• Sonuç bulunamadı

Diğer Metal Oksitler ve Foto Katalitik özellikleri

Belgede KİMYA ARAŞTIRMALARI (sayfa 88-100)

FOTO KATALİZÖR OLARAK METAL OKSİTLER

1.5. Metal Oksitler ve Özellikleri

1.5.6. Diğer Metal Oksitler ve Foto Katalitik özellikleri

Titanyum oksit, demir oksit, seryum oksit ve bakır oksit dışında farklı metal oksitler ve bunların kompozitleri de organik kirleticilerin foto katalitik degradasyon için kullanılmaktadır. Bunlardan kalay oksit sahip olduğu 3.6 eV’luk bant aralığı enerjisi ile foto katalitik reaksiyonları desteklediği bildirilmiştir (Long vd., 2011). Kalay oksidin magnezyum oksit ile modifiye edildiği nanokompozitin bazı organik maddelerin foto katalitik bozulması için kullanılabilir olduğu gösterilmiştir (Bayal ve Jeevanandaam, 2013). Ayrıca kitozan ile modifiye kalay oksit’in, metil oranjın foto katalitik bozulmasında etkin rol oynadığı tespit edilmiştir (Gupta vd 2017). Hetero yapıdaki Fe2O3-WO3, WO3-TiO2 ve MoO3-TiO2 nanokompozitlerinin görünür ışık altında Rhodamine B'nin foto katalitik bozulmasını önemli ölçüde arttırdığı gösterilmiştir (Bai vd., 2014; Bai vd., 2015).

Bizmut oksit (Bi2O3), 2.8 eV bant aralığı enerjisine sahip, non toksik, p-tibi bir yarı iletken malzemedir ve çeşitli boyaların degradasyonunda kullanılmaktadır (Xie vd., 2013). Asetaminofenin (APAP) fotodegradasyonu için β-Bi2O3’in kullanıldığı rapor edilmiştir (Xiao vd., 2013). Acid Yellow 29, Coomassie Brilliant Blue G250 ve Acid Green 25 gibi organik boyaların foto-bozulması için%2 Ce- ve

84 KİMYA ARAŞTIRMALARI

%1.5 Nd katkılı Bi2O3 nanorodlar ile çalıştıklarını bildirmişlerdir (Raza vd., 2015).

SONUÇ

Çevre ve insan sağlığı için büyük problem olan organik kirleticilerin, çevre dostu, güvenli ve düşük maliyetli analitik yöntemlerle zararsız hale getirilebilmesi ve bu alanda yapılan çalışmalar bilim insanları için güncelliğini korumaktadır. Bu noktada zararlı organik kirleticilerin parçalanması için doğal, güvenli ve temiz güneş enerjisinin yarı iletken foto katalizörler tarafından kullanılması ve bu alanda gerçekleşen bütün teknolojik ilerlemeler umut vadetmektedir. Özellikle metal oksitler sergiledikleri foto katalitik özellikleri nedeniyle son yıllarda yoğun şekilde araştırılmaktadır. Foto katalizör olarak metal oksitlerin ekosistem için risk teşkil eden organik kirleticilerin giderilmesinde güneş ışığını kullanma potansiyeline sahip olması yeşil ve sürdürülebilir bir dünya için de son derece önemlidir.

Birçok metal oksit farklı sentez yöntemleri ile üretilebilir ve farklı amaçlar doğrultusunda kullanılabilir. Bunun yanında günümüzde foto katalizör olarak kullanılan metal oksitlerin nano boyutta farklı yapılarla veya yarı iletkenlerle hibrit materyalleri de üretilebilmektedir. Foto katalizör olarak kullanılan metal oksitlerin mevcut durumu ve geleceği teknolojik ilerlemelerle de paralellik göstermektedir. Kombine deneysel ve teorik çalışmalar, istatistiksel deney tasarım yöntemleri ile kullanıldığında çok yönlü işlevselliğe

sahip yeni foto katalizör parçacıkların tasarımı mümkün hale gelmektedir.

Sonuç olarak, yaşanabilir bir dünyanın önündeki önemli engellerden biri olan endüstriyel toksik atıkların, organik kirleticilerin, farmasotik ürün ve kalıntılarının doğa dostu ve ekonomik yöntemlerle bertaraf edilmesi geleceğimiz için büyük önem taşımaktadır. Çevre üzerindeki bu baskının ortadan kaldırılabilmesi için var olan foto katalizörlere ek yeni foto katalizörlerin üretilmesi, geliştirilmesi ve kullanılması büyük fayda sağlayacaktır.

86 KİMYA ARAŞTIRMALARI KAYNAKÇA

Aarthi, T., Narahari, P., Madras, G. (2007). Photocatalytic degradation of Azure and Sudan dyes using nano TiO2, Journal of Hazardous Materials, Vol. 149, No.3 (Nov, 2007), pp 725–734

Ahmed, S., Rasul, M.G., Brown, R., Hashib, M.A. (2011). Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: a short review, Journal of Environmental Management, Vol. 92, No.3 (March, 2011), pp 311–330

Akhavan, O., Azimirad, R. (2009). Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation, Applied Catalysis A: General, Vol. 369, No. 1-2 (Nov, 2009), pp 77–82

Akpan, U.G., Hameed, B.H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, Journal of Hazardous Materials, Vol. 170, No. 2-3 (Oct, 2009), pp 520–529

Ameta, R., Solanki, M.S., Benjamin, S., Ameta, S. C. (2018). Photocatalysis, Advanced Oxidation Processes for Wastewater Treatment. Emerging Green Chemical Technology, Chapter 6, pp 135-175.

Bai, S., Zhang, K., Sun, J., Luo, R., Li, D., Chen, A. (2014). Surface decoration of WO3 architectures with Fe2O3 nanoparticles for visible-light-driven photocatalysis, CrystEngComm, Vol. 16, No. 16 (April, 2014), pp 3289-3295 Bai, S., Liu, H., Sun, J., Tian, Y., Chen, S., Song, J. (2015). Improvement of TiO2

photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2

composites, Applied Surface Science, Vol. 338, (May, 2015), pp 61–68 Bayal, N., Jeevanandam, P. (2013). Sol–gel synthesis of SnO2–MgO nanoparticles

and their photocatalytic activity towards methylene blue degradation, Materials Research Bulletin, Vol. 48, No. 10 (Oct, 2013), pp 3790–3799 Chen, N., Li, Y., Deng, D., Liu, X., Xing, X., Xiao, X., Wang, Y. (2017). Acetone

sensing performances based on nanoporous TiO2 synthesized by a facile hydrothermal method, Sensors and Actuators B: Chemical, Vol. 238, (January, 2017), pp 491–500

Capek, I. (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions, Advances in Colloid Interface Science, Vol. 110, No. 1-2 (June, 2004), pp: 49–74

Carp, O., Huisman, C.L., Reller, A. (2004). Photoinduced reactivity of titanium dioxide, Progress in Solid State Chemistry, Vol. 32, No.1-2, pp 33–177 Cojocaru, B., Avram, D., Kessler, V., Parvulescu, V., Seisenbaeva, G., Tiseanu, C.

(2017). Nanoscale insights into doping behavior, particle size and surface effects in trivalent metal doped SnO2, Scientific Reports, Vol. 7, No. 1, pp 1-14

Comninellis, C., (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste-water treatment. Electrochimica Acta, Vol. 39, No.11-12 (Aug, 1994), pp 1857–1862

Daneshvar, N., Salari, D., Khataee, A. (2004). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 162, No. 2-3 (March, 2004), pp 317–322

Das, R., (2014). Application photocatalysis for treatment of industrial waste water a short review, Open Access Library Journal, Vol. 1, No. 5 (Aug, 2014), pp 1-17

Debecker, D.P., Hulea, V., Mutin, P.H. (2013). Mesoporous mixed oxide catalysts via nonhydrolytic sol–gel: a review, Applied Catalysis A: General, Vol. 451, (January, 2013), pp 192–206

Dong, Y., Xing, L., Hu, F., Umar, A., Wu, X. (2018). Efficient removal of organic dyesmolecules by grain-like α-Fe2O3 nanostructures under visible light irradiation, Vacuum, Vol. 150, (April, 2018), pp 35–40

Du, W., Xu, Y., Wang, Y. (2008). Photoinduced degradation of orange II on different iron (hydr) oxides in aqueous suspension: rate enhancement on addition of hydrogen peroxide, silver nitrate, and sodium fluoride. Langmuir, Vol. 24, No.1 (Dec, 2007), pp 175–181

88 KİMYA ARAŞTIRMALARI

photocurrent, optical and photocatalytic properties by simple hydrothermal synthesis, Journal of Alloys and Compounds, Vol. 695, (February, 2017), pp 2563–2579

Eastoe, J., Hollamby, M.J., Hudson, L. (2006). Recent advances in nanoparticle synthesis with reversed micelles, Advances in Colloid and Interface Science, Vol. 128–130, (Dec, 2006), pp 5–15

El-Bahy, Z.M., Ismail, A.A., Mohamed, R.M. (2009). Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue), Journal of Hazardous Materials, Vol. 166, No. 1 (July, 2009), pp 138–143

Feng, W., Nansheng, D., Helin, H. (2000). Degradation mechanism of azo dye CI reactive red 2 by iron powder reduction and photooxidation in aqueous solutions, Chemosphere, Vol. 41, No. 8 (Oct, 2000), pp 1233–1238

Fenton, H.J.H., 1894. LXXIII.—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, Vol. 65, pp 899–910

Fujishima, A., Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode, Nature, Vol. 238, (July, 1972), pp 37–38

Garcia-Segura, S., Ocon, J.D., Chong, M.N., (2018). Electrochemical oxidation remediation of real wastewater effluents- a review, Process Safety and Environmental Protection, Vol. 113, (January, 2018), pp 48–67

Gerbec, J.A., Magana, D., Washington, A., Strouse, G.F. (2005). Microwave-enhanced reaction rates for nanoparticle synthesis, Journal of the American Chemical Society, Vol. 127, No. 45 (Oct, 2005), pp 15791–15800

Gupta, V.K, Saravanan, R., Agarwal, S., Gracia, F., Khan, M.M., Qin, J. (2017). Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites, Journal of Molecular Liquids, Vol. 232, (April, 2017), pp 423–430

Gusain, R., Kumar, P., Sharma, O. P., Jain, S.L., Khatri, O.P. (2016). Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2

into methanol under visible light irradiation, Applied Catalysis B: Environmental, Vol. 181, (February, 2016), pp 352–362

Hernández-Ramırez, A., Medina-Ramı´rez, I. (2015). Photocatalytic Semiconductors, Springer, ISBN 978-3-319-10998-5.

Hisatomi, T., Kubota, J., Domen, K. (2014). Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chemical Society Reviews, Vol. 43, No. 22 (Nov, 2014), pp 7520–7535

Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemann, D.W. (1995). Environmental applications of semiconductor photocatalysis, Chemical Reviews, Vol. 95, No. 1 (January, 1995), pp 69–96

Janoš, P., Kuráň, P., Pilařová, V., Trögl, J., Šťastný, M., Pelant, O., et al. (2015). Magnetically separable reactive sorbent based on the CeO2 /γ-Fe2O3

composite and its utilization for rapid degradation of the organophosphate pesticide parathion methyl and certain nerve agents, Chemical Engineering Journal, Vol. 262, (February, 2015), pp 747–755

Jung, S., Yong, K. (2011). Fabrication of CuO-ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications, Chemical Communications, Vol. 47, No. 9, pp 2643–2655

Kadirova, Z. C., Katsumata, K. I., Isobe, T., Matsushita, N., Nakajima, A., Okada, K. (2014). Adsorption and photodegradation of methylene blue with Fe2O3 -activated carbons under UV illumination in oxalate solution. Journal of Environmental Chemical Engineering, Vol. 2, No. 4 (Dec, 2014), pp 2026– 2036

Lee, K. M., Lai, C. W., Ngai, K.S., Juan, J. C. (2016). Recent developments of zinc oxide based photocatalyst in water treatment technology: a review, Water Research, Vol. 88, (January, 2016), pp 428–448

Levec, J., Pintar, A. (2007). Catalytic wet-air oxidation processes: a review, Catalysis Today, Vol. 124, No. 3-4 (June, 2007), pp 172–184

Li, Z., Lin, Z., Wang, N., Huang, Y., Wang, J., Liu, W., Fu, Y., Wang, Z. (2016). Facile synthesis of α-Fe2O3 micro-ellipsoids by surfactant-free hydrothermal method for sub-ppm level H2S detection, Materials Design, Vol. 110, (Nov, 2016), pp 532–539

90 KİMYA ARAŞTIRMALARI

Lidstrőm, P., Tierney, J., Wathey, B., Westman, J. (2001). Microwave assisted organic synthesis a review, Tetrahedron, Vol. 57, No. 45 (Nov, 2001), pp 9225–9283

Łuczak, J., Paszkiewicz, M., Krukowska,A., Malankowska, A., Zaleska-Medynska, A. (2016). Ionic liquids for nano and microstructures preparation. Part 2: application in synthesis, Advances in Colloid and Interface Science, Vol. 227, (January, 2016), pp 1–52

Long, J., Xue, W., Xie, X., Gu, Q., Zhou, Y., Chi,Y. (2011). Sn2+ dopant induced visible-light activity of SnO2 nanoparticles for H2 production, Catalysis Communications, Vol. 16, No. 1 (Nov, 2011), pp. 215–219

Lubkin, G. B. (1996). Power Applications of High Temperature Superconductors, Physics Today, Vol. 49, No.3 (Mar, 1996), pp 48-52

Maiti, S., Pal, S., Chattopadhyay, K. K. (2015). Recent advances in low temperature, solution processed morphology tailored ZnO nanoarchitectures for electron emission and photocatalysis applications, CrystEngComm, Vol. 17, No. 48, pp 9264–9295

Martinez-Huitle, C.A., Brillas, E., (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Applied Catalysis B: Environmental, Vol. 87, No. 3-4 (April, 2009), pp 105–145

McLintock, I.S., Ritchie, M. (1965). Reactions on titanium dioxide; photo-adsorption and oxidation of ethylene and propylene, Transactions of the Faraday Society, Vol. 61, (Jul 1964), pp 1007–1016

Mian, Md. M, Liu G. (2018). Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications, Royal Society of Chemistry, Vol. 8, (April, 2018), pp 14237–14248

Mutamim, N.S.A., Noor, Z.Z., Hassan, M.A.A., Olsson, G. (2012). Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review, Desalination, Vol. 305, (Nov, 2012), pp 1-11.

Neațu, Ș., Maciá-Agulló, J. A., Garcia, H. (2014). Solar Light Photocatalytic CO2

Reduction: General Considerations and Selected Bench-Mark Photocatalysts, International Journal of Molecular Sciences, Vol. 15, No. 4 (March,2014), pp 5246-5262

Park, H., Choi, W. (2004). Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors, Journal of Physical Chemistry B, Vol. 108, No.3 (March, 2004), pp 4086–4093

Patra, G., Barnwal, R., Behera, S.K., Meikap, B.C. (2018). Removal of dyes from aqueous solution by sorption with fly ash using a hydrocyclone, Journal of Environmental Chemical Engineering, Vol. 6, No. 4 (Aug, 2018), pp 5204-5211

Pei, Z., Pei, J., Chen, H., Gao, L., Zhou, S. (2015). Hydrothermal synthesis of large sized Cr2O3 polyhedrons under free surfactant, Materials Letters, Vol. 159, (Nov, 2015), pp 357–361

Raza, W., Haque, M. M., Muneer, M., Harada, T., Matsumura, M. (2015). Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle, Journal of Alloys and Compounds, Vol. 648, (Nov, 2015), pp 641–650

Sakthivel, S., Neppolian, B., Shankar, M.V., Arabindoo, B., Palanichamy, M., Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells, Vol. 77, No. 1 (April, 2003), pp 65–82

Saleh, T. A., Gupta, V. K. (2012). Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide, Journal of Colloid and Interface Science, Vol. 371, No.1 (April, 2012), pp 101–106

Sathishkumar, P., Sweena, R., Wu, J.J., Anandan, S. (2011). Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution, Chemical Engineering Journal, Vol. 171, No. 1 (June, 2011), pp 136–140

92 KİMYA ARAŞTIRMALARI

Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M. (2014). Understanding TiO2 photocatalysis: mechanisms and materials, Chemical Reviews, Vol. 114, No. 19 (Sep, 2014), pp 9919–9986

Shirzad-Siboni, M., Jonidi-Jafari, A., Farzadkia, M., Esrafili, A., Gholami, M. (2017). Enhancement of photocatalytic activity of Cu-doped ZnO nanorods for the degradation of an insecticide: kinetics and reaction pathways, Journal of Environmental Management, Vol. 186, No. 1 (January, 2017), pp 1–11 Suslick, S., Bang, H. (2010). Applications of ultrasound to the synthesis of

nanostructured materials, Advanced Materials, Vol. 22, No. 10 (March, 2010), pp 1039–1059.

Tang, Z. R., Zhang, Y., Xu, Y. J. (2011). A facile and high-yield approach to synthesize onedimensional CeO2 nanotubes with well-shaped hollow interior as a photocatalyst for degradation of toxic pollutants, Royal Society Chemical, Vol. 1, No. 9 (Sep, 2011), pp 1772-1777

Trabelsi, F., Aiit-Lyazidi, H., Ratsimba, B., Wilhem, A. M., Delmas, H., Fabre, P. L., and Berlan, J. (1996). Oxidation of phenol in wastewater by sonoelectrochemistry. Chemical Engineering Science, Vol. 51, No. 10 (May, 1996), pp 1857–1865

Tuan, P.V., Hieu, L.T., Nga, L.Q., Dung, N.D., Ha, N.N., Khiem, T.N. (2016). Hydrothermal synthesis and characteristic photoluminescence of Er-doped SnO2 nanoparticles, Physica B: Condensed Matter, Vol. 501, (Nov, 2016), pp 34–37

Ullah, R., Dutta, J. (2008). Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. Journal of Hazardous Materials, Vol. 156, No. 1-3 (Aug, 2008), pp 194–200

Umar, A. A., Oyama, M. A. (2007). A seed-mediated growth method for vertical array of singlecrystalline CuO nanowires on surfaces, Crystal Growth Design, Vol. 7, No. 12 (Nov, 2007), pp 2404–2409

Wang, C., T. (2007). Photocatalytic activity of nanoparticle gold/iron oxide aerogels for azo dye degradation, Journal of Non-Crystalline Solids, Vol. 353, No. 11-12 (May, 2007), pp 111-126–33

Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., Liu, J., Wang, X. (2014). Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chemical Society Reviews, Vol. 43, No. 15, pp 5234–5244

Wang, N.N., Zheng, T., Zhang, G.S., Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, Vol. 4, No. 1 (March, 2016), pp 762–787

Wang, J.L., Bai, Z.Y. (2017). Fe-Based Catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater, Chemical Engineering Journal, Vol. 312, (March, 2017), pp 79–98

Wang, J.L., Wang, S.Z. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants, Chemical Engineering Journal, Vol. 334, (February, 2018), pp 1502–1517

Wang, J., Zhuan, R. (2020). Degradation of antibiotics by advanced oxidation processes: An overview, Science of the Total Environment, Vol. 701, (January, 2020), 135023

Wei, S., Han, L., Wang, M., Zhang, H., Du, W., Zhou, M. (2017). Hollow cauliflower-like WO3 nanostructures: Hydrothermal synthesis and their CO sensing properties, Materials Letters, Vol. 186, (January, 2017), pp 259–262 Wu, H., Wang,Y., Zheng, C., Zhu, J., Wu, G., Li ,X. (2016). Multi-shelled NiO

hollow spheres: easy hydrothermal synthesis and lithium storage performances, Journal of Alloys and Compound, Vol. 685, (Nov, 2016), pp 8–14

WWAP, United Nations World Water Assessment Programme (2019). The United Nations World Water Development Report 2019. Leaving No One behind Xie, T., Liu, C., Xu, L., Yang, J., Zhou, W. (2013). Novel Heterojunction

Bi2O3/SrFe12O19magnetic Photocatalyst with highly enhanced Photocatalytic activity, Journal of Physical Chemistry C, Vol. 117, No. 46 (Oct, 2013), pp 24601–24610

94 KİMYA ARAŞTIRMALARI

Xiao, X., Hu, R., Liu, C., Xing, C., Qian, C., Zuo,X. (2013). Facile large-scale synthesis of β- Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation, Applied Catalysis B: Environmental, Vol. 140–141, (Aug 2013), pp 433–443

Xu, D., Cheng, F., Lu, Q., Dai, P. (2014). Microwave enhanced catalytic degradation ofmethyl orange in aqueous solution over CuO/CeO2 catalyst in the absence and presence of H2O2, Industrial Engineering Chemistry Research, Vol. 53, No. 7 (January, 2014), pp 2625–2632

Yargeau, V., Leclair, C. (2008). Impact of operating conditions on decomposition of antibiotics during ozonation: a review, Ozone: Science Engineering, Vol. 30, No. 3 (Oct, 2007), pp 175–188

Zaleska-Medynska, A. (2018). Metal Oxide-Based Photocatalysis Fundamentals and Prospects for Application. Elsevier. ISBN: 978-0-12-811634-0

Zhao, L., Cui, T., Li, Y., Wang, B., Han, J., Han, L. (2015). Efficient visible light photocatalytic activity of p–n junction CuO/TiO2 loaded on natural zeolite, Royal Society of Chemistry, Vol. 5 No. 179, pp 64495–64502

BÖLÜM 4

PTFE, FEP VE PFA FLOR ESASLI POLİMER YÜZEY

KAPLAMALARIN AŞINMA, YAPIŞMA VE KOROZYON

Belgede KİMYA ARAŞTIRMALARI (sayfa 88-100)