• Sonuç bulunamadı

84

85

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

# Checking if we have argparse (which is default in 2.7 so this is

# probably a useless check since we already check if Python is 2.7) try :

import argparse except :

print "Argparse Not Available?! You sure this is Python 2.7?"

raise SystemExit

# The WWZ Class Begins

class WWZ(object) :

"""The Main class object.

This object class does not get any arguments.

Available methods are:

readfile() roundtau() maketau() makefreq() matrix_inv() wwt()

writefile() writegnu()

Arguments :

fileName : the input filename, should be the lightcurve.

outputfileName : the output filename.

flo : the low frequency value. Float.

fhi : the high frequency value. Float.

df : the frequency step. Float.

dcon : the C Window constant. Float.

timedivisions : the The Divisions value, choose 50.0 if not sure, that is the default used by Templeton.

86

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

max_periods : set True if you want the second output file.

It outputs the tau's with maximum period values for easier estimation.

gnuplot_compatible : splits tau values by a blank line if set True, so that pm3d of gnuplot easily maps the plot.

"""

def __init__(self) :

"""Initializing the object"""

def readfile(self, fileName) : """Read the input file.

The argument is the file pointer, not the filename as a string.

The values in file should be delimited with spaces or tabs.

Ignores lines starting with # and %, as if they're comment lines.

Returns two arrays :

Time value, read from the first column of input file.

Magnitude value, read from the second column of input file.

"""

time = []

magnitude = []

for line in fileName :

# Check if it's a comment line

if line.strip()[0] != "%" and line.strip()[0] != "#" : line_time = float(line.split()[0])

line_mag = float(line.split()[1]) time.append(line_time)

magnitude.append(line_mag)

fileName.close()

87

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

# Just a routine check for parameter number equality # This should be cleaned up a bit

if len(time) != len(magnitude) :

print "Number of Time and Magnitude input do not match. \ Please check the input file."

raise SystemExit

# Return two arrays return time, magnitude

def roundtau(self, darg) :

"""Rounds the tau's. from G. Foster's Code.

This is actually called by the maketau method.

The input is dtspan/timedivisions,

where dtspan is the entire timespan of the lightcurve.

so dtspan = time[-1] - time[0]

Returns the round value.

"""

dex = math.log(darg, 10) nex = int(dex)

darg = darg / math.pow(10, nex)

if darg >= 5 : darg = 5.0 elif darg >= 2 : darg = 2.0 else :

darg = 1.0

darg = darg * math.pow(10, nex) return darg

88

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

def matrix_inv(self, inputMatrix) : """The Matrix Inversion Method.

Arguments are :

inputMatrix : the input matrix_inv

Returns the inverted matrix.

"""

# Lines 202 - 252 Fortran

ndim = 2

dsol = numpy.zeros(shape=(3, 3))

for i in range(0, 3) : for j in range(0, 3) : dsol[i][j] = 0.0 dsol[i][i] = 1.0

for i in range(0, 3) :

if inputMatrix[i][i] == 0.0 : if i == ndim :

return

for j in range(0, 3) :

if inputMatrix[j][i] != 0.0 : for k in range(0, 3) :

inputMatrix[i][k] = inputMatrix[i][k] + \ inputMatrix[j][k]

dsol[i][j] = dsol[i][j] + dsol[j][k]

dfac = inputMatrix[i][i]

for j in range(0, 3) :

inputMatrix[i][j] = inputMatrix[i][j] / dfac dsol[i][j] = dsol[i][j] / dfac

89

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

for j in range(0, 3) : if j != i :

dfac = inputMatrix[j][i]

for k in range(0, 3) :

inputMatrix[j][k] = inputMatrix[j][k] - \ (inputMatrix[i][k] * dfac) dsol[j][k] = dsol[j][k] - (dsol[i][k] * dfac)

# The unnecessery loop #for i in range(0, 3) : #for j in range(0, 3) :

#self.dmat[i][j] = dsol[i][j]

return dsol

def maketau(self, time, timedivisions):

"""The maketau method.

Arguments are :

time = The array of time values

timedivisions = The value of timedivisions to create tau values

Returns an array of calculated tau values.

"""

# The Maketau section # Lines 90 - 122 Fortran

dtauhi = time[-1]

dtaulo = time[0]

# the java translation uses 1 for dtaulo, # but that should be a bug.

dtspan = dtauhi - dtaulo

dtstep = self.roundtau(dtspan / timedivisions)

90

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237

dtaulo = dtstep * int(dtaulo / dtstep)

dtauhi = dtstep * int((dtauhi / dtstep) + 0.5)

tau = []

dtau = dtaulo

while dtau <= dtauhi : tau.append(dtau) dtau = dtau + dtstep return tau

### End of Maketau

def makefreq(self, flo, fhi, df):

"""The Makefreq section.

Arguments are :

flo = Low Frequency fhi = High Frequency df = Frequency Step """

# Lines 149 - 181 Fortran # Lines 356 - 370 Java freq = []

freq.append(flo)

nfreq = int((fhi - flo) / df) + 1

# These lines seem skeptical!

for i in range(1,nfreq+1) :

freq.append(flo + ((i - 1) * df))

return freq

### End of Makefreq

91

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

def wwt(self, time, magnitude, flo, fhi, df, dcon, timedivisions) : """The WWZ Algorithm

Arguments are :

time = The time values as an array

magnitude = The magnitude values as an array flo = The Low Frequency

fhi = The High Frequency df = The Frequency Step

dcon = The C constant of WWZ Window timedivisions = The TAU steps

Returns a NumPy Array """

dave = numpy.mean(magnitude) dvar = numpy.var(magnitude)

freq = self.makefreq(flo, fhi, df) nfreq = len(freq)

dmat = numpy.zeros(shape=(3,3))

### End of Initializing

tau = self.maketau(time, timedivisions) ntau = len(tau)

### WWT Stars Here

dvec = [0,0,0] # length is 3 dcoef = [0,0,0] # length is 3

itau = 0 ifreq = 0 idat = 0

92

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305

domega = 0.0 dweight2 = 0.0 dz = 0.0 dweight = 0.0

dcc = 0.0 dcw = 0.0 dss = 0.0 dsw = 0.0 dxw = 0.0 dvarw = 0.0

dtau = 0.0

dpower = 0.0 dpowz = 0.0 damp = 0.0 dneff = 0.0 davew = 0.0

dfre = 0.0

n1 = 0 n2 = 0

dmz = 0.0 dmzfre = 0.0 dmzamp = 0.0 dmcon = 0.0 dmneff = 0.0

twopi = 2.0 * math.pi

93

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

ndim = 2

itau1 = 0 # --> 1 or 0 ??

itau2 = ntau # --> ???

ifreq1 = 1 ifreq2 = nfreq nstart = 1

# Creating output arrays

output = numpy.empty((ntau*(nfreq-1), 6)) numdat=len(time)

index = 0

# Use for itau in range(itau1,itau2) for parallel for itau in range(0, itau2) :

nstart = 1 dtau = tau[itau]

dmfre = 0.0 dmamp = 0.0 dmcon = 0.0 dmneff = 0.0

dmz = -1.0 # less than the smallest WWZ

for ifreq in range(ifreq1, ifreq2) : dfre = freq[ifreq]

domega = dfre * twopi

for i in range(0, ndim + 1) : dvec[i] = 0.0

for j in range(0, ndim + 1) : dmat[i][j] = 0.0

dweight2 = 0.0

94

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

for idat in range(nstart, numdat) :

dz = domega * (time[idat] - dtau)

dweight = math.exp(-1.0 * dcon * dz * dz)

if (dweight > 10**(-9)) : dcc = math.cos(dz) dcw = dweight * dcc dss = math.sin(dz) dsw = dweight * dss

dmat[0][0] = dmat[0][0] + dweight dweight2 = dweight2 + (dweight**2) dmat[0][1] = dmat[0][1] + dcw dmat[0][2] = dmat[0][2] + dsw

dmat[1][1] = dmat[1][1] + (dcw * dcc) dmat[1][2] = dmat[1][2] + (dcw * dss) dmat[2][2] = dmat[2][2] + (dsw * dss)

dxw = dweight * magnitude[idat]

dvec[0] = dvec[0] + dxw

dvarw = dvarw + (dxw * magnitude[idat]) dvec[1] = dvec[1] + (dcw * magnitude[idat]) dvec[2] = dvec[2] + (dsw * magnitude[idat])

elif dz > 0.0 : break else :

nstart = idat + 1

dpower = 0.0 damp = 0.0

for n1 in range(0, ndim + 1) : dcoef[n1] = 0.0

95

374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

if (dweight2 > 0.0) :

dneff = (dmat[0][0] * dmat[0][0]) / dweight2 else :

dneff = 0.0

if (dneff > 3.0) :

for n1 in range(0, ndim + 1) : dvec[n1] = dvec[n1] / dmat[0][0]

for n2 in range(1, ndim + 1 ) : dmat[n1][n2] = dmat[n1][n2] / \ dmat[0][0]

if (dmat[0][0] > 0.005) : dvarw = dvarw / dmat[0][0]

else :

dvarw = 0.0

dmat[0][0] = 1.0 davew = dvec[0]

dvarw = dvarw - (davew ** 2)

if (dvarw <= 0.0) : dvarw = 10**-12

for n1 in range(1, ndim + 1) : for n2 in range(0, n1) :

dmat[n1][n2] = dmat[n2][n1]

dmat = self.matrix_inv(dmat)

96

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441

for n1 in range(0, ndim + 1) : for n2 in range(0, ndim + 1) :

dcoef[n1] = dcoef[n1] + dmat[n1][n2] * \ dvec[n2]

dpower = dpower + (dcoef[n1] * dvec[n1])

dpower = dpower - (davew ** 2)

dpowz = (dneff - 3.0) * dpower / (dvarw - dpower) / 2.0 dpower = (dneff - 1.0) * dpower / dvarw / 2.0

damp = math.sqrt(dcoef[1] * dcoef[1] + \ dcoef[2] * dcoef[2])

else :

dpowz = 0.0 dpower = 0.0 damp = 0.0

if (dneff < (10**(-9))) : dneff = 0.0

if (damp < (10**(-9))) : damp = 0.0

if (dpower < (10**(-9))) : dpower = 0.0

if (dpowz < (10**(-9))) : dpowz = 0.0

# Let's write everything out.

output[index] = [dtau, dfre, dpowz, damp, dcoef[0], dneff]

97

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

index = index + 1

if (dpowz > dmz) : dmz = dpowz dmfre = dfre dmamp = damp dmcon = dcoef[0]

dmneff = dneff

return output

def writefile(self, wwz_output, outputFile, no_headers, max_periods) : """The write file method.

Arguments are :

wwz_output = The NumPy array of WWZ values to write outputFile = The output file pointer, not the filename no_headers = If true, will not write headers to the output max_periods = If true, will create a file with period values of maximum WWZ statistics

"""

numpy.set_printoptions(precision=5) numpy.set_printoptions(suppress=True) numpy.set_printoptions(threshold='nan')

if no_headers :

numpy.savetxt(outputFile, wwz_output, delimiter="\t", \ fmt="%10.4f")

else :

numpy.savetxt(outputFile, wwz_output, delimiter="\t", \ fmt="%10.4f", comments="#", \

header="%9s %10s %10s %10s %10s %10s" % \

98

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

("TAU", "FREQ", "WWZ", "AMP", "COEF", "NEFF"))

def writegnu(self, wwz_output, outputFile, no_headers, \ max_periods, ntau) :

"""The write file method, adapted to work with GnuPlot.

Arguments are :

wwz_output = The NumPy array of WWZ values to write outputFile = The output file pointer, not the filename no_headers = If true, will not write headers to the output max_periods = If true, will create a file with period values of maximum WWZ statistics

ntau = The number of tau values, this is needed in order to split the wwz_output equally

To calculate ntau, use the equation below:

len(wwz_output) /

int(((freq_high - freq_low) / freq_step) + 1) """

numpy.set_printoptions(precision=5) numpy.set_printoptions(suppress=True) numpy.set_printoptions(threshold='nan')

splitArray = numpy.vsplit(wwz_output, ntau)

# check if the file is in append mode # if not, reopen it

if outputFile.mode != 'a' : outputFile.close()

outputFile = open(outputFile.name, "a")

# write headers if expected if not no_headers :

header="%9s %10s %10s %10s %10s %10s" % \

("TAU", "FREQ", "WWZ", "AMP", "COEF", "NEFF")

99

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

outputFile.write("#" + header + "\n")

# split the array and add newlines in between tau values, # write the output

for i in range(0,ntau) :

numpy.savetxt(outputFile, splitArray[i], delimiter="\t", \ fmt="%10.4f")

if i != ntau-1 :

outputFile.write("\n")

# The WWZPAR Class Begins

class WWZPAR(object) :

"""This is for Parallel Processing only.

This works different than the WWZ class, it takes arguments directly.

It gets input as a filepointer, NOT as arrays!

Arguments :

fileName : the input filename, should be the lightcurve.

outputfileName : the output filename.

flo : the low frequency value. Float.

fhi : the high frequency value. Float.

df : the frequency step. Float.

dcon : the C Window constant. Float.

timedivisions : the The Divisions value, choose 50.0 if not sure, that is the default used by Templeton.

max_periods : set True if you want the second output file.

It outputs the tau's with maximum period values for easier estimation.

gnuplot_compatible : splits tau values by a blank line if set True, so that pm3d of gnuplot easily maps the plot.

"""

def __init__(self, fileName, outputfileName, flo, fhi, df, dcon, \

100

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577

timedivisions, max_periods, gnuplot_compatible) : """Initializing the object"""

self.inputfile = fileName

self.outputfilename1 = outputfileName

self.outputfilename2 = outputfileName.name + ".max_periods"

self.max_periods = max_periods

self.gnuplot_compatible = gnuplot_compatible

self.timedivisions = timedivisions

# This (50) is an assumption by Templeton.

# VStars leaves this optional # but keeps the default value

self.fhi = fhi self.flo = flo self.df = df

# dcon is the Window Constant "c" in Foster's equations.

self.dcon = dcon

self.fileName = fileName

self.time = [] # Input time, first column in the file

self.magnitude = [] # Input magnitude, second column in the file

self.dave = 0.0 # average self.dvar = 0.0 # variance

self.nfreq = int((self.fhi - self.flo) / self.df) + 1

self.freq = []

101

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611

self.dmat = numpy.zeros(shape=(3, 3))

def readfile(self) :

"""Read the input file"""

#read_file = open(self.inputfilename, "r") for line in self.inputfile :

if line.strip()[0] != "%" and line.strip()[0] != "#" : line_time = float(line.split()[0])

line_mag = float(line.split()[1]) self.time.append(line_time) self.magnitude.append(line_mag) self.dave = self.dave + line_mag

self.dvar = self.dvar + (line_mag ** 2)

self.inputfile.close()

if len(self.time) != len(self.magnitude) :

print "Number of Time and Magnitude input do not match. \ Please check the input file."

raise SystemExit

# Just a routine check for parameter number equality.

# This should be cleaned up a bit.

# Calculating Header Values self.numdat = len(self.time)

self.dave = self.dave / self.numdat

self.dvar = (self.dvar / self.numdat) - (self.dave ** 2)

self.dsig = math.sqrt((self.dvar * self.numdat) / (self.numdat - 1))

def roundtau(self, darg) :

"""Rounds the tau's. from G. Foster's Code."""

102

612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645

dex = math.log(darg, 10) nex = int(dex)

darg = darg / math.pow(10, nex)

if darg >= 5 : darg = 5.0 elif darg >= 2 : darg = 2.0 else :

darg = 1.0

darg = darg * math.pow(10, nex) return darg

def matrix_inv(self,input_matrix) : """The Matrix Inversion Function"""

# Lines 202 - 252 Fortran

ndim = 2

dsol = numpy.zeros(shape=(3, 3))

for i in range(0, 3) : for j in range(0, 3) : dsol[i][j] = 0.0 dsol[i][i] = 1.0

for i in range(0, 3) :

if input_matrix[i][i] == 0.0 : if i == ndim :

return

for j in range(0, 3) :

103

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

if input_matrix[j][i] != 0.0 : for k in range(0, 3) :

input_matrix[i][k] = input_matrix[i][k] + \ input_matrix[j][k]

dsol[i][j] = dsol[i][j] + dsol[j][k]

dfac = input_matrix[i][i]

for j in range(0, 3) :

input_matrix[i][j] = input_matrix[i][j] / dfac dsol[i][j] = dsol[i][j] / dfac

for j in range(0, 3) : if j != i :

dfac = input_matrix[j][i]

for k in range(0, 3) :

input_matrix[j][k] = input_matrix[j][k] - \ (input_matrix[i][k] * dfac) dsol[j][k] = dsol[j][k] - (dsol[i][k] * dfac)

return dsol

def maketau(self) :

"""The Maketau section"""

# Lines 90 - 122 Fortran

dtaulo = self.time[0] # the java translation uses 1 for this, # but that should be a bug.

dtauhi = self.time[-1]

dtspan = dtauhi - dtaulo

dtstep = self.roundtau(dtspan / self.timedivisions)

104

680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713

dtaulo = dtstep * int(dtaulo / dtstep)

dtauhi = dtstep * int((dtauhi / dtstep) + 0.5)

self.tau = []

dtau = dtaulo

while dtau <= dtauhi : #print dtau

self.tau.append(dtau) dtau = dtau + dtstep

self.ntau = len(self.tau)

def makefreq(self) :

"""The Makefreq section"""

# Lines 149 - 181 Fortran # Lines 356 - 370 Java

self.freq.append(self.flo)

# These lines seem skeptical!

for i in range(1,self.nfreq+1) :

self.freq.append(self.flo + ((i - 1) * self.df))

def wwt(self, output1_par, itau1_par, itau2_par) : """The WWZ Algorithm in Parallel Mode"""

output1 = open(output1_par, "w") max_periods = self.max_periods

gnuplot_compatible = self.gnuplot_compatible

if max_periods == True :

output2_par = output1_par + ".max_periods.par"

105

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

output2 = open(output2_par, "w")

dvec = [0,0,0] # length is 3 dcoef = [0,0,0] # length is 3

itau = 0 ifreq = 0 idat = 0

domega = 0.0 dweight2 = 0.0 dz = 0.0 dweight = 0.0

dcc = 0.0 dcw = 0.0 dss = 0.0 dsw = 0.0 dxw = 0.0 dvarw = 0.0

dtau = 0.0

dpower = 0.0 dpowz = 0.0 damp = 0.0 dneff = 0.0 davew = 0.0

dfre = 0.0

n1 = 0 n2 = 0

106

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781

dmz = 0.0 dmzfre = 0.0 dmzamp = 0.0 dmcon = 0.0 dmneff = 0.0

twopi = 2.0 * math.pi

ndim = 2

itau1 = 0 # ----> 1 or 0 ??

itau2 = self.ntau # ---> ???

ifreq1 = 1

ifreq2 = self.nfreq nstart = 1

dmat_par = numpy.zeros(shape=(3, 3))

for itau in range(itau1_par, itau2_par) : nstart = 1

dtau = self.tau[itau]

dmfre = 0.0 dmamp = 0.0 dmcon = 0.0 dmneff = 0.0

dmz = -1.0 # less than the smallest WWZ

for ifreq in range(ifreq1, ifreq2 + 1) : dfre = self.freq[ifreq]

domega = dfre * twopi

for i in range(0, ndim + 1) : dvec[i] = 0.0

for j in range(0, ndim + 1) :

107

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815

dmat_par[i][j] = 0.0

dweight2 = 0.0

for idat in range(nstart, self.numdat) :

dz = domega * (self.time[idat] - dtau)

dweight = math.exp(-1.0 * self.dcon * dz * dz)

if (dweight > 10**(-9)) : dcc = math.cos(dz) dcw = dweight * dcc dss = math.sin(dz) dsw = dweight * dss

dmat_par[0][0] = dmat_par[0][0] + dweight dweight2 = dweight2 + (dweight**2)

dmat_par[0][1] = dmat_par[0][1] + dcw dmat_par[0][2] = dmat_par[0][2] + dsw

dmat_par[1][1] = dmat_par[1][1] + (dcw * dcc) dmat_par[1][2] = dmat_par[1][2] + (dcw * dss) dmat_par[2][2] = dmat_par[2][2] + (dsw * dss)

dxw = dweight * self.magnitude[idat]

dvec[0] = dvec[0] + dxw

dvarw = dvarw + (dxw * self.magnitude[idat]) dvec[1] = dvec[1] + (dcw * self.magnitude[idat]) dvec[2] = dvec[2] + (dsw * self.magnitude[idat])

elif dz > 0.0 : break else :

nstart = idat + 1

dpower = 0.0

108

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849

damp = 0.0

for n1 in range(0, ndim + 1) : dcoef[n1] = 0.0

if (dweight2 > 0.0) :

dneff = (dmat_par[0][0] * dmat_par[0][0]) / dweight2 else :

dneff = 0.0

if (dneff > 3.0) :

for n1 in range(0, ndim + 1) :

dvec[n1] = dvec[n1] / dmat_par[0][0]

for n2 in range(1, ndim + 1 ) :

dmat_par[n1][n2] = dmat_par[n1][n2] / \ dmat_par[0][0]

if (dmat_par[0][0] > 0.0) :

dvarw = dvarw / dmat_par[0][0]

else :

dvarw = 0.0

dmat_par[0][0] = 1.0 davew = dvec[0]

dvarw = dvarw - (davew ** 2)

if (dvarw <= 0.0) : dvarw = 10**-12

for n1 in range(1, ndim + 1) : for n2 in range(0, n1) :

dmat_par[n1][n2] = dmat_par[n2][n1]

109

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

dmat_par = self.matrix_inv(dmat_par)

for n1 in range(0, ndim + 1) : for n2 in range(0, ndim + 1) : dcoef[n1] = dcoef[n1] + \

dmat_par[n1][n2] * dvec[n2]

dpower = dpower + (dcoef[n1] * dvec[n1])

dpower = dpower - (davew ** 2)

dpowz = (dneff - 3.0) * dpower / (dvarw - dpower) / 2.0 dpower = (dneff - 1.0) * dpower / dvarw / 2.0

damp = math.sqrt(dcoef[1] * dcoef[1] + \ dcoef[2] * dcoef[2])

else :

dpowz = 0.0 dpower = 0.0 damp = 0.0

if (dneff < (10**(-9))) : dneff = 0.0

if (damp < (10**(-9))) : damp = 0.0

if (dpower < (10**(-9))) : dpower = 0.0

if (dpowz < (10**(-9))) : dpowz = 0.0

110

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

# Let's write everything out.

output1.write("%s \t %s \t %s \t %s \t %s \t %s\n" % \ (str(dtau),str(dfre),str(dpowz),str(damp), \ str(dcoef[0]),str(dneff)))

if (dpowz > dmz) : dmz = dpowz dmfre = dfre dmamp = damp dmcon = dcoef[0]

dmneff = dneff

#

if max_periods == True :

# writes the max_periods output if specified

output2.write("%f \t %f \t %f \t %f \t %f \t %f\n" % \ (dtau, dmfre, dmz, dmamp, dmcon, dmneff))

if gnuplot_compatible == True :

# added so that gnuplot reads out of the box output1.write("\n")

# If the script runs as a standalone, below is triggered

if __name__ == '__main__' :

# Parsing the arguments

description = """

A Weighted Wavelet Z-Transformation Application for Python.

Translated by M. Emre Aydin - emre.m.aydin@gmail.com

111

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951

http://about.me/emre.aydin

Available at http://github.com/eaydin

Input arguments can be read from a file. The file descriptor prefix is '@'.

In order to read argument from a file named args.txt, the argument @args.txt should be passed.

An example for args.txt :

-f=myinputfile.txt -o=theoutputfile.output -m

--freq-step=0.001 -l=0.001

-hi=0.01 -c=0.001 -p=0

You can pass arguments from file and commandline at the same time.

If two same arguments passed by this method, the latter will be used. So if you want to override some arguments in a an argument file, specify the file first.

An example usage for our earlier @args.txt is as :

python wwz.py @args.txt -c=0.0125

The above command will use the settings in args.txt but will use c=0.0125 instead of c=0.001

Comments and blank lines are NOT allowed in argument files.

Import this script via Python to use it as a module, rather than a standalone script. (import wwz)

112

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985

"""

parser = argparse.ArgumentParser(prog='wwz.py', \

formatter_class=argparse.RawDescriptionHelpFormatter,\

fromfile_prefix_chars="@", description=description)

parser.add_argument("-f", "--file", type=argparse.FileType("r"),\

default=sys.stdin, required=True,\

help="the Input File, Raw Lightcurve")

parser.add_argument("-o", "--output", type=argparse.FileType('w'),\

default=sys.stdout, required=True,\

help="the Output File Name")

parser.add_argument("-l", "--freq-low", type=float, required=True,\

help="the Low Frequency Value")

parser.add_argument("-hi", "--freq-high", type=float, required=True,\

help="the High Frequency Value")

parser.add_argument("-d", "--freq-step", type=float, required=True,\

help="the dF value, incremental step for Frequency") parser.add_argument("-c", "--dcon", type=float, required=True,\

help="the C constant for the Window Function") parser.add_argument("-g", "--gnuplot-compatible", action="store_true",\

default=False, help="the Output file is GNUPlot \ compatible, which means the tau's will be grouped \ so that pm3d can easily map. Default value is \ 'False'.")

parser.add_argument("-m", "--max-periods", action="store_true", \ default=False, help="Creates a secondary \

output with the maximum Periods for each single \ tau. This can be drawn in 2D. The output filename \ is derived from the -o option, added 'max_periods'. \ Default value is 'False'.")

parser.add_argument("-t", "--time-divisions", type=float, default=50.0, \ help="The Time Divisions value. Templeton assumes \ this as 50. VStars from AAVSO leaves this optional \

113

986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

contrary to Templeton, yet it's default value is \ also 50.")

parser.add_argument("--time", action="store_true", default=False, \ help="Calculate the time of operation in seconds \ and print to standard output.")

parser.add_argument("--no-headers", action="store_true", default=False, \ help="Doesn't print headers to output files if set. \ Default is 'False'.")

parser.add_argument("-p", "--parallel", help="Created threads to speed \ up the process. Default value is '1', which means \ single thread. '0' means number of detected CPUs,\

can be overridden.", type=int, default=1)

args = parser.parse_args()

# Check if user asks for time calculation if args.time :

starttime = datetime.now()

# Get the process number cpu=args.parallel

if cpu != 1 : try :

import multiprocessing

except (ImportError, NotImplementedError) :

print "Multiprocessing not available, using single CPU thread."

cpu = 1

if cpu == 0 :

# detect CPU cores try :

import multiprocessing

cpu = multiprocessing.cpu_count()

114

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

except (ImportError, NotImplementedError) :

print "Multiprocessing not available, using single CPU thread."

cpu = 1

# Multiprocessing begins if cpu != 1 :

s=WWZPAR(args.file, args.output, args.freq_low, args.freq_high, \ args.freq_step, args.dcon, args.time_divisions, \

args.max_periods, args.gnuplot_compatible)

s.readfile() s.maketau() s.makefreq()

# the list of output filenames output_par_names = []

for i in range(1,cpu+1) :

output_par_names.append('wwz.par.proc.%i' % i)

ntau_par1 = s.ntau/cpu

# the last ntau_par (turns out this is not necessary) ntau_par2 = s.ntau - (ntau_par1 * (cpu-1) )

thread_list = []

for i in range(1,cpu+1) : if i != cpu :

t = multiprocessing.Process(target=s.wwt, \

args=(output_par_names[i-1],ntau_par1*(i-1),ntau_par1*i)) else :

t = multiprocessing.Process(target=s.wwt, \

args=(output_par_names[i-1],ntau_par1*(i-1),s.ntau))

115

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

thread_list.append(t)

for thread in thread_list : thread.start()

for thread in thread_list : thread.join()

# join the outputs and delete remaining files

if args.max_periods :

output_max_periods = open(args.output.name + ".max_periods", "w")

# Write the headers if asked if not args.no_headers :

args.output.write("#%9s %10s %10s %10s %10s %10s\n" % \ ("TAU","FREQ","WWZ","AMP","COEF","NEFF")) if args.max_periods :

output_max_periods.write("#%9s %10s %10s %10s %10s %10s\n" % \ ("TAU","FREQ","WWZ","AMP","COEF","NEFF"))

for i in range(1,cpu+1) :

read_par = open(output_par_names[i-1],"r") for line in read_par :

args.output.write(line) read_par.close()

os.remove(output_par_names[i-1])

if args.max_periods :

read_par_max = open(output_par_names[i-1] + \ ".max_periods.par","r") for line in read_par_max :

output_max_periods.write(line) read_par_max.close()

116

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

os.remove(output_par_names[i-1] + ".max_periods.par")

# for single threadding computing if cpu == 1 :

# Run the main class and its subroutines

s=WWZ()

time_data, magnitude_data = s.readfile(args.file)

wwz_output = s.wwt(time_data, magnitude_data, args.freq_low, \ args.freq_high, args.freq_step, args.dcon, \ args.time_divisions)

if args.gnuplot_compatible :

send_ntau = len(wwz_output) / \

int(((args.freq_high - args.freq_low) / args.freq_step) + 1)

s.writegnu(wwz_output, args.output, args.no_headers, \ args.max_periods, send_ntau)

else :

s.writefile(wwz_output, args.output, \

args.no_headers, args.max_periods)

args.output.close()

if args.max_periods == True and cpu != 1 : output_max_periods.close()

# Print calculated time if args.time :

endtime = datetime.now()

print "Run Time : %s seconds" % str((endtime - starttime).seconds)

117

Benzer Belgeler