study on compressive strength recovery effect of firedamaged high strenght concrete after realkalisation treatment. Procedia Eng. 135, 476-481.

Yang, H., Lin, Y., Hsiao, C., Liu, J. (2009). Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity. Fire Safety J. 44, 121-130.

Yılmaz, R. (2007). Malatya yöresi pirofillitinin karekterizasyonu ve vitrifiye bünyede kullanımının araştırılması. Yüksek lisans tezi, Dumlupınar Üniversitesi, Kütahya.

Yoon, M., Kim, G., Choe, G.C., Lee, Y., Lee, T. (2015). Effect of coarse aggregate type and loading level on the high temprature properties of concrete. Constr.

Build. Mater. 78, 26-33.

Yüksel, İ., Siddique, R., Özkan, Ö. (2011). Influence of high temperature on the properties of concretes made with industrial by-products as fine aggregate replacement. Constr. Build. Mater. 25, 967-972.

Yüzer, N., Aköz, F., Öztürk, L. (2004). Compressive strength-color change relation in mortars at high temprature. Cement Concrete Res. 34, 1803-1807.

84

Zhao, J., Zheng J., Peng, G., Breugel, K.V. (2014). A meso-level investigation into the explosive spalling mechanism of high-performance concrete under fire exposure. Cement Concrete Res. 65, 64-75.

85

Benzer Belgeler