• Sonuç bulunamadı

Günümüzde araçların çoğu petrol ürünü yakıtlarla çalışmaktadır. Petrol ürünü yakıtların zamanla azalması, çevreyi kirletmesi gibi dezavantajları olması nedeniyle yenilenebilir enerji kaynakları üzerinde yapılan çalışmaların sayısında bir artış olmaktadır. Yenilenebilir enerji kaynakları ile çalışan araçlarda hem egzoz emisyon değerlerinin sıfıra düşürülmesi hem de enerjinin devamlılığı istenmektedir. Bu amacı karşılayabilmek için elektrikli araçlar üzerine çalışmalar yoğunlaşmıştır.

Elektrikli araçlarda enerji depolama birimi olarak bataryalar kullanılmaktadır. Bataryalar farklı çeşitlerde olup elektrikli araçlarda genellikle Li-ion bataryalar kullanılmaktadır.

Çünkü Li-ion bataryalar diğer batarya çeşitlerine göre daha yoğun enerjiyi depo edebilmektedir. Sadece batarya ile çalışan araçlarda ise enerjinin batarya depo edilme süresinin uzun olması, batarya ömrünün kısa olması gibi dezavantajları mevcuttur. Bu dezavantajları ortadan kaldırmak ya da bu olumsuz durumların etkisini azaltma amaçlı olarak ikinci bir enerji kaynağı kullanılmaktadır. Bu ikinci kaynağı ultra-kapasitör, flywheel v.b. enerji kaynaklarıdır. Flywheel, kinetik enerjiyi depo edebilen bir sistemdir. Frenleme enerjisi gibi kısa süreli yüksek enerjileri hızlıca depolayabilme özelliğine sahiptir. Ayrıca araçlar ilk kalkınma anında oldukça yüksek akım çekmektedir ve bu yüksek akımı karşılama da Flywheel’ler önemli avantajlar sağlamaktadır. Bunun yanı sıra Flywheel’ler bakımları yapıldığı sürece uzun ömürlü enerji depolama sistemleridir.

Yapılan bu tez çalışmasında, li-ion batarya ve flywheel ile hibrit olarak çalışan elektrikli bir aracın benzetim modeli yapılmıştır. Benzetim modeli ADVISOR ortamında gerçekleştirilmiştir. ADVISOR, Matlab / Simulink ortamında çalışan ve NREL tarafından oluşturulan geçerliliği olan bir benzetim modelidir. Flywheel modeli Simulink ortamında oluşturularak ADVISOR programı içerisinde ilgili aracın yapısına eklenmiştir. Benzetim modelindeki araç dört farklı güzergâhta çalıştırılmış olup elde edilen deneysel sonuçlar incelenmiştir. Deneysel sonuçlar arasındaki farkların ortaya konulabilmesi için ilgili araç iki farklı enerji kaynağı ile çalıştırılmıştır. Bunlardan ilki sadece li-ion batarya ile çalıştırılması ve ikincisi ise li-ion ve flywheel ile hibrit enerji depolama sistemi ile çalıştırılmasıdır.

Benzetim modeli gerçekleştirilen araç CYC_5_PEAK, CYC_HL07, CYC_UDSS ve CYC_UD06 olmak üzere dört farklı güzergâhta sürülmüştür. Benzetim modeli aynı araç için önce sadece li-ion batarya ile çalıştırılarak deney sonunda bataryada kalan enerji miktarı olan SOC değeri kaydedilmiştir. Sonra aynı araç aynı güzergâhta li-ion batarya ve flywheel ile çalıştırılarak deney sonunda batarya kalan SOC değeri kaydedilmiştir. Buna göre sürüş güzergâhları için batarya SOC değeri sırasıyla CYC_5_PEAK için 0.596’dan 0.649’ya, CYC_HL07 için 0.224’ten 0.255’e, CYC_UDSS için 0.256’dan 0.331’e ve son olarak CYC_UD06 için 0.074’ten 0.142’ye yükselmiştir. Deneysel sonuçlardan görülebileceği gibi li-ion bataryanın SOC değerinin iyileştirildiği görülmektedir. Ayrıca aracın kalkınma esnasında bataryaya destek olduğundan dolayı bataryanın ömrünü de uzatmış olmaktadır.

Bunun yanı sıra aracın toplam gideceği menzil de artış sağlanmaktadır.

Elektrikli araçlar üzerine yapılan çalışmalarda birçok yeni uygulama zamanla geliştirilerek uygulanacaktır. Bu çalışmalar özellikle batarya teknolojisi üzerine yoğunlaşacak olsa da batarya sistemlerine destek olarak kullanılacak olan flywheel enerji depolama sistem teknolojisi de gelişecektir. Hem yapısında değişiklikler olabileceği gibi enerji girişi ve çıkışına eklenecek olan kontroller sayesinde sistem veriminin arttırılması ve etkin kullanımı sağlanabilir. Ayrıca kullanılacak olan yapay zekâ, bulanık mantık gibi kontrol metotları sayesinde enerji yönetim sistemleri de etkin bir şekilde kullanılabilecektir.

KAYNAKLAR

1. Özen, E. (2005). Design of smart controllers for hybrid electric vehicles, Master’s Thesis, Midde East Technical University, Ankara, 6-25.

2. İnternet: Kerem, A. Elektrikli Araç Teknolojisinin Gelişimi ve Gelecek Beklentileri.

URL:

http://www.webcitation.org/query?url=https%3A%2F%2Fdergipark.org.tr%2Fdownl oad%2Farticle-file%2F181605&date=2019-05-13, Son Erişim Tarihi : 13-05-2019.

3. Çınar, M. A., Gundogan, Ç. ve Kuyumcu, F. E. (2004). Elektrik tahrikli taşitlar için çekiş kontrol sistemi simülasyonu. ELECO'2004 Elektrik Elektronik Bilgisayar Mühendisliği Sempozyumu, Bursa.

4. Chau, K.T. and Wong, Y. S. (2002). Overview of power management in hybrid electric vehicles. Energy Conversion and Management, 43(15), 953-1968.

5. Lipman, T.E. and Delucchi, M.A. (2006). A retail and lifecycle cost analysis of hybrid electric vehicles. Transportation Research Part D: Transport and Environment, 11(2), 115-132.

6. Huang, D. K. and Tzeng, S. C. (2004). A new parallel-type hybrid electric-vehicle.

Applied Energy, 79(1), 51-64.

7. Wright, S. and Pinkelman, A. (2008). Natural gas internal combustion engine hybrid passenger vehicle. International Journal of Energy Research, 32(7), 612-622.

8. Keskin, A. (2009). Hibrid taşıt teknolojileri ve uygulamaları. Mühendis ve Makina, 50(597), 12-20.

9. Biliroğlu, A.Ö. (2006). Seri hibrid elektrikli araçların modellenmesi ve kontrolü, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bililmleri Enstitüsü Elektronik ve Haberleşme ABD, İstanbul, 10-35.

10. Koot, M.V.T. (2006). Energy management for vehicular electric power systems, Phd Thesis, Eindhoven Technical University, Eindhoven, 19-34.

11. Sayın, A. A. and Yüksel, I. (2011, 8-10 September). Li-ion battery modeling and battery management: A case study on Renault Fluence ZE. International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, Joint Conference, İstanbul, pp. 325-330.

12. Musardo C., Rizzoni G., Guezennec Y. and Staccia B. (2005). A-ECMS:An adaptive algorithm for hybrid electric vehicle energy management. European Journal of Control 11, 4-5, 509-524.

13. Tunçay, N. ve Üstün, Ö. (2004). Otomotiv elektriğindeki gelişmeler. ELECO 2004 Elektrik Elektronik Bilgisayar Mühendisliği Sempozyumu, Bursa.

14. Gim, G. and Nikravesh, P.E. (1990). An analytical model of pneumatic tyres for vehicle dynamic simulations. Part 1: Pure slips. International Journal of Vehicle Design, 11(6), 589-618.

15. Bakker, E., Nyborg, L. and Pacejka, H.B. (1987). Tyre modelling for use in vehicle dynamics studies. SAE International, V96-87.

16. Rajamani, R. (2006). Vehicle dynamics and control: Mechanical engineering series.

(Second eddition). Minneapolis: Springer, 15-46.

17. Ünlü, N., Karahan, Ş., Tür, O., Uçarol, H., Özsu, E., Yazar, A., Turhan, L., Akgün, F.

and Tırıs, M. (2003). Elektrikli Araçlar, Tübitak Marmara Araştirma Merkezi, Kocaeli.

18. Aras, U. A. (2009). Hibrit elektrikli araçların batarya sistemlerinin bilgisayar destekli perfromans analizi, Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü Elektrik Mühendisliği ABD, Kocaeli, 7-17.

19. Uçarol, H. (2003). Karma elektrikli araç, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 28-49.

20. Husain, I. (2003). Electric and Hybrid Vehicles: Design Fundamentals. (Second edition). New York: CRC Press, 42-55.

21. Nelson, R. F. (2000). Power requirements for batteries in hybrid electric vehicles.

Journal of Power Sources, 91(1), 2-26.

22. Chan, C.C. (2002). The state of the art of electric and hybrid vehicles. Proceedings of the IEEE, 90(2), 247-275.

23. Fuhs, A. (2008). Hybrid Vehicles: and the Future of Personal Transportation. (E-book). New York: CRC Press, 112-128.

24. Lawson, L. J. (1982). Transit Bus Propulsion Employing Flywheel Energy Storage.

Journal of Advance Transportation, Vol. 16:1, pp 87-101.

25. Subkhan, M. and Komori, M. (2011). New concept for flywheel energy storage system using SMB and PMB. IEEE Transactions on Applied Superconductivity, 21(3): 1485- 1488.

26. Hebner, R., Beno, j. and Walls, A. (2002). Flywheel batteries come around again.

IEEE Spectrum, 46-51.

27. Kato, S., Takaku T., Nomura, S. and Shimada, R. (2005). Improvement of electric power quality using a small flywheel with a squirrel-cage induction motor. Electrical Energy Storage Applications and Technologies, p 67– 72.

28. E. Muljadi and J. Green. (2002). Cogging Torque Reduction in a Permanent Magnet Wind Turbine Generator. Proceedings of ASME Wind Energy Symposium, Reno, Nevada, Jan.

29. Samineni, S., Johnson, B. Hess, H. and Law, J. (2006). Modelling and analysis of a flywheel energy storage system for voltage sag correction. IEEE Transactions on Industry Applications, 42(1): 42-52.

30. Suvire, G. and Mercado, P. (2012). Active power control of a flywheel energy storage system for wind energy applications. IET Renewable Power Generation, 6(1): 9-16.

31. Moosavı-Rad, H. (1988). The Applıcation of A_Band Variable-Inertia Flywheel To An Urban Transit Bus, Ph. D. Thesis, Oregon State University Mechanical Engineering, Oregon, 60-83.

32. Zhang, C. and Tseng, K. (2007). A novel flywheel energy storage system with partially-selfbearing flywheel-rotor. IEEE Transactions on Energy Conversion, 22(2):

477-487.

33. Xiao Y., Zhu K., Zhang C., Tseng K. and Ling K. (2005). Stabilizing synchronization control of rotor-magnetic bearing system. Journal of Systems Control Engineering, 219: 499-510.

34. Xiao Y, Ge X. and Zheng Z. (2013). Analysis and Control of Flywheel Energy Storage Systems. London : Zobaa A.(Eds), Energy Stroge, Doi: 10.5772/52412.

35. Larminie J. and Lowry J. (2012). Electric Vehicle Technology Explained (Second edition). UK: John Lowry Acenti Designs Ltd, 19-36.

36. Abrahamsson, J. (2014). Kinetic Energy Storage and Magnetic Bearings for Vehicular Applications, Ph.D. Thesis, Uppsala University Department of Engineering Sciences, Uppsala, Sweden, 20-45.

37. McMullen, P. and Hawkins, L.(2012, 6–8 August). Long term backup bearing testing results. In Proceedings of the 13th International Symposium on Magnetic Bearings, Arlington, VA, USA.

38. Hedlund M., Lundin J., De Santiago J., Abrahamsson J and Bernhoff H. (2015).

Flywheel Energy Storage for Automotive Applications. Energies, 8, 10636-10663.

39. Frash, M. W., Hockney, R. L. and Smith. (2004, 25 May). M.F. Permanent Magnet Motor Assembly Having a Device and Method of Reducing Parasitic Losses. Beacon Power Corporation, U.S. Patent 6741007.

40. De Santiago Ochoa, J. (2011). FEM Analysis Applied to Electric Machines for Electric Vehicles, Ph.D. Thesis, Uppsala University Department of Engineering Sciences, Uppsala, Sweden, 16-22.

41. İnternet: Martin, J.E. Magnetic Composites for Flywheel Energy Storage. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.sandia.gov%2Fess%

2Fdocs%2Fpr_conferences%2F2012%2Fpapers%2FThursday%2FSession2%2F05_

Martin_Presentation.pdf&date= 2019-05-13, Son Erişim Tarihi: 13-05-2019.

42. Mason, P.E., Atallah, K. and Howe, D. (1999 12 Jully). Hard and soft magnetic composites in high-speed flywheels. In Proceedings of the International Committee on Composite Materials, Seattle, WA, USA.

43. İnternet: Korane, K. J. Reinventing the Flywheel Machine Design. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fmachinedesign.com%2Fne ws%2Freinventing-flywheel&date=2019-05-13, Son Erişim Tarihi:13-05-2019.

44. İnternet: Development of a 100 kWh/100 kW Flywheel Energy Storage Module.URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.sandia.gov%2Fess%

2Fdocs%2Fpr_conferences%2F2014%2FThursday%2FPosterSession8%2F18_Arese neaux_Jim_ARPA_E_SBIR_Poster_Beacon.pdf&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

45. Park, J. (2010, 7-10 November). Simple flywheel energy storage using squirrel-cage induction machine for DC bus microgrid systems. In Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society (IECON), Glendale, AZ, USA, 3040–3045.

46. Akagi, H., and Sato, H. (2002). Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Transactions Power Electronics 17, 109–116.

47. Mikami, H. (2012, 16-18 October). Technologies to replace rare earth elements, Hitachi Research Laboratory. In Proceedings of the World Manufacturing Forum, Kultur-und Kongresszentrum Liederhalle, Stuttgart, Germany.

48. Takano, Y., Takeno, M., Hoshi, N., Chiba, A., Takemoto, M., Ogasawara, S., and Rahman, M.A.(2010, 21-24 June). Design and analysis of a switched reluctance motor for next generation hybrid vehicle without PM materials. In Proceedings of the International Power Electronics Conference (IPEC), Sapporo, Japan, 1801–1806.

49. Head, P. (2012, 16 August). Electro mechanical flywheel technology. In Proceedings of the Investing in Future Transport Conference, City Hall, London, UK.

50. Hooper, S.J. (1997). Composite Materials: Testing and Design. ASTM International, V.13, West Conshohocken, PA, USA.

51. İnternet: High Energy Density, High Power Density, High Cycle Life Flywheel Energy Storage Systems. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fsbir.gsfc.nasa.gov%2FSBI

R%2Fabstracts%2F12%2Fsbir%2Fphase1%2FSBIR-12-1-S3.04-9198.html&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

52. İnternet: SBIR Navy Ultra High Density Carbon Nanotube (CNT) Based Flywheel Energy Storage for Shipboard Pulse Load Operation. Project Proposal.

URL:http://www.webcitation.org/query?url=http%3A%2F%2Fwww.navysbir.com%

2Fn15_2%2FN152-118.htm&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

53. Vetter, J., Novák, P., Wagner, M.R., Veit, C., Möller, K.C., Besenhard, J.O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C. and Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journel of Power Sources , 147, 269-281.

54. İnternet: Meeker, N., Walker, B. Flywheel Technology for Energy Storage. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.nicholasmeeker.com

%2Ffiles%2Fflywheel_report.pdf&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

55. İnternet: Federal Energy Management Program Home Page. Flywheel Energy Storage An alternative to batteries for uninterruptible power supply system. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.edsenerji.com.tr%2F userfiles%2Ffiles%2FFederal%2520Alert.pdf&date=2019-05-13, Son Erişim Tarihi:

13-05-2019.

56. Pasaoglu, G., Fiorello, D., Martino, A., Scarcella, G., Alemanno, A., Zubaryeva, A.

and Thiel, C. (2012). Driving and Parking Patterns of European Car Drivers—A Mobility Survey. JRC Scientific and Policy Reports European Commission, Maastricht, The Nertherland.

57. İnternet: What Makes Tesla’s Batteries So Great? URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.torquenews.com%2F 2252%2Fwhat-makes-tesla-s-batteries-so-great&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

58. İnternet: Foley, I. Flywheel Energy Storage, Presentation. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.ukintpress-conferences.com%2Fuploads%2FSPKPMW13R%2Fd1_s1_p2_ian_foley.pdf.&date

=2019-05-13, Son Erişim Tarihi: 13-05-2019.

59. İnternet: Pricing information for Maxwell and Ioxus cells and modules obtained by the author. URL:

http://www.webcitation.org/query?url=https%3A%2F%2Fwww.maxwell.com%2Fpr

oducts%2Fultracapacitors%2Fcells%2Fdocuments&date=2019-05-17, Son Erişim Tarihi: 17-05-2019

60. Dixon, L., Porche, I.R. and Kulick, J. (2002). Driving Emissions to Zero. Rand, Santa Monica, CA, USA.

61. İnternet: Förlorad energi kan återvinnas. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fevolution.skf.com%2Fsv%

2Fforlorad-energi-kan-atervinnas&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

62. İnternet: Maxwell Technologies. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.maxwell.com&date=

2019-05-13, Son Erişim Tarihi: 13-05-2019.

63. İnternet: BMOD0063 P125 B04 Datasheet Maxwell Technologies. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.mouser.com%2FProd

uctDetail%2FMaxwell-Technologies%2FBMOD0063-P125- B04%2F%3Fqs%3DuIeALhfqz5FqZCqHNuMmew%253D%253D&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

64. Gaines, L. and Cuenca, R. (2000). Costs of Lithium-Ion Batteries for Vehicles.

Argonne National Laboratory, US Department of Energy: Lemont, IL, USA.

65. Chang, W.Y. (2013). The state of charge estimating methods for battery: A review.

ISRN Applied Mathematics, Doi:10.1155/2013/953792.

66. Nykvist, B. and Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change,5, 329–332.

67. Hilton, J. (2008, 6-8 May). Flybrid systems-Mechanical hybrid systems. In Proceedings of the Engine Expo , Stuttgart, Germany.

68. Anon. (1955). The Oerlikon electrogyro-Its development and application for omnibus service. Automobile Engineer, 1955, 45, 559–566.

69. İnternet: Gyrobus: A Great Idea Takes a Spin. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fphoto.proaktiva.eu%2Fdige st%2F2008_gyrobus.html.+&date=2019-05-13,Son Erişim Tarihi: 13-05-2019.

70. Hayes, R.J., Kajs, J.P., Thompson, R.C. and Beno, J.H. (1999). Design and testing of a flywheel battery for a transit bus. Paper presented at International Congress and Exposition, Doi:10.4271/1999-01-1159.

71. Flynn, M. M., Zierer, J. J. and Thompson, R. C. (2005). Performance testing of a vehicular flywheel energy system. SAE Technical Paper, Doi:10.4271/2005-01-0809.

72. Aanstoos, T., Kajs, J.P., Brinkman, W., Liu, H. P., Ouroua, A., Hayes, R.J., Hearn, C., Sarjeant, J. and Gill, H. (2001). High voltage stator for a flywheel energy storage system. IEEE Transactions on Magnetics,37, 242–247.

73. Hearn, C.S., Flynn, M.M., Lewis, M.C., Thompson, R.C., Murphy, B.T. and Longoria, R.G. (2007, 9-12 September). Low cost flywheel energy storage for a fuel cell powered transit bus. In Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), Arlington, TX, USA.

74. İnternet: ULEV-TAP Newsletter. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.ulev-tap.org%2Fulev1%2Fopening.html&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

75. İnternet: Carter, J. . The Engineers Journal. GKN Takes Hybrid Technology from the Race Track to the Bus Stop. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.engineersjournal.ie%

2Fgyrodrive-hybrid-technology-bus&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

76. İnternet: The Guardian. F1 Fuel-Saving Flywheel to Be Fitted to London’s Buses. . URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.theguardian.com%2F

environment%2F2012%2Fapr%2F18%2Ff1-fuel-saving-flywheel-buses.&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

77. İnternet: Original F1 System. Flybrid Automotive. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.flybridsystems.com%

2FF1System.html&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

78. İnternet: Howard, B. ExtremeTech. Volvo Hybrid Drive: 60,000 rpm Flywheel, 25%

Boost to mpg. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.extremetech.com%2

Fextreme%2F154405-volvo-hybrid-drive-60000-rpm-flywheel-25-boost-to-mpg&date=2019-05-13, Son Erişim Tarihi: 13-05-2019.

79. İnternet: Porsche Cars North America. Porsche AG: 911 GT3 R Hybrid Celebrates World Debut in Geneva. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.porsche.com%2Fusa

%2Faboutporsche%2Fpressreleases%2Fpag%2F%3Fpool%3Dinternational&date=2 019-05-13, Son Erişim Tarihi: 13-05-2019.

80. Lathouwers, J. W. M. (2003). Design of a Compact Flywheel Energy Storage System.

Technische Universiteit Eindhoven, Eindhoven, The Nertherlands.

81. Lundin, J., Hedlund, M. (2012). Utvärdering av energilagring på linfärja.

Unpublished work.

82. Abrahamsson, J., Ogren, J. and Hedlund, M. (2014). A fully levitated cone-shaped lorentz-type self-bearing machine with skewed winding. IEEE Transactions on Magnetics,50, 1–9.

83. Flynn, M.M., McMullen, P. and Solis, O. (2007, 25 February). High-speed flywheel and motor drive operation for energy recovery in a mobile gantry crane. In Proceedings of the 22nd Annual IEEE Applied Power Electronics Conference, Anaheim, USA, CA.

84. Flynn, M. M., McMullen, P. and Solis, O. (2008). Saving energy using flywheels.

IEEE Industry Applications Magazine, 14, 69–76.

85. İnternet: Ricardo to Showcase TorqStor High Efficiency Flywheel Energy Storage at CONEXPO. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.ricardo.com%2Fen-

GB%2FNews%E2%80%93Media%2FPress-releases%2FNews- releases1%2F2014%2FRicardo-to-showcase-TorqStor-high-efficiency-flywheel-energy-storage-at-CONEXPO&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

86. İnternet: Solklar Laddare för Elbilar på KTH:s campus. URL:

http://www.webcitation.org/query?url=https%3A%2F%2Fwww.kth.se%2Faktuellt%

2Fnyheter%2Fsolklar-laddare-for-elbilar-pa-kth-s-campus-1.467911&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

87. İnternet: ABB Demonstrates Technology to Power Flash Charging Electric Bus in 15 Seconds. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.abb.com%2Fcawp%

2Fseitp202%2Ff32c9ded54dc0b20c1257b7a0054972b.aspx&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

88. İnternet: Seakeeper Inc. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.seakeeper.com&date

=2019-05-17, Son Erişim Tarihi: 17-05-2019.

89. İnternet: VYCON Technology Allows Los Angeles Metro to be First Transit Agency in U.S. Using Flywheels to Achieve Nearly 20 Percent in Rail Energy Saving. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.calnetix.com%2Fnew sroom%2Fpress-release%2Fvycon-technology-allows-los-angeles-metro-be-first-transit-agency-us-using&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

90. Caprio, M.T., Murphy, B.T. and Herbst, J.D. (2004, 3-6 August). Spin commissioning and drop tests of a 130 kWh composite flywheel. In Proceedings of the 9th International Symposium on Magnetic Bearings, Lexington, KY, USA.

91. İnternet: Zaragoza Tram. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.tranviasdezaragoza.e s%2Fen%2Finformacion%2Fnuestro-tranvia&date=2019-05-17, Son Erişim Tarihi:

17-05-2019.

92. İnternet: Alstom-Future Trends in Railway Transportation. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.jrtr.net%2Fjrtr42%2F f04_lac.html&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

93. İnternet: Williams Hybrid Power and Alstom Cooperate to Develop Flywheel Energy Storage Technology for Citadis. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.alstom.com%2Fpress -centre%2F2013%2F1%2Fwilliams-hybrid-power-and-alstom-cooperate-to-develop-flywheel-energy-storage-technology-for-citadis%2F.+&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

94. Makarov, Y.V., Ma, J., Lu, S. and Nguyen, T.B. (2008). Assessing the Value of Regulation Resources Based on Their Time Response Characteristics. Pacific Northwest National Laboratory, Richland, WA, USA.

95. İnternet: Beacon Power. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fbeaconpower.com+&date=

2019-05-17, Son Erişim Tarihi: 17-05-2019.

96. İnternet: Beacon Power to Build a Flywheel Plant to Keep the Grid in Good Health.

URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.forbes.com%2Fsites

%2Fuciliawang%2F2013%2F06%2F18%2Fbeacon-power-to-build-a-flywheel-plant-to-keep-the-grid-in-good-health&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

97. Eyer, J. (2009, October). Benefits from Flywheel Energy Storage for Area Regulation in California-Demonstration Results. Sandia National Laboratories: Albuquerque, USA.

98. İnternet: FERC Ruling 755. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fbeaconpower.com%2Fwp+

content%2Fthemes%2Fbeaconpower%2Finc%2Fferc_755.pdf&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

99. İnternet: TDX and Beacon Combine on Innovative Wind-Flywheel Energy Storage.

URL:

http://www.webcitation.org/query?url=http%3A%2F%2F+http%3A%2F%2Fbeacon power.com%2Fwpcontent%2Fuploads%2F2014%2F08%2Fbp_news_tdx_beacon_pr oject_0819141.pdf&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

100. İnternet: First Hybrid-Flywheel Energy Storage Plant in Europe Announced in Ireland. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fbeaconpower.com%2Fwp- content%2Fuploads%2F2015%2F05%2FFirst-Hybrid-Flywheel-Energy-Storage-Plant-in-Europe-announced-in-Ireland.pdf&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

101. İnternet: Chiao, E. Amber Kinetics. Presentation. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fenergy.gov%2Fsites%2Fpr

od%2Ffiles%2FESS%25202012%2520Peer%2520Review%2520-%2520Amber%2520Kinetics%2520Flywheel%2520Energy%2520Storage%2520De mo%2520-2520Ed%2520Chiao%2C%2520Amber%2520Kinetics.pdf.&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

102. İnternet: Amber Kinetics. URL:

http://www.webcitation.org/query?url=http%3A%2F%2Fwww.amberkinetics.com%

2Fprojects%2F&date=2019-05-17, Son Erişim Tarihi: 17-05-2019.

103. İnternet: UPS Systems & Modular Power Solutions - Active Power. . 2019-05-17.

103. İnternet: UPS Systems & Modular Power Solutions - Active Power. . 2019-05-17.

Benzer Belgeler