• Sonuç bulunamadı

5. TARTIŞMA ve SONUÇ

5.2 Mikroalg Hücrelerinin Lipit Biriktirme Kapasitelerinin Araştırılması

5.2.4 Biriktirilen lipitlerin yağ asidi dağılımları

Damiani vd. (2010) yaptıkları çalışmada; Haematococcus pluvialis mikroalginin denenen tüm koşullarda yağ asidi dağılımının birbirine benzemekle birlikte başlıca bileşenlerin palmitik, stearik, oleik, linoleik, linolenik ve linolelaidik asit olduğunu bulmuşlardır. Doymuş yağ asidi oranı A stres ortamı, B stres ortamı ve kontrol ortamında sırasıyla %30.36, %29.62 ve %27.81 olarak bildirilmiştir. Çalışmada bulunan başlıca yağ asidi metil esterleri olan C16:0 için kontrol, A stres ve B stres ortamlarında sırasıyla %22.49, %18.87, %21.29; C18:0 için %3.15, %7.07, %5.69; C18:1n9c için

%19.36, %18.25, %18.35; C18:2n6t için %6.67, %5.37, %7.57; C18:2n6c için ise

%20.23, %22.06, %22.9 olarak bulunmuştur.

Gao vd. (2010) yaptıkları çalışmada, Chlorella protothecoides mikroalginden elde edilen lipitleri asit bir katalizör varlığında transesterifikasyon reaksiyonuna uğratmışlardır. Hem glukoz hem de sorgum pekmezi içeren ortamda geliştirdikleri hücrelerden ekstrakte edilen lipitlerin transesterifikasyon reaksiyonu sonucunda en fazla oleik, linoleik ve setan asit metil esterlerini bulunmuştur. Bu oranlar glukoz içeren ortamda sırasıyla %53.75, %19.48, %11.34 iken sorgum pekmezi içeren ortamda geliştirilen hücrelerde %66.80, %15.12, %12.66 olarak gözlenmiştir.

Yoo vd. (2010) çalışmada denedikleri her üç mikroalg türü içinde (Botryococcus braunii, Chlorella vulgaris ve Scenedesmus sp.) bulunan yağ asidi metil esterleri C16:0, C16:1, C18:0, C18:1, ve C18:2 olarak bildirilmiştir. Bu yağ asitleri arasından palmitik, oleik ve linoleik asit en fazla yağ asitleriyken, palmitoleik ve stearik asit daha az bulunmuştur. C16:0, C16:1, C18:0, C18:1, ve C18:2 yağ asitleri Botryococcus braunii mikroalginde sırasıyla % 29.5, %3.4, %1.0, %44.9, %21.2; Chlorella vulgaris’de

%24.0, %2.1, %1.3, %24.8, %47.8; Scenedesmus sp. mikroalginde ise %36.3, %4.0,

%2.7, %25.9, %31.1 olarak bildirilmiştir.

99

Gerçekleştirilen çalışmada Synechococcus sp. hücrelerinden elde edilen lipitin doymuşluk oranı %74.5, Cyanobacterium aponinum hücrelerinden elde edilen lipitin

%77.9, Phormidium sp. hücrelerinden elde edilen lipitin ise %84.7 olarak elde edilmiştir. Çalışmada kullanılan her üç siyanobakteri hücre lipitlerinin de başlıca bileşenlerinin C16:0 (palmitik asit) ve C18:0 (stearik asit) olması sebebiyle biyodizel üretiminde önemli hammaddeler olabileceği düşünülmektedir. Her üç siyanobakteri hücresinden de elde edilen lipitlerin doymuş yağ asitlerinden oluşuyor olması, bu lipitlerden üretilecek biyodizelin yüksek setan sayısına ve çok güçlü oksidatif kararlılığa sahip olabileceğini göstermektedir. Bu yüzden uzun süreli depolanması sırasında daha az sorunla karşılaşılacağı düşünülmektedir.

100 KAYNAKLAR

Alptekin, E. and Canakci, M. 2010. Optimization of pretreatment reaction for methyl ester production from chicken fat. Fuel, in press.

Aksu, Z. and Dönmez, G. 2000. Combined effects of sucrose and copper(II) ions on the growth and copper(II) bioaccumulation properties of Candida sp. J Chem. Technol.

Biotechnol. 75 , 847-853.

Angerbauer, C., Siebenhofer, M., Mittelbatch, M. and Guebitz, G.M. 2008. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production.

Bioresour. Technol. 99, 3051-3056.

Anonymous. 2010. Web sitesi: http://www.doctorfungus.org/thefungi/index.htm.

Erişim tarihi:09.06.2010

Anonymous. 2010. Web sitesi: http://en.wikipedia.org/wiki/microalgae Erişim tarihi:09.06.2010

Anonymous. 2010. Web sitesi: http://www.algaebase.org Erişim tarihi:09.06.2010

Anonymous. 2010. Web sitesi: http://en.wikipedia.org/wiki/Cyanobacteria Erişim tarihi:09.06.2010

Banerjee, A. and Chakraborty, R. 2009. Parametric sensitivity in transesterification of waste cooking oil for biodiesel production—A review. Resources, Conservation and Recycling, 53, 490-497.

Basha, S.A., Gopal, K.R. and Jebaraj, S.A 2009. Review on biodiesel production, combustion, emissions and performance, Renew. Sust. Energy Rev. 13 1628–1634.

Bhatti, H.N., Hanif, M.A., Qasim, M. and Rehman, A. 2008. Biodiesel production from waste tallow. Fuel, 87, 2961-2966.

Bligh, E. G. and Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37; 911-917.

Borowitzka, M. 1988. Fats, oils and hydrocarbons in microalgal biotechnology.

Cambridge, UK: Cambridge University Pres, 257-287.

Canakci, M. 2007. The potential of restaurant waste lipids as biodiesel feedstocks Bioresour. Technol,98 , 183-190.

101

Chen, F. 1996. High cell density culture of microalgae in heterotrophic growth Trends in Biotechnology, Volume 14, 421-426.

Chınnasamy, S., Bhatnagar, A., Hunt, R. W. and Das K.C. 2010. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications.

Bioresource Technology .101, 3097–3105

Chıu, S.Y., Kao, C.Y., Tsai M.T., Ong, S.C., Chen, C.H. and Lin,C.S. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2

aeration. Bioresource Technology 100, 833–838.

Chung, K.H., Kim, J., and Lee, K.Y. 2009. Biodiesel production by transesterification of duck tallow with methanol on alkali catalysts. Biomass and Bioenergy. 33, 155-158.

Cobelas, M.A. and Lechado, J.Z., 1989. Lipids in microalgae: a review. Biochemistry.

Gracas. 40, 118-145.

Convertı, A., Casazza, A.A., Ortiz, E.Y., Perego.P. and Borghi, M.D. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing. 48,1146–1151.

Damianı, M.C., Popovich, C.A., Constenla, D. and Leonardi, P.I. 2010. Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock.

Bioresource Technology, in pres

Demirbaş, A. 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energ.

Combust. 31, 466-487.

Easterling, E.R., French, W.T., Hernveez, R. and Licha, M. 2009. The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour. Technol. 100, 356-361.

Economou, C.N., Marki, A, Aggelis, G., Pavlou, S. and Vayenas, D.V. 2010. Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil, Bioresour. Technol. 101 1385–1388.

Ertuğrul, S., San N.O., and Dönmez, G. 2009. Treatment of dye (Remazol Blue) and heavy metals using yeast cells with the purpose of managing polluted textile wastewaters. Ecological Engineering, 35;128-134.

102

Enweremadu, C.C. and Mbarawa, M.M. 2009. Technical aspects of production and analysis of biodiesel from used cooking oil—A review. Renewable and Sustainable Energy Reviews, 13, 2205-2224.

Evans, C.T. and Ratledge, C. 1983. A comparison of the oleaginous yeast, Candida curvata, grown on different carbon sources in continuous and batch culture. Lipids, 18, 623-629.

Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos A. and Aggelis, G. 2009. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina, Biomass Bioenergy, 33 573 – 580.

Fernández-Álvarez, P., Vila, J., Garrido, J.M., Grifoll, M,. Feijoo, G. and Lema, J.M.

2007. Evaluation of biodiesel as bioremediation agent for the treatment of the shore affected by the heavy oil spill of the Prestige, J. Hazard. Mater. 147, 914-922.

Fukuda, H., Kondo, A. and Noda, H. 2001. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92, 405–416.

Gao, C., Zhai, Y., Ding, Y. and Wu, Q. 2010. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides.

Applied Energy. 87, 756–761.

Gerpen, J.V. 2005. Biodiesel processing and production. Fuel Processing Technology.

86, 1097-1107.

GuanHua, H.. Chen, F., Wei, D.,. Zhang, X., Chen, G. 2010. Biodiesel production by microalgal biotechnology, Appl. Energy. 87 , 38-46.

Hansson, L. and Dostálek, M. 1986. Effect of culture conditions on fatty acid composition in lipids produced by the yeast Cryptococcus albidus var. albidus.

JAOCS, 63, 1179-1184.

Helwani, Z., Othman, M.R,. Aziz, N., Fernveo, W.J.N. and Kim, J.2009. Technologies for production of biodiesel focusing on green catalytic techniques:A review. Fuel Processing Technology, 90, 1502-1504.

Hirano, A., Hon-Nami, K., Kunito, S., Hada, M. and Ogushi, Y. 1998. Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance Catalysis Today, 45, 399-404.

Hsieh, C.H. and Wu, W.T. 2009. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology. 100, 3921–3926,

103

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., and Darzins, A. 2008. Microlagal triacylglycerols as feedstocks for biofuel production:

perspectives and advances. The Plant Journal, 54, 621-639.

Illman, A.M., Scragg, A.H. and Shales, S.W. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology 27, 631–635.

Iso, M., Chen, B., Eguchi, M., Kudo, T. and Shrestha, S. 2001. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. Journal of Molecular Catalysis, 16; 53-58.

Jaeger, K.E. and Eggert, T. 2002. Lipases for biotechnology. Current Opinion in Biotechnology, 13; 390-397.

Kaıeda, M., Samukawa, L.T., Kondo, L.K. and Fukuda, H. 2001. Effect of Methanol and Water Contents on Production of Biodiesel Fuel from Plant Oil Catalyzed by Various Lipases in a Solvent-Free System. Journal Of Bıoscıence and Bıoengıneerıng. 91, 12-15.

Karatay, S. E. and Dönmez, G. 2010.Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses, Bioresource Technology, 101;

7988-7990

Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86, 1059-1070.

Knothe, G. 2006. Analyzing biodiesel:standards and other methods. J Am Oil Chem Soc, 83, 823–33.

Knothe, G. 2010. Biodiesel and renewable diesel: A comparison. Progress in Energy and Combustion Science. 36, 364-373.

Kondamudi, N., Strull, J., Misra, M., and Mohapatra, S.K. 2009. A green process for producing biodiesel from feather meal. J Agric Food Chem, 57, 6163–6166.

Lam, M.K., Lee, K.T., and Mohamed, A.R. 2010. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28, 500-518.

Lee, J.Y., Yoo, C., Jun, S.Y., Ahn, C.Y. and O. H.M. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology .101 , S75–S77.

104

Leung, Y.C.D., Wu, X. and Leung, M.K.H. 2010. A review on biodiesel production using catalyzed transesterification. Applied Energy, 87, 1083-1095.

Li, M., Liu, G.L., Chi, Z. and Chi, Z. M. 2010. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a, Biomass Bioenergy 34 , 101-107.

Li, Y., Zhao, Z.K. and Bai, F. 2007. High-density cultuvation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb. Tech. 41, 312-317.

Liu, B. and Zhao, Z.K., 2007. Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem. Technol. Biotechnol. 82, 775-780.

Liu, Z.Y., Wang, G.C., Zhou, B.C. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology 99, 4717–4722.

Lorenz, R.T., and Cysewski, G.R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, Volume 18, 160-167.

Ma, F. and Hanna, M.A. 1999.Biodiesel production: a review. Bioresource Technology, 70, 1–15.

Madigan, M.T., Martinko, J.M., and Parker, J. 2009. Brock Biology of Microorganisms, Twelfth edition. Pearson Education, USA.

Marchetti, J.M., Miguel, V.U., and Errazu, A.F. 2007. Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews, 11, 1300-1311.

Marulanda, V.F., Anitescu, G., and Tavlarides, L.L. 2010. Investigations on supercritical transesterification of chicken fat for biodiesel production from low-cost lipid feedstocks. The Journal of Supercritical Fluids, 54, 53-60.

Mata, T.M., Martins, A.A., and Caetano, N. S. 2010. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217-232.

Meher, L.C., Sagar, V.D., and Naik, S.N. 2006. Technical aspects of biodiesel production by transesterification. Renewable and Sustainable Energy Reviews, 10, 248-268.

Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., and Xian, M. 2009. Biodiesel production from oleaginous microorganisms. Renewable Energy, 34, 1-5.

105

Morowvat, M.H., Rasoul-Amini, S. and Ghasemi. Y. 2010. Chlamydomonas as a

‘‘new” organism for biodiesel production. Bioresource Technology. 101, 2059–

2062.

Oh, S.H., Han,J.G., Kim,Y., Ha, J.H., Kim, S.S., Jeong, M.H., Jeong, H.S., Kim, N.Y., Cho, J.S., Yoon, W.B., Lee, S.Y.,Kang, D.H. and Lee H.Y. 2009. Lipid production in Porphyridium cruentum grown under different culture conditions.

Journal of Bioscience and Bioengineering. 108, 429–434.

Ohlrogge, J., and Browse, J. 1995. Lipid biosynthesis. Plant Cell, 7, 957-970.

Ota M., Kato, Y., Watanabe, H., Watanabe, M., Sato, Y.,Smith Jr. R. L. and Inomata H.

2009. Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale,in the presence of inorganic carbon and nitrate. Bioresource Technology 100, 5237–5242.

Paika, M.J., Kim, H., Lee, J., Brve, J. and Kim, K.R. 2009.Separation of triacylglycerols vande free fatty acids in microalgal lipids by solid-phase extraction for separate fatty acid profiling analysis by gas chromatography. Journal of Chromatography A, 1216, 5917–5923.

Panwar, N.L., Hemant, Y. Shrirame, N.S., Jindal, R.S. and Kurchania, A.K. 2010.

Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil. Applied Thermal Engineering. 30, 245–249.

Papanikolaou, S. Fakas, S. Fick, M. Chevalot I., Galiotou-Panayotou, M., Komaitis, M.

Marc, I. and Aggelis, G. 2008.Biotechnological valorisation of raw glycerol dischargedafter bio-diesel (fatty acid methyl esters) anufacturing process:

Production of 1,3-propanediol, citric acid and single cell oil, Biomass Bioenergy. 32 60–71.

Papanikolaou, S. and Aggelis, G. 2002. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour.

Technol. 82, 43-49.

Pasqualino, J. C., Montane´, D. and Salvado´, J. 2006. Synergic effects of biodiesel in the biodegradability of fossil-derived fuels, Biomass Bioenergy 30, 874–879.

Peng, X., and Chen, Y. 2008. Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran.

Bioresour. Technol. 99, 3885-3889.

Peng, X. and Chen, H. 2008. Rapid estimation of single cell oil content of solid-state fermented mass using near-infrared spectroscopy, Bioresour. Technol. 99 8869–

8872.

106

Phan, A.N., and Phan, T.M. 2008. Biodiesel production from waste cooking oils. Fuel, 87, 3490-3496.

Pruvost J., Van Vooren, G., Cogne, G. and Legrve, J. 2009. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor.

Bioresource Technology 100, 5988–5995.

Ratledge, C. 2004. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production, Biochimie. 86 , 807–815.

Ratledge, C., and Wynn, J.P. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 51, 1-80.

Rippka, R. 1988. Isolation and purification of Cyanobacteria, Meth Enzymol.167, 3–27.

Rittman, B. E. 2008. Opportunities for renewable bioenergy using microorganisms.

Biotechnology and Bioengineering, 100, 203-212.

Rupcic, J., Blagovic, B. and Maric, V. 1996. Cell lipids of the Candida lipolytica yeast grown on methanol. J. Chromatogr. 755, 75-80.

Samori, C. , Torri, C. , Samorì, G. Fabbri, D., Galletti, P., Guerrini, F.,Pistocchi, R.

and Tagliavini E. 2010. Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresource Technology. 101, 3274-3279.

Sawayama, S., Inoue, S., Dote, Y., and Yokoyama, S.Y. 1995. CO2 fixation and oil production through microalga. Energy Convers Manag, 36, 729–731.

Scragg, A.H., Morrison, J. and Shales S.W. 2003.The use of a fuel containing Chlorella vulgaris in a diesel engine. Enzyme and Microbial Technology 33, 884–889.

Srivastava, A. and Prasad, R. 2000. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4, 111-133.

Tan, T., Lu, J., Nie, K., Deng, L., and Wang, F. 2010. Biodiesel production with immobilized lipase: A review. Biotechnology Advances, in press.

Taştan, B. E., Ertuğrul, S., and G. Dönmez, 2010. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor ,Bioresour. Technol. 101, 870-876.

Veré, A., Diamantopoulou, P., Philippoussis, A., Sarris, D., Komaitis, M. and Papanikolaou, S. 2010. Biotechnological conversions of bio-diesel derived waste

107

glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid, Industrial Crop. Product. in press.

Vermaas W. 1998. Gene modifications and mutation mapping to study the function of photosystem II. Meth Enzymol, 297,293–310.

Vicente, G., Bautista, L.F., Rodríguez, R., Gutiérrez, F.J., Sádaba, I., Ruiz-Vázquez, R.M., Torres-Martínez, S. and Garre, V. 2009. Biodiesel production from biomass of an oleaginous fungus, Biochem. Eng. J. 48 , 22–27.

Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J. and Ruan R. R. 2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology 101, 2623–2628.

Widjaja, A., Chien, C.C. and Ju, Y.H. 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers 40, 13–20.

Xin, L., Hong-ying H. and Jia, Y. 2009. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnology.

Xu, H., Miao, X. and Wu, Q. 2006.High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology. 126, 499–507

Xue, F., Miao, J., Zhang, X., Luo, H. and Tan, T. 2008. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour. Technol. 99, 5923-5927.

Xue, F., Zhang, X., Luo, H. and Tan, T. 2006. A new method for preparing raw material for biodiesel production. Process Biochem. 41, 1699-1702.

Yan, J., and Lin, T. 2009. Biofuels in Asia, Appl. Energy. 86 , S1-S10.

Yong-Hong, L., Bo, L., Zong-Bao, Z. and Feng-Wu, B. 2006. Optimization of culture conditions for lipid production by Rhodosporidium toruloides. Chinese J. Biotech.

22, 650-656.

Yongsheng, G., Wei, H., Yang. F, Li. D, Fang. W. and Lin, R. 2009. Study on volatility and flash point of the pseudo-binary mixtures of sunflowerseed-based biodiesel + ethanol, J. Hazard. Mater. 167 ,625–629.

108

Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y. and Oh, H.M. 2010. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technology.

101 ,S71–S74.

Zhu, L.Y., Zong, M.H. and Wu, H. 2008. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour. Technol. 99, 7881-7885.

Zhu, M., Zhou, P. P. and Yu L. J.,2002. Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids, Bioresour. Technol.84 93-95.

109 ÖZGEÇMİŞ

Adı Soyadı : Sevgi ERTUĞRUL KARATAY Doğum yeri : Çekerek

Doğum Tarihi : 22. 11. 1980 Medeni Hali : Evli

Yabancı Dili : İngilizce

Eğitim Durumu (Kurum ve Yıl)

Lisans : Ankara Üniversitesi Fen Fakültesi Biyoloji Bölümü (2002)

Yüksek Lisans : Ankara Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı ( 2005)

Doktora : Ankara Üniversitesi Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı (2010)

Çalıştığı Kurum :

Ankara Üniversitesi, Biyoloji Bölümü, Araştırma Görevlisi, 2002-

Yayınları (SCI kapsamında)

Karatay, S. E. and Dönmez, G. 2010.Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses, Bioresource Technology, 101; 7988-7990

Aksu, Z., Ertuğrul, S. and Dönmez, G. 2010. Methlene Blue biosorption by Rhizophus arrhizus: Effect of SDS (sodium dodecylsulfate) surfactant on biosorption properties. Chemical Engineering Journal, 158; 474-481.

Taştan, B.E., Ertuğrul, S. and Dönmez, G. 2010. Effective bioremoval of reactive dye ve heavy metals by Aspergillus versicolor. Bioresource Technology, 101; 870-876.

Aksu, Z., Ertuğrul, S. and Dönmez, G. 2009. Single ve binary chromium(VI) ve Remazol Black B biosorption properties of Phormidium sp.Journal of Hazardous Materials, 168; 310-318.

Verstraete, K., Koch, S., Ertugrul, S., Vveenberghe, I., Aerts, M., Vveriessche, G., Thiede, C. and Savvides, S.N. 2009. Efficient production of bioactive recombinant human Flt3 ligve in E. coli. The Protein Journal, 28;57-65.

Benzer Belgeler