• Sonuç bulunamadı

An absolute double summability factor theorem

N/A
N/A
Protected

Academic year: 2023

Share "An absolute double summability factor theorem"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Contents lists available at ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

An absolute double summability factor theorem

Ekrem Savaş

Department of Mathematics, Istanbul Ticaret University, Üsküdar, Istanbul, Turkey

a r t i c l e i n f o

Article history:

Received 27 February 2008 Accepted 26 June 2008

Keywords:

Absolute summability Double summability Double weighed mean Summability factors

a b s t r a c t

In an earlier paper Savas and Rhoades [Ekrem Savaş, B.E. Rhoades, A note on | A |

k

summability factors, Nonlinear Anal. 66 (2007) 1879–1883. [1]] obtained a summability factor theorem for absolute summability of order k ≥ 1. In this paper we extend that result to doubly infinite matrices.

© 2008 Elsevier Ltd. All rights reserved.

A doubly infinite matrix A = ( a

mnjk

) is said to be doubly triangular if a

mnjk

= 0 for j > m or k > n. The ( mn ) th term of the A-transform of a double sequence { s

mn

} is defined by

T

mn

:=

n

X

µ=

0 n

X

ν=

0

a

mn

µν s µν .

For any double sequence u

mn

, ∆

11

is defined by

11

u

mn

= u

mn

u

m

+

1

,

n

u

m

,

n

+

1

+ u

m

+

1

,

n

+

1

. For any four-fold sequence v

mnij

,

11

v

mnij

:= v

mnij

− v

m

+

1

,

n

,

i

,

j

, − v

m

,

n

+

1

,

i

,

j

+ v

m

+

1

,

n

+

1

,

i

,

j

ij

v

mnij

:= v

mnij

− v

m

,

n

,

i

+

1

,

j

− v

m

,

n

,

i

,

j

+

1

+ v

m

,

n

,

i

+

1

,

j

+

1

,

0j

v

mnij

:= v

mnij

− v

m

,

n

,

i

,

j

+

1

, and (1)

i 0

v

mnij

:= v

mnij

− v

m

,

n

,

i

+

1

,

j

. A series P P

b

mn

, with partial sums s

mn

is said to be summable | A |

k

, k ≥ 1 if

X

m

=

1

X

n

=

1

( mn )

k

1

|

11

T

m

1

,

n

1

|

k

< ∞. (2)

We may associate with A two doubly triangular matrices A and A as follows: ˆ

¯ a

mnij

=

m

X

µ=

i n

X

ν=

j

a

mn

µν , n , m = 0 , 1 , 2 , . . . ,

and

ˆ a

m

,

n

,

i

,

j

=

11

a ¯

m

1

,

n

1

,

i

,

j

, m , n = 0 , 1 , 2 , 3 , . . . . (3)

E-mail addresses:ekremsavas@yahoo.com,esavas@iticu.edu.tr.

0895-7177/$ – see front matter

©

2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.mcm.2008.06.015

(2)

Note that a ˆ

0000

= ¯ a

0000

= a

0000

.

Let y

mn

denote the ( mn ) th term of the A-transform of P

m

µ=

0

P

n

ν=

0

b µν λ µν . We can write y

mn

=

m

X

µ=

0 n

X

ν=

0

a

mn

µν µ

X

i

=

0

X ν

j

=

0

b

ij

λ

ij

=

m

X

i

=

0 n

X

j

=

0

b

ij

λ

ij m

X

µ=

i n

X

ν=

j

a

mn

µν

=

m

X

i

=

0 n

X

j

=

0

b

ij

λ

ij

a ¯

mnij

.

It then follows that

11

y

m

1

,

n

1

= y

m

1

,

n

1

y

m

,

n

1

y

m

1

,

n

+ y

mn

=

m

1

X

i

=

0 n

1

X

j

=

0

b

ij

λ

ij

a ¯

m

1

,

n

1

,

i

,

j

m

X

i

=

0 n

1

X

j

=

0

b

ij

λ

ij

a ¯

m

,

n

1

,

i

,

j

m

1

X

i

=

0 n

X

j

=

0

b

ij

λ

ij

a ¯

m

1

,

n

,

i

,

j

+

m

X

i

=

0 n

X

j

=

0

b

ij

λ

ij

a ¯

mnij

=

m

X

i

=

0 n

X

j

=

0

b

ij

λ

ij

a ˆ

mnij

, as in [2].

Since

a ¯

m

1

,

n

1

,

m

,

j

= ¯ a

m

1

,

n

1

,

i

,

n

= ¯ a

m

,

n

1

,

i

,

n

= ¯ a

m

1

,

n

,

m

,

n

= 0 . But b

mn

= s

m

1

,

n

1

s

m

1

,

n

s

m

,

n

1

+ s

mn

, so

11

y

m

1

,

n

1

=

m

X

i

=

0 n

X

j

=

0

a ˆ

mnij

λ

ij

( s

i

1

,

j

1

s

i

1

,

j

s

i

,

j

1

+ s

ij

)

=

m

1

X

i

=

0 n

1

X

j

=

0

a ˆ

m

,

n

,

i

+

1

,

j

+

1

λ

i

+

1

.

j

+

1

s

ij

m

1

X

i

=

0 n

X

j

=

0

ˆ a

m

,

n

,

i

+

1

,

j

λ

i

+

1

,

j

s

ij

m

X

i

=

0 n

1

X

j

=

0

a ˆ

m

,

n

,

i

,

j

+

1

λ

i

,

j

+

1

s

ij

+

m

X

i

=

0 n

X

j

=

0

a ˆ

mnij

λ

ij

s

ij

=

m

1

X

i

=

0 n

1

X

j

=

0

ij

a

mnij

λ

ij

) s

ij

m

1

X

i

=

0

a ˆ

m

,

n

,

i

+

1

,

n

λ

i

+

1

,

n

s

in

n

1

X

j

=

0

a ˆ

m

,

n

,

m

,

j

+

1

λ

m

,

j

+

1

,

n

+

1

s

mj

+

n

X

j

=

0

a ˆ

mnmj

λ

mj

s

mj

+

m

1

X

i

=

0

a ˆ

mnin

λ

in

s

in

=

m

1

X

i

=

0 n

1

X

j

=

0

ij

a

mnij

λ

ij

) s

ij

+

m

1

X

i

=

0

( ∆

i0

a ˆ

mnin

λ

in

) s

in

+

n

1

X

j

=

0

( ∆

0j

a ˆ

mnmj

λ

mj

) s

mj

+ ˆ a

mnmn

λ

mn

s

mn

. (4)

Also we may write

i 0

a ˆ

mnin

λ

in

= λ

in

i 0

a ˆ

mnin

+ ˆ a

m

,

n

,

i

+

1

,

n

i 0

λ

in

, and

0j

a ˆ

mnmj

λ

mj

= λ

mj

0j

a ˆ

mnmj

+ ˆ a

m

,

n

,

m

,

j

+

1

0j

λ

mj

, so that

m

1

X

i

=

0

( ∆

i0

ˆ a

mnin

λ

in

) s

in

+

n

1

X

j

=

0

( ∆

0j

a ˆ

mnmj

λ

mj

) s

mj

=

m

1

X

i

=

0

[ λ

in

i0

a ˆ

mnin

+ ˆ a

m

,

n

,

i

+

1

,

n

i0

λ

in

] s

in

+

n

1

X

j

=

0

[ λ

mj

0j

ˆ a

mnmj

+ ˆ a

m

,

n

,

m

,

j

+

1

0j

λ

mj

] s

mj

. (5)

(3)

We shall need the following lemma.

Lemma 1. Let { u

ij

} , {v

ij

} be two double sequences. Then

ij

( u

ij

v

ij

) = v

ij

ij

u

ij

+ ( ∆

0j

u

i

+

1

,

j

)( ∆

i 0

v

ij

) + ( ∆

i0

u

i

,

j

+

1

)( ∆

0j

v

ij

) + u

i

+

1

,

j

+

1

ij

v

ij

. (6) Proof. Just expand the right-hand side of (5). 

Theorem 1. Let A be a doubly triangular matrix with nonnegative entries satisfying (i) ∆

11

a

m

1

,

n

1

,

i

,

j

0,

(ii) P

n

ν=

0

a

mni

ν = P

n

1

ν=

0

a

m

,

n

1

,

i

,ν = b ( m , i ), P

m

µ=

0

a

mn

µ

j

= P

m

1

µ=

0

a

m

1

,

n

,µ,

j

= a ( n , j ), (iii) mna

mnmn

= O ( 1 ) ,

(iv) a

mnij

≥ max { a

m

,

n

+

1

,

i

,

j

, a

m

+

1

,

n

,

i

,

j

} for mi , nj, and i , j = 0 , 1 , . . . , (v) P

m

i

=

0

P

n

j

=

0

a

mnij

= O ( 1 ) .

If the sequence { s

mn

} is bounded and sequence { λ

mn

} is a double sequence such that (vi) P ∞

i

=

1

P ∞

j

=

1

a

mnij

| λ

ij

|

k

< ∞ , (vii) P

m

1

i

=

0

P

n

1

j

=

0

|

0j

λ

ij

| = O ( 1 ) , (viii) P ∞

i

=

0

P ∞

j

=

0

|

i0

λ

ij

| < ∞ , (ix) P

m

1

i

=

0

P

n

1

j

=

0

|

ij

λ

ij

| = O ( 1 ) , and (x) P

m

m

=

1

P

n

n

=

1

| λ

mn

| = O ( 1 ) . Then the series P P

b

mn

λ

mn

is summable | A |

k

, k1.

Proof. In order to prove the theorem it is necessary, from (2), to show that

X

m

=

1

X

n

=

1

( mn )

k

1

|

11

y

mn

|

k

< ∞.

From (6),

ij

a

mnij

λ

ij

) = λ

ij

ij

a

mnij

) + ( ∆

0j

a ˆ

m

,

n

,

i

+

1

,

j

)( ∆

i0

λ

ij

) + ( ∆

i 0

a ˆ

m

,

n

,

i

,

j

+

1

)( ∆

0j

λ

ij

) + ˆ a

m

,

n

,

i

+

1

,

j

+

1

ij

λ

ij

. (7) Using (7),

m

1

X

i

=

0 n

1

X

j

=

0

ij

a

mnij

λ

ij

) s

ij

=

m

1

X

i

=

0 n

1

X

j

=

0

 λ

ij

( ∆

ij

a ˆ

mnij

) + ( ∆

0j

a ˆ

m

,

n

,

i

+

1

,

j

)( ∆

i0

λ

ij

)

+ ( ∆

i 0

a ˆ

m

,

n

,

i

,

j

+

1

)( ∆

0j

λ

ij

) + ˆ a

m

,

n

,

i

+

1

,

j

+

1

( ∆

ij

λ

ij

) s

ij

. (8) Therefore, using (4), (5) and (8), we write

11

y

m

1

,

n

1

=

9

X

r

=

1

T

mnr

, say .

From Minkowski’s inequality, it is sufficient to show that

X

m

=

1

X

n

=

1

( mn )

k

1

| T

mnr

|

k

< ∞, for r = 1 , 2 , . . . , 9 . Using Hólder’s inequality,

I

1

:=

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

| T

mn1

|

k

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

m

1

X

i

=

0 n

1

X

j

=

0

| ( ∆

ij

a ˆ

mnij

)||λ

ij

|| s

ij

|

!

k

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

m

1

X

i

=

0 n

1

X

j

=

0

| ( ∆

ij

a ˆ

mnij

)||λ

ij

|

k

| s

ij

|

k

!

m

1

X

i

=

0 n

1

X

j

=

0

| ( ∆

ij

a ˆ

mnij

)|

!

k

1

.

(4)

From (3),

a ˆ

mnij

=

11

¯ a

m

1

,

n

1

,

i

,

j

= ¯ a

m

1

,

n

1

,

i

,

j

− ¯ a

m

,

n

1

,

i

,

j

− ¯ a

m

1

,

n

,

i

,

j

+ ¯ a

mnij

=

m

1

X

µ=

i n

1

X

ν=

j

a

m

1

,

n

1

,

i

,

j

m

X

µ=

i n

1

X

ν=

j

a

m

,

n

1

,

i

,

j

=

m

1

X

µ=

i n

X

ν=

j

a

m

1

,

n

,

i

,

j

+

m

X

µ=

i n

X

ν=

j

a

mnij

,

since a

m

1

,

n

,

m

,ν = a

m

,

n

1

,µ,

n

= 0.

Using (1) and property (ii),

a ˆ

mnij

=

m

X

µ=

i n

X

ν=

j

( a

m

1

,

n

1

,µ,ν − a

m

,

n

1

,µ,ν − a

m

1

,

n

,µ,ν + a

m

,

n

,µ,ν )

=

m

1

X

µ=

i

"

b ( m − 1 , µ) −

j

1

X

ν=

0

a

m

1

,

n

1

,µ,ν − b ( m , µ) +

j

1

X

ν=

0

a

m

,

n

1

,µ,ν

b ( m − 1 , µ) +

j

1

X

ν=

0

a

m

1

,

n

,µ,ν + b ( m , µ) −

j

1

X

ν=

0

a

m

,

n

,µ,ν

#

=

i

1

X

µ=

0 j

1

X

ν=

0

11

a

m

1

,

n

1

,µ,ν ≥ 0 , (9)

as in [2]. Using (1) and (9),

ij

a ˆ

mnij

=

i

1

X

µ=

0 j

1

X

ν=

0

i

X

µ=

0 j

1

X

ν=

0

i

1

X

µ=

0 j

X

ν=

0

+

i

X

µ=

0 j

X

ν=

0

!

11

a

m

1

,

n

1

,µ,ν

= −

j

1

X

ν=

0

11

a

m

1

,

n

1

,

i

,ν +

j

X

ν=

0

11

a

m

1

,

n

1

,

i

=

11

a

m

1

,

n

1

,

i

,

j

≥ 0 , (10)

and, from property (ii),

m

1

X

i

=

0 n

1

X

j

=

0

ij

a ˆ

mnij

=

m

1

X

i

=

0 n

1

X

n

=

0

a

m

1

,

n

1

,

i

,

j

a

m

,

n

1

,

i

,

j

a

m

1

,

n

,

i

,

j

+ a

mnij



=

m

1

X

i

=

0

b ( m − 1 , i ) − b ( m , i ) − b ( m − 1 , i ) + a

m

1

,

n

,

i

,

n

+ b ( m , i ) − a

mnin



=

m

1

X

i

=

0

( a

m

1

,

n

,

i

,

n

a

mnin

)

= a ( n , n ) − a ( n , n ) + a

mnmn

. Using condition (iii), and since { s

mn

} is bounded

I

1

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mna

mnmn

)

k

1

m

1

X

i

=

0 n

1

X

j

=

0

|

ij

a ˆ

mnij

|| λ

ij

|

k

= O ( 1 )

m

X

i

=

0 N

X

j

=

0

| λ

ij

|

k

M

+

1

X

m

=

i

+

1 N

+

1

X

n

=

j

+

1

|

ij

ˆ a

mnij

| .

(5)

Using (10) and property (vi),

0 ≤

M

+

1

X

m

=

i

+

1 N

+

1

X

n

=

j

+

1

|

ij

a ˆ

m

,

n

,

i

,

j

|

=

M

+

1

X

m

=

i

+

1 N

+

1

X

n

=

j

+

1

( a

m

1

,

n

1

,

i

,

j

a

m

,

n

1

,

i

,

j

a

m

1

,

n

,

i

,

j

+ a

mnij

)

=

M

+

1

X

m

=

i

+

1

( a

m

1

,

j

,

i

,

j

a

m

1

,

N

+

1

,

i

,

j

a

mjij

+ a

m

,

N

+

1

,

i

,

j

)

= a

ijij

a

M

+

1

,

j

,

i

,

j

a

i

,

N

+

1

,

i

,

j

+ a

M

+

1

,

N

+

1

,

i

,

j

a

ijij

. (11)

Finally, using property (vi),

I

1

= O ( 1 )

M

X

i

=

0 N

X

j

=

0

a

ijij

| λ

ij

|

k

= O ( 1 ).

Again, using Hölder’s inequality,

I

2

:=

M

+

1

X

m

1 N

+

1

X

n

=

1

( mn )

k

1

| T

mn2

|

k

=

M

+

1

X

m

1 N

+

1

X

n

=

1

( mn )

k

1

m

1

X

i

=

0 n

1

X

j

=

0

( ∆

0j

a ˆ

m

,

n

,

i

+

1

,

j

)( ∆

i 0

λ

ij

) s

ij

k

= O ( 1 )

M

+

1

X

m

1 N

+

1

X

n

=

1

( mn )

k

1

"

m

1

X

i

=

0 n

1

X

j

=

0

|

0j

ˆ a

m

,

n

,

i

+

1

,

j

k

i 0

λ

ij

k s

ij

|

k

# "

m

1

X

i

=

0 n

1

X

j

=

0

|

0j

a ˆ

m

,

n

,

i

+

1

,

j

||

i 0

λ

ij

|

#

k

1

.

Using (9) and condition (ii),

0 ≤ ˆ a

m

,

n

,

i

+

1

,

j

=

i

X

µ=

0 j

1

X

ν=

0

11

a

m

1

,

n

1

,µ,ν

m

1

X

µ=

0 n

1

X

ν=

0

( a

m

1

,

n

1

,µ,ν − a

m

,

n

1

,µ,ν − a

m

1

,

n

,µ,ν + a

m

,

n

,µ,ν )

=

m

1

X

µ=

0

b ( m − 1 , µ) − b ( m , µ) − b ( m − 1 , µ) + a

m

1

,

n

,µ,

n

+ b ( m , µ) − a

mn

µν 

=

m

1

X

µ=

0

( a

m

1

,

n

,µ,

n

a

mn

µν )

= a ( n , n ) − a ( n , n ) + a

mnmn

. Since

|

0j

a ˆ

m

,

n

,

i

+

1

,

j

| ≤ ˆ a

m

,

n

,

i

+

1

,

j

+ ˆ a

m

,

n

,

i

+

1

,

j

+

1

, using conditions (iii) and (viii),

I

2

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mna

mnmn

)

k

1

m

1

X

i

=

0 n

1

X

j

=

0

|

0j

a ˆ

m

,

n

,

i

+

1

,

j

k

i 0

λ

ij

k s

ij

|

k

= O ( 1 )

M

X

i

=

0 N

X

j

=

0

|

i 0

λ

ij

|| s

ij

|

k

M

+

1

X

m

=

i

+

1 N

+

1

X

n

=

j

+

1

|

0j

a ˆ

m

,

n

,

i

+

1

,

j

| .

(6)

From (9),

M

+

1

X

m

=

i

+

1 N

+

1

X

n

=

j

+

1

|

0j

a ˆ

m

,

n

,

i

+

1

,

j

| = O ( 1 )

M

+

1

X

m

=

i

+

1 N

+

1

X

n

=

j

+

1

a

m

,

n

,

i

+

1

,

j

+ ˆ a

m

,

n

,

i

+

1

,

j

+

1

)

= O ( 1 )

M

+

1

X

m

=

i

+

1 N

+

1

X

n

=

j

+

1 i

X

µ=

0 j

1

X

ν=

0

11

a

m

1

,

n

1

,µ,ν +

i

X

µ=

0 j

X

ν=

0

11

a

m

1

,

n

1

,µ,ν

! .

Using conditions (i), (ii), and (v),

M

+

1

X

m

=

i

+

1 N

+

1

X

n

=

j

+

1 i

X

µ=

0 j

1

X

ν=

0

11

a

m

1

,

n

1

,µ,ν =

i

X

µ=

0 j

1

X

ν=

0 M

+

1

X

m

=

i

+

1 N

+

1

X

n

=

j

+

1

a

m

1

,

n

1

,µ,ν − a

m

,

n

1

,µ,ν − a

m

1

,

n

,µ,ν + a

m

,

n

,µ,ν 

=

i

X

µ=

0 j

1

X

ν=

0 M

+

1

X

m

=

i

+

1

a

m

1

,

j

,µ,ν − a

m

1

,

N

+

1

,µ,ν − a

m

,

j

,µ,ν + a

m

,

N

+

1

,µ,ν 

=

i

X

µ=

0 j

1

X

ν=

0

a

ij

µνa

M

+

1

,

j

,µ,ν − a

i

,

N

+

1

,µ,ν + a

M

+

1

,

N

+

1

,µ,ν 

=

i

X

µ=

0

"

b ( i , µ) − a

ij

µ

j

b ( M + 1 , µ) + a

M

+

1

,

j

,µ,

j

b ( i , µ) +

N

+

1

X

ν=

j

a

i

,

N

+

1

,µ,ν + b ( M + 1 , µ) −

N

+

1

X

ν=

j

a

M

+

1

,

N

+

1

,µ,ν

#

=

i

X

µ=

0

a

ij

µ

j

+ a

M

+

1

.

j

.µ,

j

+

N

+

1

X

ν=

j

a

i

,

N

+

1

,µ,ν − a

M

+

1

,

N

+

1

,µ,ν 

!

= − a ( j , j ) + a ( j , j ) −

M

+

1

X

µ=

i

+

1

a

M

+

1

,

j

,µ,

j

+

N

+

1

X

ν=

j

a ( N + 1 , ν) − a ( N + 1 , ν) +

M

+

1

X

µ=

i

+

1

a

M

+

1

,

N

+

1

,µ,ν

!

M

+

1

X

µ=

i

+

1 N

+

1

X

ν=

j

a

M

+

1

,

N

+

1

,µ,ν = O ( 1 ).

Similarly,

M

+

1

X

m

=

i

+

1 N

+

1

X

n

=

j

+

1 i

X

µ=

0 j

X

ν=

0

11

a

m

1

,

n

1

,µ,ν = O ( 1 ), (12) and hence I

2

= O ( 1 ) by condition (viii).

Using condition (viii), it can be shown that I

3

= O ( 1 ) . Using Hölder’s inequality,

I

4

:=

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

| T

mn4

|

k

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1 m

1

X

i

=

0 n

1

X

j

=

0

a

m

,

n

,

i

+

1

,

j

+

1

||

ij

λ

ij

| s

ij

!

k

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

"

m

1

X

i

=

0 n

1

X

j

=

0

a

m

,

n

,

i

+

1

,

j

+

1

k

ij

λ

ij

k s

ij

|

k

# "

m

1

X

i

=

0 n

1

X

j

=

0

a

m

,

n

,

i

+

1

,

j

+

1

||

ij

λ

ij

|

#

k

1

. Again from (9) and condition (ii),

0 ≤ ˆ a

m

,

n

,

i

+

1

,

j

+

1

=

i

X

µ=

0 j

X

ν=

0

11

a

m

1

,

n

1

,µ,ν

m

1

X

µ=

0 n

1

X

ν=

0

( a

m

1

,

n

1

,µ,ν − a

m

,

n

1

,µ,ν a

m

1

,

n

,µ,ν + a

mn

µν )

(7)

=

m

1

X

µ=

0

b ( m − 1 , µ) − b ( m , µ) − b ( m − 1 , µ) + a

m

1

,

n

,µ,

n

+ b ( m , µ) − a

mn

µ

n



=

m

1

X

µ=

0

( a

m

1

,

n

,µ,

n

a

mn

µ

n

)

= a ( n , n ) − a ( n , n ) + a

mnmn

. Using properties (iii), (ii), and (ix),

I

4

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mna

mnmn

)

k

1

"

m

1

X

i

=

0 n

1

X

j

=

0

a

m

,

n

,

i

+

1

,

j

+

1

k

ij

λ

ij

k s

ij

|

k

# "

m

1

X

i

=

0 n

1

X

j

=

0

|

ij

λ

ij

|

#

k

1

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

"

m

1

X

i

=

0 n

1

X

j

=

0

a

m

,

n

,

i

+

1

,

j

+

1

||

ij

λ

ij

|

#

= O ( 1 )

N

X

i

=

0 N

X

j

=

0

|

ij

λ

ij

| X

ij

M

+

1

X

m

=

i

+

1 N

+

1

X

n

=

j

+

1

a

m

,

n

,

i

+

1

,

j

+

1

|

= O ( 1 )

m

1

X

i

=

0 N

X

j

=

0

|

ij

λ

ij

| = O ( 1 ).

Using (5) and Hölder’s inequality,

I

5

:=

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

| T

mn5

|

k

=

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

m

1

X

i

=

0

λ

in

i 0

ˆ a

mnin

s

in

k

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

m

1

X

i

=

0

| λ

in

||

i0

a ˆ

mnin

| s

in

!

k

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

"

m

1

X

i

=

0

|

i0

a ˆ

mnin

| (|λ

in

s

in

| )

k

# "

m

1

X

i

=

0

|

i0

a ˆ

mnin

|

#

k

1

. From (3),

i0

a ˆ

mnin

=

i 0

11

¯ a

m

1

,

n

1

,

i

,

n

=

i 0

a

m

1

,

n

1

,

i

,

n

− ¯ a

m

,

n

1

,

i

,

n

− ¯ a

m

1

,

n

,

i

,

n

+ ¯ a

mnin

)

=

i 0

m

1

X

µ=

i

a

m

1

,

n

,ν,

n

+

m

X

µ=

i

a

mn

µ

n

!

= − a

m

1

,

n

,

i

,

n

+ a

mnin

≤ 0 . (13)

Using property (ii),

m

1

X

i

=

0

|

i0

a ˆ

mnin

| =

m

1

X

i

=

0

( a

m

1

,

n

1

,

i

,

n

a

mnin

)

= a ( n , n ) − a ( n , n ) + a

mnmn

. Using property (iii),

I

5

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mna

mnmn

)

k

1

"

m

1

X

i

=

0

|

i0

a ˆ

mnin

|| λ

in

|

k

#

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1 m

1

X

i

=

0

|

i0

a ˆ

mnin

|| λ

in

|

k

= O ( 1 )

N

+

1

X

n

=

1 M

X

i

=

0

| λ

in

|

k

M

+

1

X

m

=

i

+

1

|

i 0

a ˆ

mnin

| .

(8)

From (13),

M

+

1

X

m

=

i

+

1

|

i 0

a ˆ

mnin

| =

M

+

1

X

m

=

i

+

1

( a

m

1

,

n

,

i

,

n

a

mnin

)

= a

inin

a

M

+

1

,

n

,

i

,

n

a

inin

. Therefore, by property (vi), I

5

= O ( 1 ) . Using Hölder’s inequality

I

6

:=

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

| T

mn6

|

k

=

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

m

1

X

i

=

0

a ˆ

m

,

n

,

i

+

1

,

n

( ∆

i 0

λ

i n

) s

in

k

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

m

1

X

i

=

0

a

m

,

n

,

i

+

1

,

n

|| ( ∆

i 0

λ

in

)| s

in

!

k

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mn )

k

1

"

m

1

X

i

=

0

a

m

,

n

,

i

+

1

,

n

k

i 0

λ

in

k s

in

|

k

# "

m

1

X

i

=

0

a

m

,

n

,

i

+

1

,

n

||

i 0

λ

in

|

#

k

1

.

Using (3) and condition (ii),

a ˆ

m

,

n

,

i

+

1

,

n

= ¯ a

m

1

,

n

1

,

i

+

1

,

n

− ¯ a

m

,

n

1

,

i

+

1

,

n

− ¯ a

m

1

,

n

,

i

+

1

,

n

+ ¯ a

m

,

n

,

i

+

1

,

n

= −

m

1

X

µ=

i

+

1

a

m

1

,

n

,µ,

n

+

m

X

µ=

i

+

1

a

m

,

n

,µ,

n

= − a ( n , n ) +

i

X

µ=

0

a

m

1

,

n

,µ,

n

+ a ( n , n ) −

i

X

µ=

0

a

m

,

n

,µ,

n

≥ 0

m

1

X

µ=

0

( a

m

1

,

n

,µ,

n

a

m

,

n

,µ,

n

)

= a ( n , n ) − a ( n , n ) + a

mnmn

. (14)

Thus, using conditions (vii) and (iii),

I

6

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

( mna

mnmn

)

k

1

"

m

1

X

i

=

0

a

m

,

n

,

i

+

1

,

n

k

i 0

λ

in

k s

in

|

k

# "

m

1

X

i

=

0

|

i 0

λ

in

|

#

= O ( 1 )

M

+

1

X

m

=

1 N

+

1

X

n

=

1

"

m

1

X

i

=

0

a

m

,

n

,

i

+

1

,

n

||

i 0

λ

in

|

#

= O ( 1 )

M

X

i

=

0 N

+

1

X

n

=

1

|

i 0

λ

in

|

M

+

1

X

m

=

i

+

1

a

m

,

n

,

i

+

1

,

n

| .

Again using (9) and condition (ii),

M

+

1

X

m

=

i

+

1

a

m

,

n

,

i

+

1

,

n

| =

M

+

1

X

m

=

i

+

1 i

X

µ=

0

( a

m

1

,

n

,µ,

n

a

m

,

n

,µ,

n

)

=

i

X

µ=

0 M

+

1

X

m

=

i

+

1

( a

m

1

,

n

,µ,

n

a

m

,

n

,µ,

n

)

=

i

X

µ=

0

( a

i n

µ

n

a

M

+

1

,

n

,µ,

n

) ≤ a ( n , n ) = O ( 1 ).

Using condition (viii), I

6

= O ( 1 ) .

Referanslar

Benzer Belgeler

Istanbul Ticaret University, Department of Mathematics, Uskudar, Istanbul, Turkey Received 17 July 2006; received in revised form 28 October 2006; accepted 12 December

Savas, A summability factor theorem for absolute summability involving quasi-monotone

Department of Mathematics, Istanbul Ticaret University, ¨ Usk¨udar, Istanbul, Turkey Received 27 September 2007; accepted 17 October

The analysis of double sequences of random variables via four-dimensional matrix transformations begins with the following theorem.. However, it should be noted that the

Whittaker, “The absolute summability of a series,” Proceedings of the Edinburgh Mathematical Society, vol.. Das, “A Tauberian theorem for absolute summability,” Proceedings of

As special summability methods T we consider weighted mean and double Ces`aro, (C, 1, 1), methods.. As a corollary we obtain necessary and sufficient conditions for a double triangle T

Abstract. In this paper, a general theorem on |A, δ| k - summability factors of infinite series has been proved under weaker conditions... AMS subject classifications:

Is there a collection Υ of RH-regular matrix methods which are consistent and such that every bounded double sequence is summable by at least one method in the collection1. Similar