• Sonuç bulunamadı

BÖLÜM 25 İNSÜLİN VE YAĞ DOKU İLİŞKİSİ

N/A
N/A
Protected

Academic year: 2022

Share "BÖLÜM 25 İNSÜLİN VE YAĞ DOKU İLİŞKİSİ"

Copied!
5
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

263

M. Erkam SENCAR1 Erman ÇAKAL2

1 Doç. Dr., Sağlık Bilimleri Üniversitesi, Ankara Dışkapı Yıldırım Beyazıt Eğitim ve Araştırma Hastanesi, Endokrinoloji ve Metabolizma Hastalıkları Kliniği, erkamsencar@gmail.com

2 Prof. Dr., Sağlık Bilimleri Üniversitesi, Ankara Dışkapı Yıldırım Beyazıt Eğitim ve Araştırma Hastanesi, Endokrinoloji ve Metabolizma Hastalıkları Kliniği, ermancakal@hotmail.com

İNSÜLİN VE YAĞ DOKU İLİŞKİSİ

Yağ doku enerji dengesinin sağlanması ve substrat metabolizmasının dü- zenlenmesinde kritik rolleri olan bir yapıdır. Son yıllarda yapılan çalışmalar yağ dokunun sadece trigliserid depolayan inert bir yapı olmadığını enerji meta- bolizmasında önemli rolleri olan dinamik bir organ olduğunu göstermiştir (1).

Yağ doku, enerji dengesinin sürdürebilir olması için adipositlerin hipertrofiye

uğramasıyla (lipogenez) ve adiposit kök hücrelerin diferansiyasyonu (adipoge-

nez) yoluyla genişleyebilmekte, lipid depolama kapasitesini arttırabilmektedir

(2). İnsülinin her iki süreç üzerine de stimüle edici etkisi olduğu bilinmektedir

(2). Yapılan çalışmalar insülin ve insülin reseptörünün hem adiposit kök hücre

diferansiyasyonunda hem de embriyogenezden itibaren yağ doku gelişiminde

çok önemli rolleri olduğunu göstermiştir (3). Bunun dışında yağ doku endok-

rin ve parakrin fonksiyonları olan ve birçok metabolik olayda ve sinyal yolak-

larında rol alan ve adipokin olarak adlandırılan peptid yapıdaki moleküllerin

sentezinden ve salınımından sorumludur. Adipokinlerin, yağ ve karbonhidrat

metabolizmasında, immün sistemde, inflamasyonda, koagülasyonda, steroid

metabolizmasında, kan basıncı dengesinde, açlık-tokluk sinyal yolaklarında

(2)

Kaynaklar

1. Ottaviani E, Malagoli D, Franceschi C. The evolution of the adipose tissue: A neglected enigma [Internet]. Gen. Comp. Endocrinol.2011;174(1):1–4.

2. Cignarelli A, Genchi VA, Perrini S, et al. Insulin and insulin receptors in adipose tissue development. Int. J. Mol. Sci.2019;20(3).

3. Boucher J, Mori MA, Lee KY, et al. Impaired thermogenesis and adipose tissue develop- ment in mice with fat-specific disruption of insulin and IGF-1 signalling. Nat Commun 2012;3:902.

4. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ.

Arch. Med. Sci 2013;9:191-200

5. Fonseca-Alaniz MH, Takada J, Alonso-Vale MIC, Lima FB. O tecido adiposo como centro regulador do metabolismo. Arq. Bras. Endocrinol. Metabol.2006;50(2):216–29.

6. Dimitriadis G, Mitrou P, Lambadiari V, et al. Insulin effects in muscle and adipose tissue.

Diabetes Res Clin Pract. 2011;52–9.

7. Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle its role in insulin sen- sitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963;281(7285):785–9.

8. Randle PJ. Regulatory interactions between lipids and carbohydrates: The glucose fatty acid cycle after 35 years. Diabetes. Metab. Rev.1998;14(4):263–83.

9. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat.

Med.2017;23(7):804–14.

10. Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: Time for a reevaluation. Diabetes 2011;60(10):2441–9.

11. Mandarino LJ, Printz RL, Cusi KA, et al. Regulation of hexokinase II and glycogen synt- hase mRNA, protein, and activity in human muscle. Am J Physiol - Endocrinol Metab 1995;269(4 32-4).

12. Dimitriadis G, Parry-Billings M, Bevan S, et al. The effects of insulin on transport and me- tabolism of glucose in skeletal muscle from hyperthyroid and hypothyroid rats. Eur J Clin Invest 1997;27(6):475–83.

13. Dimitriadis G, Parry-Billings M, Bevan S, et al. Effects of insulin-like growth factor I on the rates of glucose transport and utilization in rat skeletal muscle in vitro. Biochem J 1992;285(1):269–74.

14. Shepherd PR, Kahn BB. Glucose Transporters and Insulin Action — Implications for Insu- lin Resistance and Diabetes Mellitus. N Engl J Med 1999;341(4):248–57.

15. Kahn CR, Ferris HA, Neill BTO. Williams Textbook of Endocrinology Pathophysiology of Type 2 Diabetes Mellitus. Fourteenth. Elsevier; 2021. Available from: http://dx.doi.

org/10.1016/B978-0-323-55596-8.00034-6

16. Laviola L, Perrini S, Cignarelli A, et al. Insulin signalling in human adipose tissue. Arch Physiol Biochem; 2006 page 82–8.

17. Christen T, Sheikine Y, Rocha VZ, et al. Increased glucose uptake in visceral versus subcu- taneous adipose tissue revealed by PET imaging. JACC Cardiovasc Imaging 2010;3(8):843–

51.

18. Graham TE, Yang Q, Blüher M, et al. Retinol-Binding Protein 4 and Insulin Resistance in Lean, Obese, and Diabetic Subjects. N Engl J Med 2006;354(24):2552–63.

19. Carvalho E, Jansson P, Nagaev I, et al. Insulin resistance with low cellular IRS‐1 expression is also associated with low GLUT4 expression and impaired insulin‐stimulated glucose transport. FASEB J 2001;15(6):1101–3.

20. Abel ED, Peroni O, Kim JK, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001;409(6821):729–33.

21. Dyck DJ. Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl. Phy- siol. Nutr. Metab.2009;34(3):396–402.

(3)

22. Frayn K. Adipose tissue as a buffer for daily lipid flux. Diabetologia 2002;45(9):1201–10.

23. Stralfors P, Bjorgell P, Belfrage P. Hormonal regulation of hormone-sensitive lipase in intact adipocytes: Identification of phosphorylated sites and effects on the phosphorylation by lipolytic hormones and insulin. Proc Natl Acad Sci U S A 1984;81(11 I):3317–21.

24. Lass A, Zimmermann R, Oberer M,et al. Lipolysis - A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res.2011;50(1):14–27.

25. Enoksson S, Degerman E, Hagström-Toft E, et al. Various phosphodiesterase subtypes me- diate the in vivo antilipolytic effect of insulin on adipose tissue and skeletal muscle in man.

Diabetologia 1998;41(5):560–8.

26. Strålfors P, Honnor RC. Insulin‐induced dephosphorylation of hormone‐sensitive lipase:

Correlation with lipolysis and cAMP‐dependent protein kinase activity. Eur J Biochem 1989;182(2):379–85.

27. Kitamura T, Kitamura Y, Kuroda S, et al. Insulin-Induced Phosphorylation and Activation of Cyclic Nucleotide Phosphodiesterase 3B by the Serine-Threonine Kinase Akt. Mol Cell Biol 1999;19(9):6286–96.

28. Rosenfalck AM, Almdal T, Hilsted J, et al. Body composition in adults with Type 1 diabetes at onset and during the first year of insulin therapy. Diabet Med 2002;19(5):417–23.

29. Farese R V., Yost TJ, Eckel RH. Tissue-specific regulation of lipoprotein lipase activity by insulin/glucose in normal-weight humans. Metabolism 1991;40(2):214–6.

30. Fielding BA, Frayn KN. Lipoprotein lipase and the disposition of dietary fatty acids. Br. J.

Nutr.1998;80(6):495–502.

31. Xie X, Sinha S, Yi Z, Langlais PR, et al. Role of adipocyte mitochondria in inflammation, lipemia and insulin sensitivity in humans: Effects of pioglitazone treatment. Int J Obes 2018;42(2):213–20.

32. Wong RHF, Chang I, Hudak CSS, et al. A Role of DNA-PK for the Metabolic Gene Regula- tion in Response to Insulin. Cell 2009;136(6):1056–72.

33. Wu Q, Ortegon AM, Tsang B, et al. FATP1 Is an Insulin-Sensitive Fatty Acid Transporter Involved in Diet-Induced Obesity. Mol Cell Biol 2006;26(9):3455–67.

34. Coburn CT, Hajri T, Ibrahimi A,et al. Role of CD36 in membrane transport and utilization of long-chain fatty acids by different tissues. In: Journal of Molecular Neuroscience. Sprin- ger; 2001. page 117–21.

35. Herman MA, Peroni OD, Villoria J, et al. A novel ChREBP isoform in adipose tissue regu- lates systemic glucose metabolism. Nature 2012;484(7394):333–8.

36. Griffin MJ, Sul HS. Insulin regulation of fatty acid synthase gene transcription: Roles of USF and SREBP-1c. IUBMB Life2004;56(10):595–600.

37. Czech MP, Tencerova M, Pedersen DJ, et al. Insulin signalling mechanisms for triacylgly- cerol storage. Diabetologia 2013;56(5):949–64.

38. Softic S, Boucher J, Solheim MH, et al. Lipodystrophy due to adipose tissue-specific insulin receptor knockout results in progressive NAFLD. Diabetes 2016;65(8):2187–200.

39. Hauke S, Keutler K, Phapale P, et al. Endogenous fatty acids are essential signaling factors of pancreatic B-cells and insulin secretion. Diabetes 2018;67(10):1986–98.

40. Fryk E, Mossberg K, Strindberg L, et al. Hyperinsulinemia and insulin resistance in the obese may develop as part of a homeostatic response to elevated free fatty acids : A me- chanistic case-control and a population-based cohort study. EBioMedicine 2021;103264.

41. Gastaldelli A, Gaggini M, DeFronzo RA. Role of adipose tissue insulin resistance in the natural history of type 2 diabetes: Results from the san antonio metabolism study. Diabetes 2017;66(4):815–22.

42. Mahendran Y, Cederberg H, Vangipurapu J, et al. Glycerol and fatty acids in serum predi- ct the development of hyperglycemia and type 2 diabetes in Finnish men. Diabetes Care 2013;36(11):3732–8.

(4)

43. Shulman GI. Cellular mechanisms of insulin resistance. J. Clin. Invest.2000;106(2):171–6.

44. Kim JK, Wi JK, Youn JH. Plasma free fatty acids decrease insulin-stimulated skeletal musc- le glucose uptake by suppressing glycolysis in conscious rats. Diabetes 1996;45(4):446–53.

45. Roden M, Price TB, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resis- tance in humans. J Clin Invest 1996;97(12):2859–65.

46. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: A reexamination. Diabetes2000;49(5):677–83.

47. Ruderman NB, Saha AK, Vavvas D, Witters LA. Malonyl-CoA, fuel sensing, and insulin resistance. Am. J. Physiol. - Endocrinol. Metab.1999;276(1 39-1).

48. Kraegen EW, Cooney GJ, Ye J, Thompson AL. Triglycerides, fatty acids and insulin resistan- ce - Hyperinsulinemia. Exp Clinical Endocrinol and Diabetes; 2001;109:516-26

49. Fryk E, Olausson J, Mossberg K, et al. Hyperinsulinemia and insulin resistance in the obese may develop as part of a homeostatic response to elevated free fatty acids: A mechanistic case-control and a population-based cohort study. EBioMedicine 2021;0(0):103264.

50. Dobbins RL, Stein DT, Mcgarry JD, et al. A fatty acid-dependent step is critically important for both glucose-and non-glucose-stimulated insulin secretion. A Fatty Acid-dependent Step Is Critically Important for Both Glucose-and Non-Glucose-Stimulated Insulin Secre- tion. J Clin Invest 1998;101(11):2370–6.

51. Coggins M, Lindner J, Rattigan S, et al. Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment. Diabetes 2001;50(12):2682–90.

52. Steinberg H, Baron A. Vascular function, insulin resistance and fatty acids. Diabetologia 2002;45(5):623–34.

53. Dimitriadis G, Lambadiari V, Mitrou P, et al. Impaired postprandial blood flow in adipo- se tissue may be an early marker of insulin resistance in type 2 diabetes. Diabetes Care 2007;30(12):3128–30.

54. Zaccardi F, Webb DR, Yates T, et al. Pathophysiology of type 1 and type 2 diabetes mellitus:

A 90-year perspective. Postgrad. Med. J.2016;92(1084):63–9.

55. Turner R. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352(9131):837–53.

56. Skovsø S, Damgaard J, Fels JJ, et al. Effects of insulin therapy on weight gain and fat dist- ribution in the HF/HS-STZ rat model of type 2 diabetes. Int J Obes 2015;39(10):1531–8.

57. Best JD, Drury PL, Davis TME, et al. Glycemic control over 5 years in 4,900 people with type 2 diabetes: Real-world diabetes therapy in a clinical trial cohort. Diabetes Care 2012;35(5):1165–70.

58. Pontiroli AE, Miele L, Morabito A. Increase of body weight during the first year of inten- sive insulin treatment in type 2 diabetes: Systematic review and meta-analysis. Diabetes, Obes Metab 2011;13(11):1008–19.

59. Son JW, Jeong HK, Lee SS, et al. The effect of early intensive insulin therapy on body fat distribution and β-cell function in newly diagnosed type 2 diabetes. Endocr Res 2013;38(3):160–7.

60. Takei I, Takayama S, Yamauchi A, et al. Effect of insulin therapy on body fat distribution in NIDDM patients with secondary sulfonylurea failure: A preliminary report. Eur J Clin Nutr 1998;52(2):153–4.

61. Juurinen L, Tiikkainen M, Häkkinen AM,et al. Effects of insulin therapy on liver fat con- tent and hepatic insulin sensitivity in patients with type 2 diabetes. Am J Physiol - Endoc- rinol Metab 2007;292(3):829–35.

62. Shah PK, Mudaliar S, Chang AR, et al. Effects of intensive insulin therapy alone and in combination with pioglitazone on body weight, composition, distribution and liver fat content in patients with type 2 diabetes. Diabetes, Obes Metab 2011;13(6):505–10.

(5)

63. Tang A, Rabasa-Lhoret R, Castel H , et al. Effects of insulin glargine and liraglutide therapy on liver fat as measured by magnetic resonance in patients with type 2 diabetes: A rando- mized trial. Diabetes Care 2015;38(7):1339–46.

64. Lu HY, Li XF, Mu PW,et al. Primary culturing and effects of insulin glargine on proliferati- on, differentiation of human preadipocytes from subcutaneous and omental adipose tissue.

Natl Med J China 2013;93(36):2861–6.

65. Cignarelli A, Perrini S, Nigro P, et al. Long-acting insulin analog detemir displays reduced effects on adipocyte differentiation of human subcutaneous and visceral adipose stem cells.

Nutr Metab Cardiovasc Dis 2016;26(4):333–44.

66. García-Escobar E, Rodríguez-Pacheco F, Haro-Mora JJ, et al. Effect of insulin analogues on 3t3-l1 adipogenesis and lipolysis. Eur J Clin Invest 2011;41(9):979–86.

67. Stumvoll M, Nurjhan N, Perriello G, et al. Metabolic Effects of Metformin in Non-Insu- lin-Dependent Diabetes Mellitus. N Engl J Med 1995;333:550–554

68. Rena G, Hardie DG, Pearson ER The mechanisms of action of metformin. Diabetologia 2017;60:1577–1585

69. Carlson Ca, Kim KH; Communication Regulation of Hepatic Acetyl Coenzyme A Carboxy- lase by Phosphorylation and Dephosphorylation. Arch Biochem Biophys 1974;164:478-89 70. Giannarelli R, Aragona M, Coppelli A, et al. Reducing insulin resistance with metformin:

The evidence today. Diabetes Metab 2003;29:6S28-6S35

71. Hauner H. The mode of action of thiazolidinediones. Diabetes Metab Res Rev 2002;18:S10–

72. Vasudevan AR, Balasubramanyam A. Thiazolidinediones: A review of their mechanisms S15 of insulin sensitization, therapeutic potential, clinical efficacy, and tolerability. Diabetes Technol Ther 2004;6:850–863

73. Derosa G, Limas CP, Maciás PC, et al. Dietary and nutraceutical approach to type 2 diabe- tes. Arch Med Sci 2014;10:336–344

74. Neeland IJ, McGuire DK, Chilton R, et al. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diabetes Vasc Dis Res 2016;13:119–126

75. Saponaro C, Pattou F, Bonner C. SGLT2 inhibition and glucagon secretion in humans.

Diabetes Metab 2018;44:383–385

76. Ogawa W, Sakaguchi K. Euglycemic diabetic ketoacidosis induced by SGLT2 inhibitors:

Possible mechanism and contributing factors. J Diabetes Investig 2016;7:135–138

77. Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care 2003;26:2929–2940

78. Zhao L, Zhu C, Lu M, et al. The key role of a glucagon-like peptide-1 receptor agonist in body fat redistribution J Endocrinol 2019;240:271-286

Referanslar

Benzer Belgeler

Effect of family history of type-2 diabetes on coronary flow reserve and it’s relationship with insulin resistance: an observational study.. Tip 2 diyabetes aile öyküsünün

• In the 10 th century, the Turks provided the primal energy to renew Islamic civilization and supplied the men and women of action who propelled it for over a thousand years.. •

It is the largest and most active center in Israel of documentation and science, focusing on biodiversity research and its varied applications including nature

Detaylı kadın check-up programında : tam kan sayımı anemi ( kansızlık ), enfeksiyon hastalıklarının taraması, tam idrar tahlili, açlık kan şekeri, 3 aylık kan

The NIH metabolic generation AcINH, INH-K, INH-P ratio is not the generation of Cimetidine.. INA of the metabolic pathways generated by inhibition, INH in order to increase

In our study, when each patient and control group was analyzed for the genotype distribution and allele frequency of PAI-1 4G5G, the genotype frequency was determined to be 4G4G

In a study conducted at Hacettepe University in Turkey, it was found that 28% of the patients who admitted to the geriatric outpatient clinic had poor nutritional

In addition to all these factors, the aims of our study were to find out the effects of insulin types chosen and insulin doses applied on treatment success in patients for