• Sonuç bulunamadı

YOL VERME YÖNTEMLERİ

4.2 DİRENÇ VEYA REAKTANSLA YOL VERME

Motorları düşük gerilimle başlatmada en çok kullanılan yöntem, dirençle veya reaktansla yol vermedir.

Şekil 4.1 Güç devresi

Dirençle veya reaktansla yol verme birbirine çok benzer ve temel ilke, şebeke geriliminin bir kısmını yol verme direncinde veya reaktöründe düşürmek ve geriye kalanını motora uygulamaktır. Direnç ve reaktansla yol vermede güç devresi aynıdır. Şekil 4.1’de güç devresi görülmektedir. Aşağıdaki kısımlarda ise doğru veya alternatif akım motorlarına dirençle veya reaktansla yol vermeye ait çeşitli örnekler incelenecektir:

4.2.1 Dirençle Yol Verme

Statora seri olarak eşdeğer dirençler bağlayarak yapılan yol verme işlemidir. Başlatma butonuna basıldığında stator ve dirençler birbirine seri bağlı olarak kalkınmaya başlar. Belli bir süre sonra (nominal değerinin %60-65'i) dirençler devreden çıkar ve çalışmaya devam edilir. Yol verme uygulanan motorun milinde yük olmamalıdır. Dirençlerin devreden çıkarılmasında zaman röleleri etkin rol oynar.

4.2.1.1 Yol Verme Direncinin Formülleri

Kalkış esnasında önem kazanan yol verme direncinin değerini bulmak için belli matematiksel hesaplamalar vardır. Bu direncin hesabı şu şekilde gerçekleştirilir.

Şekil 4.2 Direnç üzerine düşen gerilimler

Um, motorun bir faz sargı uçlarında kalkış anındaki gerilimdir. Urm, motorun iç direnci Rm üzerindeki gerilimdir. Uxm, motorun bobini Xm üzerindeki gerilimdir. Iy ise yol alma akımı (bizim tarafımızdan belirlenir).

ka, yol alma akımını düşürme katsayısıdır. Iry, dirençle yol almadaki akımdır. Idy ise direkt yol almadaki akımdır.

4.2.1.2 Örnek Yol Verme Direnci Hesabı

Etiketinde 380V, 20A yazılı 3 fazlı bir asenkron motor doğrudan yol aldığında nominal akımının 5 katı akım çekmektedir. Bu akım değerini nominal akımın 3 katına düşürecek yol verme direncinin değerini bulunuz. Cos(x)=0,2 ve Sin(x)=0,97 olarak alınacaktır.

Şekil 4.3 Üçgen bağlantılı devre

Idy = 5 In ve Iry = 3 In

Ry = Ury / Iry ise burada, Iy = 3 In = 3x20 = 60A yaklaşımı doğru değildir.

If = 20 /

Iy = 20x3 / = 20 = 34,6A olmalıdır.

Uf = 380V

ka = 3 Iy / 5 Iy = 3 / 5

Um = Uf . ka = (3 / 5) . 380 = 228V Urm = Um . Cos(x) = 228 x 0,2 = 45,6V Uxm = 228 x 0,97 = 221,16V

= 263,4V Ry = 263,4 / 34,6 = 7,6 ohm

4.2.1.3 Örnek Tek Kademeli Yol Verme Devresi

Şekil 4.4’te tek kademeli dirençle yol verme işlemini gerçekleştiren devre görülmektedir. Burada M kontaktörü, yukarıdaki güç devresinde de görüldüğü gibi dirençli yol vermeyi, A ise tam kalkınmış halde direncin devreden çıktığı hali temsil etmektedir.

Şekil 4.4 Dirençle tek kademeli yol vermenin güç ve kumanda devresi

Başlatma butonuna basıldığında devre enerjilenecek ve enerji geldikten sonra mühürlemeyi sağlayan M kontağı kapanarak devrenin bu yol üzerinden enerji geçirmesini sağlayacaktır. Eneri, normalde kapalı, gecikmeli açılan zaman rölesi üzerinden devresini tamamlar. Bu esnada alt kısımdaki zaman rölesi de enerjilendiğinden belirli bir süre saymaya başlayacaktır. 5 sn süreyle saydığı varsayılırsa enerjilenmeden 5 sn sonra M kontaktörüne ait

kontağı açılıp dirençleri devreden çıkarırken, zaman rölesinin gecikmeli kapanan kontağı da kapanarak A üzerinden motorun tam kalkınmış halde çalışması sağlanır. Devre, durdurma butonuna basılana kadar çalışacaktır.

4.2.1.4 Örnek Çift Kademeli Yol Verme Devresi

Şekil 4.5’te üç fazlı asenkron motora iki kademe dirençle yol vermeye ait bağlantı şeması verilmiştir. Bu bağlantıda Başlatma butonuna basıldığında, (M) kontaktörü enerjilenir.

(M) kontağı kapanır ve Başlatma butonu mühürlenir.

Güç devresinde (M) kontakları kapanınca, motor iki kademe direnç üzerinden şebekeye bağlanır. Dirençlerdeki gerilim düşümü nedeniyle, motor düşük gerilimle yol almaya başlar.

Şekil 4.5 Dirençle çift kademeli yol vermenin güç ve kumanda devresi

Başlatma butonuna basıldığında, (M) kontaktörüyle birlikte (ZR1) zaman rölesi de enerjilenir.Bu röle bir süre sonra (ZR1-GK) kontağını kapatır ve (A) kontaktörünü enerjilendirir. Güç devresinde (A) kontakları kapanınca, dirençlerin birinci kademesi devreden çıkar. Motor uçlarındaki gerilim artar.

Motor yol almaya devam eder. Kumanda devresinde kapanan (A) kontağı (ZR2) zaman rölesini enerjilendirir. Bu röle bir süre sonra (ZR2-GK) kontağını kapatır ve (B) kontaktörünü enerjilendirir.

Güç devresinde (B) kontakları kapanır. Böylece dirençlerin ikinci kademesi de devreden çıkar. (B) kontaktörü enerjilenince, normalde kapalı (B) kontağı açılır. (ZR1) zaman rölesi dolayısıyla (A) kontaktörü ve (ZR2) zaman rölesi devreden çıkar. (ZR2) kontağı açıldığı halde, (B) kontaktörü kendi kontağı üzerinden gelen akımla çalışmaya devem eder.

Şekildeki devrede görevini tamamlayan (A) kontaktörü devreden çıkartıldığından, (B) kontaktörü yol verme dirençlerinin hepsini kısa devre eder.

Yol verme dirençleri devreden çıkınca, motor normal şebeke gerilimine bağlanır.

Motorun normal gerilimde çalışması, durdurma butonuna basılıncaya kadar devam eder.

4.2.2 Reaktansla Yol Verme

Dirençle yol verme yönteminin hemen hemen aynısıdır. Sadece direnç yerine burada reaktans kullanılır. Reaktans, bir nüve üzerine sarılmış sargısı olan, manyetik alanlı dirençlerdir. Devresinin çalışma mantığı aynı dirençle yol vermede olduğu gibi belirli süre reaktans üzerinden motorun aşırı akım çekmesi engellenir ve daha sonra reaktanslar devreden çıkarılır.

Standart reaktans değerleri %50, %65 ve %80 gerilimler uygulanacak şekilde imal edilirler.

Büyük güçlerle çalışan motorlarda kaybı önlemek için tercih edilirler. Burada yol verme esnasında kullanılacak reaktans değerinin ölçümü şu şekilde gerçekleştirilir;

4.2.2.1 Reaktans Değeri Hesaplaması

Yukarıdaki örnekte yer alan motora reaktansla yol verme durumunda gerekli reaktans değerini hesaplayalım; transformatöründen de sağlanabilir. Kumanda devrelerinde bir, iki veya daha çok kademeli oto transformatörleri kullanılır.

Oto transformatörlerinin sargıları düşük gerilimin alınması için kullanıldığı gibi, yol vermede reaktör gibi de kullanılabilirler. Oto transformatörüyle yapılan yol verme devreleri daha pahalıya mal olduğu halde, daha randımanlı çalışırlar. Oto trafoları primer ve sekonderi aynı sargı olan (tek sargılı) transformatörlerdir. Şekil 4.7’de güç devresinin nasıl olduğu görülmektedir.

Benzer Belgeler