• Sonuç bulunamadı

Second, we show a formula of the fourth order of convolution sums of divisor functions expressed by their divisor functions and linear combination of Bernoulli polynomials

N/A
N/A
Protected

Academic year: 2023

Share "Second, we show a formula of the fourth order of convolution sums of divisor functions expressed by their divisor functions and linear combination of Bernoulli polynomials"

Copied!
18
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

Vol. 22 (2021), No. 2, pp. 731–748 DOI: 10.18514/MMN.2021.3369

RELATIONS OF COMBINATORIC CONVOLUTION SUMS FOR RESTRICTED DIVISOR FUNCTIONS AND BERNOULLI

POLYNOMIALS

DAEYEOUL KIM AND NAZLI YILDIZ IKIKARDES Received 03 June, 2020

Abstract. In this paper, we study combinatoric convolution sums involving divisor functions.

First, we establish some explicit formulas for certain combinatoric convolution sums of divisor functions derived from Bernoulli polynomials. Second, we show a formula of the fourth order of convolution sums of divisor functions expressed by their divisor functions and linear combination of Bernoulli polynomials.

2010 Mathematics Subject Classification: 11A05, 33E99

Keywords: Bernoulli Polynomials, Convolution sums, Divisor functions, Linear combination of polynomials

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The symbols N, Z and R denote the set of natural numbers, the ring of integers and the field of real numbers, respectively. Over the years Bernoulli polynomials have been used to prove important mathematical theorems. Since the 17th century, many mathematicians in different fields have been interested in Bernoulli polynomials. The Bernoulli polynomials Bk(x), which are usually defined by the exponential generating function

text et− 1=

k=0

Bk(x) k! tk,

play an important and quite mysterious role in mathematics and various fields like analysis, number theory and differential topology. The Bernoulli numbers Bk are defined to be Bk:= Bk(0).

The Bernoulli polynomial [7] is expressed through the respective numbers Bn(x) =

n

k=0

n k

 Bkxn−k,

This work was supported by The Research Fund of Balikesir University, Project No: 2014/55.

© 2021 Miskolc University Press

(2)

Bn(x + y) =

n

k=0

n k



Bk(x)yn−k, Bn(x) = nBn−1(x),

Bn(1 − x) = (−1)nBn(x) and Bn(1 + x) − Bn(x) = nxn−1. For n ∈ N and k ∈ Z, we define two divisor functions

σk(n) :=

d|n

dk, σˆk(n) :=

d|n

(−1)nd−1dk, σk(n) :=

d|n

n dodd

dk.

The identity

n−1

k=1

σ(k)σ(n − k) = 5

12σ3(n) + 1 12−1

2n

 σ(n)

for the basic convolution sum first appeared in a letter from Besge to Liouville in 1862 ([3]). Hahn [6, (4.8)] considered

36

m<n

σ(m) ˆˆ σ(n − m) =

(−3 ˆσ(n) + 3eσ3(n), if n is odd,

−3 ˆσ(n) − 5eσ3(n) + 4eσ3(n2), if n is even. (1.1) It is well-known that ˆσk(n) = σk(n) − 2σk(n2) ([6, (1.13)]).

In this article, we are trying to focus on the combinatorial convolution sums. For positive integers k, l, n, p and q the combinatorial convolution sums

k−1 s=0

 2k 2s + 1

n−1

m=1

σˆ2k−2s−1(m) ˆσ2s+1(n − m) and

1≤m≤p−1 1≤m≤q−1 a,b,c,d odd a+b+c+d=2l

 2l a, b, c, d



σˆa(m) ˆσb(p − m) ˆσc(m) ˆσd(q − m)

can be evaluated explicitly in terms of divisor functions and a sum involving Bernoulli polynomials.

We are motivated by Ramanujan’s recursion formula for sums of the product of two Eisenstein series [2] and its proof, and also the following identities ([1],[4],[9]):

k−1

s=0

 2k 2s + 1

N−1

m=1

σ2k−2s−1(m)σ2s+1(N − m)

=2k + 3

4k + 2σ2k+1(N) + k 6− N



σ2k−1(N)

(3)

+ 1 2k + 1

k

j=2

2k + 1 2 j



B2 jσ2k+1−2 j(N).

Using these new formulas and addition theorem of Bernoulli polynomials, we de- rive the explicit formulas for quadnomial convolution sums of divisor functions. We define ˆB2k+1(n) that if n is even, then ∑d|nB2k+1(d) − 2 ∑d|n2B2k+1(d) and if n is odd, then ∑d|nB2k+1(d). Similarly, ˆˆB2k+1(n) that if n is even, then ∑d|n2k+1(d) − 2 ∑d|n22k+1(d) and if n is odd, then ∑d|n2k+1(d). More precisely, we prove the following results.

Theorem 1. If k ≥ 1 and n ≥ 2, then

k−1

s=0

 2k 2s + 1

n−1

m=1

ˆ

σ2k−2s−1(m) ˆσ2s+1(n − m)

=1

2k+1(n) −1

2σˆ2k(n) − 1

2k + 1Bˆ2k+1(n).

Theorem 2. If k ≥ 2 and N ≥ 1, then

k−1

s=1

 2k 2s + 1

2N−1

m=1

(−1)mσˆ2k−2s−1(m) ˆσ2s+1(2N − m)

=1

2k+1(N) −1

2σˆ2k(2N) − 1

2k + 1Bˆ2k+1(2N).

Corollary 1. For N ≥ 1, we have

2N−1

mm=1odd leven

ˆ

σl−1(m) ˆσ(2N − m)

= 1

2l[σl+1(N) + σl+1(2N)] −1

lσˆl(2N) − 2

l(l + 1)Bˆl+1(2N).

Corollary 2. For k ≥ 2 and N ≥ 1, we have

k−1

s=1

 2k 2s + 1

2N−1

m=1 m odd

ˆ

σ2k−2s−1(m) ˆσ2s+1(2N − m) = 22k−1σ2k+1(N)

−1

4[σ2k+1(N) + σ2k+1(2N)] −1

2σˆ2k(2N) + 1

2k + 1Bˆ2k+1(2N).

Theorem 3. Let m ∈ N, m ≥ 1 and x, y ∈ R. Then we have

m−1

k=1

2m 2k

 B2k+1(x)B2m−2k+1(y)

(2k + 1)(2m − 2k + 1) = 1

4m + 4{B2m+2(y − x)

−B2m+2(x + y)} − 1

2m + 1{xB2m+1(y) + yB2m+1(x)}

(4)

+ 1

4m + 2{B2m+1(x) + B2m+1(y) + (x + y − 1)B2m+1(x + y) +(x − y)B2m+1(y − x)} .

The following theorem gives a formula of the fourth order of convolution sums of divisor functions expressed by their divisor functions and linear combination of Bernoulli polynomials.

Theorem 4. Let l, p, q ∈ N with greater than 1. Then

1≤m≤p−1 1≤m≤q−1 a,b,c,d odd a+b+c+d=2l

 2l a, b, c, d



σˆa(m) ˆσb(p − m) ˆσc(m) ˆσd(q − m)

= 1

8(2l + 1)n ˆˆB2l+1(q + p + 1) + ˆˆB2l+1(q − p + 1) − ˆˆB2l+1(q + p) − ˆˆB2l+1(q − p) +

d|p d|q

ddB2l+1(d+ d + 1) + B2l+1(d− d + 1) − B2l+1(d+ d) − B2l+1(d− d)

d|p

dBˆ2l+1(q + d + 1) + ˆB2l+1(q − d + 1) − ˆB2l+1(q + d) − ˆB2l+1(q − d)

d|q

dBˆ2l+1(d+ p + 1) + ˆB2l+1(d− p + 1) − ˆB2l+1(d+ p) − ˆB2l+1(d− p) )

+ 1

4(2l + 1) n

2 ˆˆB2l+1(p + q) + ˆˆB2l+1(p − q) + ˆˆB2l+1(q − p)

d|p

dBˆ2l+1(q + d) + ˆB2l+1(q − d) −

d|q

dBˆ2l+1(p + d) + ˆB2l+1(p − d) )

+ 1

2(2l + 1) n

(p + q − 1) ˆˆB2l+1(p + q) + (p − q) ˆˆB2l+1(q − p)

− (2p − 1) ˆˆB2l+1(q) − (2q − 1) ˆˆB2l+1(p) + ˆB2l+1(p)h

σ1(q) − σ0(q) + 2σ0q 2

i + ˆB2l+1(q)

h

σ1(p) − σ0(p) + 2σ0

p 2

io + 1

1(p) − σ1

p 2

 h

σ2l+1(q) − σ2l(q) + 2σ2l

q 2

i

+h

σ2l+1(p) − σ2l(p) + 2σ2lp 2

i 1

1(q) − σ1q 2



(5)

− 1

4(l + 1)h ˆˆB2l+2(p + q) − ˆˆB2l+2(q − p)i .

2. PROPERTIES OF COMBINATORIC CONVOLUTION SUMS OF DIVISOR FUNCTIONS DERIVED FROMBERNOULLI POLYNOMIALS

The purpose of this section is to give proofs of the main results. Also, we would like to enrich this section with examples. To proof of the theorems, we need the auxiliary results and lemmas.

Lemma 1. ([5]) Let k, n be positive integers. Then

k

j=2

2k + 1 2 j



B2 jσˆ2k+1−2 j(n) = (2k + 1)σ2k+1(n)

− 2k + 3

2  ˆσ2k+1(n) − k(2k + 1)

6  ˆσ2k−1(n)

− (2k + 1)

k−1

s=0

 2k 2s + 1

n−1

m=1

ˆ

σ2k−2s−1(m) ˆσ2s+1(n − m).

Lemma 2. ([8]) Let m∈ N and x, y ∈ R. Then we have (a)

m

k=0

m k

 Bk+1(x) k+ 1

Bm−k+1(y) m− k + 1

= (x + y − 1)Bm+1(x + y)

m+ 1 −Bm+2(x + y)

m+ 2 − Bm+2(x)

(m + 1)(m + 2)− Bm+2(y) (m + 1)(m + 2). (b)

m

k=0

(−1)km k

 Bk+1(x) k+ 1

Bm−k+1(y) m− k + 1

= (x − y)Bm+1(y − x)

m+ 1 +Bm+2(y − x)

m+ 2 + Bm+2(1 − x)

(m + 1)(m + 2)+ Bm+2(y) (m + 1)(m + 2).

Now we are ready to prove the main results of the article.

Proof of the Theorem1. Consider T :=

k

j=2

2k + 1 2 j



B2 jσˆ2k+1−2 j(n)

=

2k+1

j=0

2k + 1 j



Bjσˆ2k+1− j(n) −

k

j=0

2k + 1 2 j + 1



B2 j+1σˆ2k+1−(2 j+1)(n)

(6)

−2k + 1 0



B0σˆ2k+1(n) −2k + 1 2



B2σˆ2k+1−2(n).

It is well-known that B0= 1, B1= −12, B2=16 and B2 j+1= 0 ( j ≥ 1). Thus

T =

2k+1

j=0

2k + 1 j



Bjσˆ2k+1− j(n) −2k + 1 0



B0σˆ2k+1(n)

−2k + 1 1



B1σˆ2k(n) −2k + 1 2



B2σˆ2k−1(n)

=

2k+1

j=0

2k + 1 j



Bjσˆ2k+1− j(n) − ˆσ2k+1(n) +

 k+1

2



σˆ2k(n) −k(2k + 1)

6 σˆ2k−1(n).

(2.1) Using Bn(x) = ∑nl=0 nlBlxn−l, we obtain

2k+1

j=0

2k + 1 j

 Bj



σ2k+1− j(n) − 2σ2k+1− j

n 2



=

2k+1

j=0

2k + 1 j

 Bj

d|n

d2k+1− j− 2

d|n2

d2k+1− j

=

d|n

B2k+1(d) − 2

d|n2

B2k+1(d)

= ˆB2k+1(n).

(2.2) Combining (2.1), Lemma1and (2.2) we deduce that

2k+1

j=0

2k + 1 j



Bjσˆ2k+1− j(n) − ˆσ2k+1(n) + (k +1

2) ˆσ2k(n) −k(2k + 1)

6 σˆ2k−1(n)

= ˆB2k+1(n) − ˆσ2k+1(n) + (k +1

2) ˆσ2k(n) −k(2k + 1)

6 σˆ2k−1(n)

− (2k + 1)σ2k+1(n) + 2k + 3 2



σˆ2k+1(n) + k(2k + 1) 6



σˆ2k−1(n)

= −(2k + 1)

k−1

s=0

 2k 2s + 1

n−1

m=1

ˆ

σ2k−2s−1(m) ˆσ2s+1(n − m),

(7)

and we obtain

k−1

s=0

 2k 2s + 1

n−1

m=1

σˆ2k−2s−1(m) ˆσ2s+1(n − m)

= 1

2k+1(n) −1

2σˆ2k(n) − 1

2k + 1Bˆ2k+1(n).

□ Remark1. With k = 1 in Theorem1, we recover (1.1).

Example1. With k = 1, 2, 3 in Theorem1look as (a) Bˆ3(n) =3

3(n) −3

2σˆ2(n) − 3

n−1

m=1

σˆ1(m) ˆσ1(n − m),

(b) Bˆ5(n) =5

5(n) −5

2σˆ4(n) − 40

n−1

m=1

σˆ1(m) ˆσ3(n − m),

(c) Bˆ7(n) =7

7(n) −7

2σˆ6(n) − 84

n−1

m=1

σˆ1(m) ˆσ5(n − m)

− 140

n−1

m=1

σˆ3(m) ˆσ3(n − m).

Lemma 3. ([4]) If k≥ 1 and N ∈ N, then

k−1

s=0

 2k 2s + 1

 N

m=1

ˆ

σ2k−2s−1(2m − 1) ˆσ2s+1(2N − 2m + 1) =1

2k+1(2N).

Proof of the Theorem2. Using Theorem1, we obtain

k−1

s=0

 2k 2s + 1

2N−1

m=1

ˆ

σ2k−2s−1(m) ˆσ2s+1(2N − m) (2.3)

=1

2[σ2k+1(2N) − ˆσ2k(2N)] − 1

2k + 1Bˆ2k+1(2N).

Using (2.3) and Lemma3, we get

k−1

s=1

 2k 2s + 1

N−1

m=1

ˆ

σ2k−2s−1(2m) ˆσ2s+1(2N − 2m) (2.4)

= 1

4[σ2k+1(2N) + σ2k+1(N)] −1

2σˆ2k(2N) − 1

2k + 1Bˆ2k+1(2N).

With (2.4) and Lemma3, we get

k−1

s=1

 2k 2s + 1

2N−1

m=1

(−1)mσˆ2k−2s−1(m) ˆσ2s+1(2N − m)

(8)

=1

2k+1(N) −1

2σˆ2k(2N) − 1

2k + 1Bˆ2k+1(2N).

□ Example2. With k = 2, 3, 4 in Theorem2, we have

(a)

40B3(x)B3(y) − 6 [B3(x) + B3(y)] = −12 [xB5(y) + yB5(x)]

+ 6 [(x + y − 1)B5(x + y) + (x − y)B5(y − x)] + 5 [B6(y − x) + B6(x + y)] , (b)

B3(x)B5(y) + B5(x)B3(y) = 1

16[B8(y − x) − B8(x + y)] −1

7[xB7(y) + yB7(x)]

+ 1

14[B7(x) + B7(y) + (x + y − 1)B7(x + y) + (x − y)B7(y − x)] , (c)

B3(x)B7(y) + B7(x)B3(y) = 3

120[B10(y − x) − B10(x + y)]

− 1

12[xB9(y) + yB9(x)] + 1

24[B9(x) + B9(y) +(x + y − 1)B9(x + y) + (x − y)B9(y − x)] −21

10B5(x)B5(y).

Proof of the Corollary1. Using Theorem1and Theorem2, we obtain (2k)

2N−1

mm=1odd

σˆ2k−1(m) ˆσ(2N − m)

=1

2k+1(N) +1

2k+1(2N) − ˆσ2k(2N) − 2

2k + 1Bˆ2k+1(2N). (2.5) Replacing 2k by l in (2.5), we get proof of the corollary. □ Proof of the Corollary2. Let m is odd. Using Theorem 1 and Theorem 2, we obtain

(2k)

2N−1

mm=1odd

ˆ

σ2k−1(m) ˆσ(2N − m)

+ 2

k−1

s=1

 2k 2s + 1

2N−1

mm=1odd

ˆ

σ2k−2s−1(m) ˆσ2s+1(2N − m)

= 1

2[σ2k+1(2N) − σ2k+1(N)] . (2.6)

(9)

It is clearly known that σk(2N) = σk(2N) − σk(N) and σk(2N) = 2kσk(N). After we

used it in (2.6), we get proof of the corollary. □

Proof of the Theorem3. Replacing 2m by m in Lemma2, we get

m

k=0

2m 2k

 B2k+1(x)B2m−2k+1(y) (2k + 1)(2m − 2k + 1)

= 1

2(2m + 1){(x + y − 1)B2m+1(x + y) + (x − y)B2m+1(y − x)}

+ 1

2(2m + 2){B2m+2(y − x) − B2m+2(x + y)} . Using Bk(1 − x) = (−1)kBk(x) with k ≥ 0, we derive

m−1

k=1

2m 2k

 B2k+1(x)B2m−2k+1(y)

(2k + 1)(2m − 2k + 1)= 1

4m + 4{B2m+2(y − x) − B2m+2(x + y)}

− 1

2m + 1{xB2m+1(y) + yB2m+1(x)} + 1

4m + 2{B2m+1(x) + B2m+1(y) + +(x + y − 1)B2m+1(x + y) + (x − y)B2m+1(y − x)} .

□ Example3. With m = 2, 3, 4 in Theorem3, we have

(a)

40B3(x)B3(y) − 6 [B3(x) + B3(y)] = −12 [xB5(y) + yB5(x)]

+ 6 [(x + y − 1)B5(x + y) + (x − y)B5(y − x)] + 5 [B6(y − x) + B6(x + y)] , (b)

B3(x)B5(y) + B5(x)B3(y) = 1

16[B8(y − x) − B8(x + y)] −1

7[xB7(y) + yB7(x)]

+ 1

14[B7(x) + B7(y) + (x + y − 1)B7(x + y) + (x − y)B7(y − x)] , (c)

B3(x)B7(y) + B7(x)B3(y) = 3

120[B10(y − x) − B10(x + y)]

− 1

12[xB9(y) + yB9(x)] + 1

24[B9(x) + B9(y) +(x + y − 1)B9(x + y) + (x − y)B9(y − x)] −21

10B5(x)B5(y).

(10)

3. Divisor functions and linear combination of Bernoulli polynomials We consider the polynomial

1≤m≤p−1 1≤m≤q−1 a,b,c,d odd a+b+c+d=2l

 2l a, b, c, d

 ˆ

σa(m) ˆσb(p − m) ˆσc(m) ˆσd(q − m)

once more. Let’s call this polynomial C. Actually, the polynomials C are combina- tions of Bernoulli polynomials and divisor functions.

Proof of the Theorem4. We note that

2m 2k

 2k 2s + 1

2m − 2k 2s+ 1



= (2m)!

(2s + 1)!(2k − 2s − 1)!(2s+ 1)!(2m − 2k − 2s− 1)!

 2m

2s + 1, 2k − 2s − 1, 2s+ 1, 2m − 2k − 2s− 1



=

 2m a, b, c, d

 .

(3.1) By Theorem1and (3.1), we obtain

C=

1≤m≤p−1 1≤m≤q−1 a,b,c,d odd a+b+c+d=2l

 2l a, b, c, d



σˆa(m) ˆσb(p − m) ˆσc(m) ˆσd(q − m)

=

l−1

w=1

 2l 2w

"

w−1

s=0

 2w 2s + 1

p−1

m=1

σˆ2w−2s−1(m) ˆσ2s+1(p − m)

#

×

"

l−w−1

s=0

2l − 2w 2s+ 1

q−1

m=1

σˆ2l−2w−2s−1(m) ˆσ2s+1(q − m)

#

=

l−1

w=1

 2l 2w

( 1

2w+1(p) −1

2w(p) + σ2wp 2

−

d|p

B2w+1(d) 2w + 1

+2

d|2p

B2w+1(d) 2w + 1

× 1

2l−2w+1(q) −1

2l−2w(q) + σ2l−2w

q 2



d|q

B2l−2w+1(d) 2l − 2w + 1 + 2

d|q2

B2l−2w+1(d) 2l − 2w + 1

 . Consider the terms of C, we obtain

C(1):=1 4

l−1

w=1

 2l 2w



σ2w+1(p)σ2l−2w+1(q),

(11)

C(2):= −1 4

l−1

w=1

 2l 2w



σ2w+1(p)σ2l−2w(q), C(3):=1

2

l−1

w=1

 2l 2w



σ2w+1(p)σ2l−2w

q 2

 ,

C(4):= −1 4

l−1

w=1

 2l 2w



σ2w(p)σ2l−2w+1(q), C(5):=1

4

l−1

w=1

 2l 2w



σ2w(p)σ2l−2w(q),

C(6):= −1 2

l−1

w=1

 2l 2w



σ2w(p)σ2l−2w

q 2

 ,

C(7):=1 2

l−1

w=1

 2l 2w

 σ2w

p 2



σ2l−2w+1(q), C(8):= −1

2

l−1

w=1

 2l 2w

 σ2w

p 2



σ2l−2w(q),

C(9):=

l−1 w=1

 2l 2w

 σ2w

p 2

 σ2l−2w

q 2

 ,

C(10):= −1 2

d|p l−1

w=1

 2l 2w

 B2w+1(d)

2w + 1 σ2l−2w+1(q), C(11):=1

2

d|p l−1

w=1

 2l 2w

 B2w+1(d)

2w + 1 σ2l−2w(q), C(12):= −

d|p l−1

w=1

 2l 2w

 B2w+1(d) 2w + 1 σ2l−2w

q 2

 ,

C(13):= −1 2

d|q l−1

w=1

 2l 2w

 B2l−2w+1(d)

2l − 2w + 1 σ2w+1(p), C(14):=1

2

d|q l−1

w=1

 2l 2w

 B2l−2w+1(d)

2l − 2w + 1 σ2w(p), C(15):= −

d|q l−1

w=1

 2l 2w

 B2l−2w+1(d) 2l − 2w + 1 σ2w

p 2

 ,

C(16):=

d|p2 l−1

w=1

 2l 2w

 B2w+1(d)

2w + 1 σ2l−2w+1(q),

(12)

C(17):= −

d|p2 l−1

w=1

 2l 2w

 B2w+1(d)

2w + 1 σ2l−2w(q), C(18):= 2

d|p2 l−1

w=1

 2l 2w

 B2w+1(d) 2w + 1 σ2l−2w

q 2

 ,

C(19):=

d|q2 l−1

w=1

 2l 2w

 B2l−2w+1(d)

2l − 2w + 1 σ2w+1(p), C(20):= −

d|q2 l−1

w=1

 2l 2w

 B2l−2w+1(d)

2l − 2w + 1 σ2w(p), C(21):= 2

d|q2 l−1

w=1

 2l 2w

 B2l−2w+1(d) 2l − 2w + 1 σ2w

p 2

 ,

C(22):=

d|p d|q

l−1

w=1

 2l 2w

 B2w+1(d) 2w + 1

B2l−2w+1(d) 2l − 2w + 1 ,

C(23):= 4

d|p2 d|q2

l−1 w=1

 2l 2w

 B2w+1(d) 2w + 1

B2l−2w+1(d) 2l − 2w + 1 ,

C(24):= −2

d|p2 d|q

l−1

w=1

 2l 2w

 B2w+1(d) 2w + 1

B2l−2w+1(d) 2l − 2w + 1 , and

C(25):= −2

d|p d|q2

l−1

w=1

 2l 2w

 B2w+1(d) 2w + 1

B2l−2w+1(d) 2l − 2w + 1 . From the binomial theorem,

l−1 w=1

 2l 2w



d′2l−2wd2w= 1 2 h

(d+ d)2l+ (d− d)2li

− d′2l− d2l, we obtain

C(1)=1 8

d|p d|q

dd[(d+ d)2l+ (d− d)2l] −1 4

d|p d|q

dd′2l+1−1 4

d|p d|q

d2l+1d.

By the property of Bernoulli polynomial,

Bn(x + 1) − Bn(x) = nxn−1,

(13)

we get

C(1)= 1 8(2l + 1)

d|p d|q

ddB2l+1(d+ d + 1) + B2l+1(d− d + 1)

−B2l+1(d+ d) − B2l+1(d− d) −1

4[σ1(p)σ2l+1(q) + σ2l+1(p)σ1(q)] . Similarly, we derive that

C(2)= − 1 8(2l + 1)

d|p d|q

dB2l+1(d+ d + 1) + B2l+1(d− d + 1) − B2l+1(d+ d)

−B2l+1(d− d) +1

4[σ1(p)σ2l(q) + σ2l+1(p)σ0(q)] , C(3)= 1

4(2l + 1)

d|p d|q2

dB2l+1(d+ d + 1) + B2l+1(d− d + 1) − B2l+1(d+ d)

−B2l+1(d− d) −1 2 h

σ1(p)σ2l

q 2



+ σ2l+1(p)σ0

q 2

i , C(4)= − 1

8(2l + 1)

d|p d|q

dB2l+1(d+ d + 1) + B2l+1(d− d + 1) − B2l+1(d+ d)

−B2l+1(d− d) +1

4[σ0(p)σ2l+1(q) + σ2l(p)σ1(q)] , C(5)= 1

8(2l + 1)

d|p d|q

B2l+1(d+ d + 1) + B2l+1(d− d + 1)

−B2l+1(d+ d) − B2l+1(d− d) −1

4[σ0(p)σ2l(q) + σ2l(p)σ0(q)] , C(6)= − 1

4(2l + 1)

d|p d|q2

B2l+1(d+ d + 1) + B2l+1(d− d + 1) − B2l+1(d+ d)

−B2l+1(d− d) +1 2 h

σ0(p)σ2lq 2



+ σ2l(p)σ0q 2

i , C(7)= 1

4(2l + 1)

d|p2 d|q

dB2l+1(d+ d + 1) + B2l+1(d− d + 1) − B2l+1(d+ d)

−B2l+1(d− d) −1 2 h

σ0

p 2



σ2l+1(q) + σ2l

p 2

 σ1(q)

i ,

(14)

C(8)= − 1 4(2l + 1)

d|p2 d|q

B2l+1(d+ d + 1) + B2l+1(d− d + 1) − B2l+1(d+ d)

−B2l+1(d− d) +1 2 h

σ0

p 2



σ2l(q) + σ2lp 2

 σ0(q)i

, C(9)= 1

2(2l + 1)

d|2p d|q2

B2l+1(d+ d + 1) + B2l+1(d− d + 1) − B2l+1(d+ d)

−B2l+1(d− d) −h σ0

p 2

 σ2l

q 2

 + σ2l

p 2

 σ0

q 2

i . We obtain

C(10)= −1 2

l−1 w=1

 2l 2w



d|p

B2w+1(d)

2w + 1 σ2l−2w+1(q)

= − 1

2(2l + 1)

l−1 w=1

(2l + 1)(2l)!

(2w + 1)!(2l − 2w)!

d|p d|q

B2w+1(d)σ2l+1−2w(q)

= − 1

4(2l + 1)

d|p d|q

dB2l+1(d + d) + B2l+1(d − d)

+1

1(p)σ2l+1(q) −1

0(p)σ2l+1(q) + 1

2(2l + 1)σ1(q)

d|p

B2l+1(d).

Similarly, like C(10), we get C(11)= 1

4(2l + 1)

d|p d|q

B2l+1(d + d) + B2l+1(d − d)

−1

1(p)σ2l(q) +1

0(p)σ2l(q) − 1

2(2l + 1)σ0(q)

d|p

B2l+1(d),

C(12)= − 1

2(2l + 1)

d|p d| f racq2

B2l+1(d + d) + B2l+1(d − d) + σ1(p)σ2lq 2



−1

0(p)σ2lq 2



+ 1

2l + 1σ0

q 2



d|p

B2l+1(d),

C(13)= − 1 4(2l + 1)

d|p d|q

dB2l+1(d+ d) + B2l+1(d− d) +1

2l+1(p)σ1(q)

(15)

−1

2l+1(p)σ0(q) + 1

2(2l + 1)σ1(p)

d|q

B2l+1(d),

C(14)= 1 4(2l + 1)

d|p d|q

B2l+1(d+ d) + B2l+1(d− d) −1

2l(p)σ1(q)

+1

2l(p)σ0(q) − 1

2(2l + 1)σ0(p)

d|q

B2l+1(d),

C(15)= − 1 2(2l + 1)

d|p2 d|q

B2l+1(d+ d) + B2l+1(d− d) + σ2lp 2

 σ1(q)

−1 2σ2l

p 2



σ0(q) + 1 2l + 1σ0

p 2



d|q

B2l+1(d),

C(16)= 1 2(2l + 1)

d|p2 d|q

dB2l+1(d+ d) + B2l+1(d − d) − σ1

p 2



σ2l+1(q)

+1 2σ0

p 2



σ2l+1(q) − 1

2l + 1σ1(q)

d|p2

B2l+1(d),

C(17)= − 1 2(2l + 1)

d|p2 d|q

B2l+1(d + d) + B2l+1(d − d) + σ1p 2

 σ2l(q)

−1 2σ0

p 2



σ2l(q) + 1

2l + 1σ0(q)

d|p2

B2l+1(d),

C(18)= 1 2l + 1

d|p2 d|q2

B2l+1(d + d) + B2l+1(d − d) − 2σ1

p 2

 σ2l

q 2



+ σ0

p 2

 σ2l

q 2



− 2

2l + 1σ0

q 2



d|2p

B2l+1(d),

C(19)= 1 2(2l + 1)

d|p d|q2

dB2l+1(d+ d) + B2l+1(d− d) − σ2l+1(p)σ1

q 2



+1

2l+1(p)σ0

q 2



− 1

2l + 1σ1(p)

d|q2

B2l+1(d),

(16)

C(20)= − 1 2(2l + 1)

d|p d|q2

B2l+1(d+ d) + B2l+1(d− d) + σ2l(p)σ1q 2



−1

2l(p)σ0

q 2



+ 1

2l + 1σ0(p)

d|q2

B2l+1(d)

and

C(21)= 1 2l + 1

d|p2 d|q2

B2l+1(d+ d) + B2l+1(d− d) − 2σ2lp 2

 σ1

q 2



+ σ2lp 2

 σ0

q 2

− 2 2l + 1σ0

p 2



d|q2

B2l+1(d).

From Lemma2, then we get

C(22)=

d|p d|q

l−1

w=1

 2l 2w

 B2w+1(d) 2w + 1

B2l−2w+1(d) 2l − 2w + 1

= 1

2(2l + 1)

d|p d|q

(d + d− 1)B2l+1(d + d) + (d − d)B2l+1(d− d)

−(2d − 1)B2l+1(d) − (2d− 1)B2l+1(d)

− 1

4(l + 1)

d|p d|q

B2l+2(d + d) − B2l+2(d− d) ,

C(23)= 4 2(2l + 1)

d|p2 d|q2

(d + d− 1)B2l+1(d + d) + (d − d)B2l+1(d− d)

−(2d − 1)B2l+1(d) − (2d− 1)B2l+1(d)

− 4

4(l + 1)

d|p2 d|q2

B2l+2(d + d) − B2l+2(d− d) ,

C(24)= − 2 2(2l + 1)

d|p2 d|q

(d + d− 1)B2l+1(d + d) + (d − d)B2l+1(d− d)

−(2d − 1)B2l+1(d) − (2d− 1)B2l+1(d)

(17)

+ 2 4(l + 1)

d|p2 d|q

B2l+2(d + d) − B2l+2(d− d) ,

C(25)= − 2 2(2l + 1)

d|p d|q2

(d + d− 1)B2l+1(d + d) + (d − d)B2l+1(d− d)

−(2d − 1)B2l+1(d) − (2d− 1)B2l+1(d)

+ 2

4(l + 1)

d|p d|q2

B2l+2(d + d) − B2l+2(d− d) .

Summing C(i)(i = 1, ..., 25), we drive the Theorem. □ Example4. In Theorem4, for l = a = b = c = d = 1 and p = q = 2, we get

1≤m≤p−1 1≤m≤q−1 a,b,c,d odd a+b+c+d=2l

 2l a, b, c, d



σˆa(m) ˆσb(p − m) ˆσc(m) ˆσd(q − m) = 4!.

REFERENCES

[1] H. P. B. Cho, D. Kim, “Evaluation of a certain combinatorial convolution sum in higher level cases.” J. Math. Anal. Appl., vol. 406, no. 1, pp. 203–210, 2013, doi: ht- tps://doi.org/10.1016/j.jmaa.2013.04.052.

[2] B. C. Berndt, Ramanujan’s Notebooks, Part II. New York: Springer-Verlag, 1989. doi:

10.1007/978-1-4612-4530-8, 978-1-4612-4530-8.

[3] M. Besge, “Extrait d’une lettre de M. Besge `a M. Liouville.” J. Math. Pures Appl., vol. 21, no. 2, pp. 423–441, 2007, doi:10.1137/050641867.

[4] A. B. D. Kim, “Convolution identities for twisted Eisenstein series and twisted divisor functions.”

Fixed Point Theory and Applications, vol. 81, 2013, doi:https://doi.org/10.1186/1687-1812-2013- 81.

[5] N. I. D. Kim, “Certain combinatoric Bernoulli polynomials and convolution sums of divisor func- tions.” Advance Difference Equations, vol. 2013, no. 310, 2013.

[6] H. Hahn, “Convolution sums of some functions on divisors.” Rocky Mountain Journal of Mathem- atics, vol. 37, no. 5, pp. 1593–1622, 2007.

[7] A. P. H.M. Srivastava, “Remarks on some relationships between the Bernoulli and Euler polynomi- als.” Applied Mathematics Letters, vol. 17, pp. 375–380, 2004.

[8] R. Z. W. Chu, “Convolutions of Bernoulli and Euler polynomials.” Sarajevo Journal of Mathemat- ics, vol. 6, no. 6(18), pp. 147–163, 2010.

[9] K. Williams, Number Theory in the Spirit of Liouville. Cambridge University Press, New York:

Cambridge University Press, 2011. doi:https://doi.org/10.1017/CBO9780511751684.

(18)

Authors’ addresses Daeyeoul Kim

Jeonbuk National University, Institute of Pure and Applied Mathematics, Department of Mathemat- ics, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea

E-mail address: kdaeyeoul@jbnu.ac.kr Nazli Yildiz Ikikardes

(Corresponding author) Balikesir University, Necatibey Faculty of Education, Department of Math- ematics and Science Education, 10100 Balikesir, Turkey

E-mail address: nyildiz@balikesir.edu.tr, nyildizikikardes@gmail.com

Referanslar

Benzer Belgeler

Horatius şehrin dağdağasından ve hâyu-huyun- dan uzakta kalan âsude kırlar içinde sakin malikâ­ nesinin sükûnunu ve inzivasını, sade ve âlâyışsız

由臺北醫學大學醫學資訊研究所、臺灣生命倫理學 會以及印尼加札馬達大學(Gadjah Mada University) 共同舉辦之「2011 東南亞區域共同研究暨培訓型國 際合作工作坊」於 9

[r]

Şair olarak, heccav olarak, öğretmen olarak, kültür sahibi bir insan olarak, müellif olarak onu ayrı ayrı aniatmaktansa, artist bir insan, daima dik­ katli,

Motivated by the generalizations in () of the classical Bernoulli and Euler polynomials, we introduce and investigate here the so-called generalized two-dimensional q-Bernoulli

Keywords and phrases: Conformable fractional derivative, approximate-analytical solution, fractional option pricing equation, Adomian decomposition method, modified

fractional Fourier transform.. Repeated filtering in consecutive! fractional Fourier domains and its application to signal restoration. Synthesis of general linear

a Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara, Turkey b Department of Mathematics, Faculty of Sciences, Middle East Technical University,