• Sonuç bulunamadı

Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers

N/A
N/A
Protected

Academic year: 2021

Share "Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ColloidsandSurfacesB:Biointerfaces120(2014)125–131

ContentslistsavailableatScienceDirect

Colloids

and

Surfaces

B:

Biointerfaces

jou rn a l h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / c o l s u r f b

Release

and

antibacterial

activity

of

allyl

isothiocyanate/

␤-cyclodextrin

complex

encapsulated

in

electrospun

nanofibers

Zeynep

Aytac

a,b

,

Sema

Y.

Dogan

c

,

Turgay

Tekinay

c,d

,

Tamer

Uyar

a,b,∗

aInstituteofMaterialsScience&Nanotechnology,BilkentUniversity,Ankara06800,Turkey bUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey cGaziUniversity,LifeSciencesApplicationandResearchCenter,Ankara06830,Turkey dGaziUniversity,PolatlıScienceandLiteratureFaculty,Ankara06900,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21December2013

Receivedinrevisedform19March2014 Accepted13April2014

Availableonline22May2014 Keywords: Electrospinning Nanofibers Allylisothiocyanate ␤-Cyclodextrin Release Antibacterialactivity

a

b

s

t

r

a

c

t

Allylisothiocyanate(AITC)isknownasanefficientantibacterialagentbutithasaveryhigh volatil-ity.Herein,AITCandAITC/␤-cyclodextrin(CD)-inclusioncomplex(IC)incorporatedinpolyvinylalcohol (PVA)nanofiberswereproducedviaelectrospinning.SEMimageselucidatedthatincorporationofAITC andAITC/␤-CD-ICintopolymermatrixdidnotaffectthebead-freefibermorphologyofPVAnanofibers. 1H-NMRand headspaceGC-MSanalysesrevealedthatverylow amountof AITCwas remainedin PVA/AITC-NFbecauseoftherapidevaporationofAITCduringtheelectrospinningprocess. Neverthe-less,muchhigheramountofAITCwaspreservedinthePVA/AITC/␤-CD-IC-NFduetotheCDinclusion complexation.ThesustainedreleaseofAITCfromnanofiberswasevaluatedat30◦C,50◦Cand75◦Cvia headspaceGC–MS.WhencomparedtoPVA/AITC-NF,PVA/AITC/␤-CD-IC-NFhasshownhigher antibac-terialactivityagainstEscherichiacoliandStaphylococcusaureusduetothepresenceofhigheramountof AITCinthissamplewhichwaspreservedbyCD-IC.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Electrospinningisawidelyusedmethodtoproducefunctional nanofibersfromvarietyofmaterialsincludingpolymers,inorganic materialsandcompositestructures[1,2].Generallyelectrospinning is a room temperature process in which the polymer solution isexposed toelectrostatic field and theelectrifiedjetis drawn towardtothegroundedcollectoranddepositedonthecollector asa fibrousweb. Asthesolventevaporates duringtheprocess, nanofibrousmaterialswithuniquepropertieshavingveryhigh sur-faceareatovolumeratioandnanoporousstructuresareproduced [1,2].Theuniquepropertiesenableelectrospunnanofiberstobe usedinwounddressing,tissuescaffold,drugdelivery,food pack-aging,filtration,energy,catalysis,sensors,etc.[1,2].Owingtothe roomtemperatureandambientprocessconditionsthatprovide protectionforthebioactivecompoundsinelectrospunnanofibers,

∗ Correspondingauthorat:InstituteofMaterialsScience&Nanotechnology (UNAM),UNAM,BilkentUniversity,06800Ankara,Turkey.Tel.:+903122903571; fax:+903122664365.

E-mailaddresses:tamer@unam.bilkent.edu.tr,tameruyar@gmail.com(T.Uyar).

electrospinningisusedforproductionoffunctionalnanofibers con-tainingactiveagentslikeantioxidants[3,4],flavors/fragrances[5,6] andantibacterialagents[7].

Activeagentsloadedelectrospunnanofibersmaybeusefulin food packaging [3,4,7–11] and biomedical applications[12–14] asreportedintheliterature.Vega-Lugoetal.madecomparison intermsofreleasecharacteristicsoffreeAITCandAITC/␤-CD-IC includingsoyproteinnanofiberswithchangingrelativehumidity andtheyalsostudiedtheeffectofAITCamountonthereleaseof AITC fromAITC includingpolylacticacidnanofibersin different relative humidity [8]. In another related study, Ge et al. pro-ducedmaterialsforfoodpackagingapplicationsbyimmobilizing glucoseoxidaseenzymeinpolyvinylalcohol/chitosan/teaextract electrospunnanofibrousmembrane[9].Inastudyconductedby ourresearchgroup,polylacticacidnanofibersincorporatedwith inclusioncomplexoftriclosanandcyclodextrinswereproduced viaelectrospinning[7].Ina studyofPérez-Masiá etal.,aphase changing material was encapsulated in electrospun zein fibers for the possible application as smart packaging materials [10]. Withregardstobiomedicalapplications,Mattanaveeetal.(2009) prepared different biomolecules immobilized electrospun poly-caprolactonenanofiberswiththepurposeofusingthemintissue http://dx.doi.org/10.1016/j.colsurfb.2014.04.006

(2)

Fig.1.Chemicalstructureof(a)allylisothiocyanate,(b)␤-CD;schematicrepresentationof(c)␤-CD,(d)formationofAITC/␤-CD-ICand(e)electrospinningofnanofibers fromPVA/AITC/␤-CD-ICsolution.

engineering [12]. Merrell et al. obtained curcumin-antioxidant agent-loadedelectrospunpolycaprolactonenanofibersfordiabetic wounddressingapplications[13].InthestudyofUnnithanetal.,an antibacterialelectrospunnanofibersthatareintendedtobeused aswounddressingmaterialwereproducedbyelectrospinningof a drug– ciprofloxacinHCl –including solutionof dextran and polyurethane[14].

Cyclodextrins (CD) are cyclic oligosaccharides (Fig. 1b) and ableto form inclusion complex (IC)with variety of molecules. CDhave␣-(1-4)linkagesformingatruncated-coneshaped struc-ture(Fig.1c).␣-CD,␤-CDand␥-CDhaving6,7,8glucopyranose units are the most common CD types [15,16]. Owing to their hydrophobiccavity, CD are ableto formhost–guest complexes viaweakforces,suchasvanderWaalsinteractions,dipole–dipole interactions,andhydrogenbondingwithmoleculesin appropri-atepolarityand dimension.ICof CDwithaguestmoleculehas advantages likeproviding higher solubility,higherthermal sta-bility and bioavailability of hydrophobic guests; controlling of volatility,masking offunpleasant odors,and controllingrelease of drugs and flavors [15–17]. CD are widely used in pharma-ceutical,cosmetics, biotechnology, agriculture,textile,chemical, environmental protection industries [15–17]. There also exist studies concerning application of CD in active food packaging [18–20] and biomedical applications [21–23] in the literature. Inthefoodpackagingstudies,CD wereincorporatedwith poly-mersin free formtocaptureundesired molecules in thefoods like cholesterol [18], hexanal and cholesterol [19] or in guest molecule-CD-ICformtoreleaseanantimicrobialagent (trans-2-hexenal)[20].ICofCDand varioustypesofdrugsareprepared and theseCD-drug-ICcouldbeused in biomedicalapplications [21–23].

Allyl isothiocyanate (AITC) (Fig. 1a) is a major pungent, an antimicrobialcompoundfoundincabbage,horseradish,mustard, wasabiaandusedinfoodpackaging[24],andbiomedical applica-tions[25,26].ICofAITCwithCDwasinvestigatedintheliterature [27,28].InastudyofLietal.,releaserateofICofAITCand␣-CD andICofAITCand␤-CDwasinvestigatedagainstrelativehumidity [27].Inanotherstudy,Ohtaetal.studiedonthedecompositionand thermodynamicpropertiesofinclusioncomplexationofAITCand CD(␣-CDand␤-CD)[28].

AITC could be used in food packaging applications by incorporating it into polymeric films [29] or fibers [8]. Plack-ett et al. investigated the effect of CD type in the release behavior of AITC from AITC/CD-IC incorporated into polylactic acid–polycaprolactone films [29]. Vega-Lugo et al. studied the release ofAITC fromonlyAITC and AITC/␤-CD-ICincludingsoy proteinnanofibersatdifferentrelativehumidity[8].

Inthisstudy,AITCencapsulatedinelectrospunpolyvinyl alco-hol(PVA)nanofibersweregeneratedbytwomethods.PVAasa nanofibermatrixwaschosensincePVAisasuitablepolymertype forfoodpackagingapplicationsshownintheliteratureby incorpo-ratingdifferentmoleculesorbacteriaintoPVAfilms[30]andfibers [5,31]duetoitshightensilestrength,flexibility,highoxygenand barrierproperties.FreeAITCandinclusioncomplexofAITCwith ␤-CD(AITC/␤-CD-IC)(Fig.1d)preparedinaqueoussolutionwas incorporatedintoPVAsolution;thenPVA/AITCandPVA/AITC/ ␤-CD-ICnanofiberswereproducedviaelectrospinning(Fig.1e).The resultingnanofibrouswebswerecharacterizedbySEM,XRD,and

1H-NMR.Therelease of AITCfromnanofiberswasmeasuredat

30◦C,50◦Cand75◦CbyheadspaceGC–MS.Theantibacterial activ-ities of nanofibers were tested against Escherichia coli (E. coli) andStaphylococcusaureus(S.aureus)accordingtocolonycounting method.

2. Materialsandmethods 2.1. Materials

Polyvinyl alcohol (PVA, Mw∼85.000–146.000g/mol, Sigma

Aldrich,87–89%hydrolyzed),allylisothiocyanate(AITC,95%,Sigma Aldrich),beta-cyclodextrin(␤-CD,WackerChemieAG,Germany), deuterateddimethylsulfoxide(DMSO-d6,deuterationdegreemin 99.8% for NMR spectroscopy,Merck) werepurchased and used as-receivedwithoutanyfurtherpurification.Distilledwaterwas suppliedfromMilliporeMilli-Qultrapurewatersystem.

2.2. Preparationofsolutions

AITCcontainingPVAnanofiberswerepreparedbyincorporating AITCintoPVAsolutionsviatwomethods.Inthefirstmethod,free

(3)

Z.Aytacetal./ColloidsandSurfacesB:Biointerfaces120(2014)125–131 127

Table1

Thepropertiesofthesolutionsusedforelectrospinningandmorphologicalcharacteristicsoftheresultingelectrospunnanofibers(thefibersizeisreportedasthe aver-age±standarddeviationand100fiberswereanalyzedforeachcase).

Solutions PVAa(g/kg,w/v) ␤-CDb (g/kg,w/w) AITCb (g/kg,w/w) Viscosity (Pas) Conductivity (␮S/cm) Averagefiber diameter(nm) Fiberdiameter range(nm) Fibermorphology

PVA 75 – – 0.177 470 290±65 140–580 Bead-freenanofibers

PVA/AITC 75 – 40 0.267 487 210±45 120–330 Bead-freenanofibers

PVA/AITC/␤-CD-IC 75 227 40 0.194 523 235±90 90–540 Bead-freenanofibers

aWithrespecttosolvent(water). bWithrespecttopolymer(PVA).

AITC(4%,w/w,withrespecttopolymer)wasdispersedin aque-oussolutionandthen7.5%PVA(w/v)wasputintothissolution. Thesolution(PVA/AITCsolution)wasstirredatroomtemperature overnightandfinallyitwaselectrospun(PVA/AITC-NF).Inthe sec-ondmethod,4%AITC(w/w,withrespecttopolymer)wasdispersed inaqueoussolution,then␤-CDwasaddedtogiveamolarratio of2:1(AITC:␤-CD)andresulting solutionwasstirred overnight at room temperature and white, turbidsolution was obtained. Finally,7.5%PVA(w/v)wasadded(PVA/AITC/␤-CD-ICsolution), andPVA/AITC/␤-CD-ICsolutionwasstirred6hmoreatroom tem-peratureandelectrospun(PVA/AITC/␤-CD-IC-NF).Forcomparison, wehavealsoelectrospunPVAaqueoussolution(7.5%,w/v)without AITCorAITC/␤-CD-IC.Table1summarizesthecompositionsofthe solutionsusedfortheelectrospinningofthenanofibers.

2.3. Electrospinning

PVA,PVA/AITCandPVA/AITC/␤-CD-ICsolutionswereseparately loadedinto3mLplasticsyringe(metallicneedlewith0.8mminner diameter)andthenelectrospunbyusingthehorizontal electro-spinning setup.The solutions were pumped through a syringe pump(WPI,SP101IZ)at1mL/hrate.Cylindricalmetalcovered withaluminumfoilwasusedasacollector.Theelectricfield(15kV) wasappliedfromahighvoltagepowersupply(AUSeries, Matsu-sadaPrecisionInc.)andthetip-to-collectordistancewas10cm. Experimentswereperformedat24–25◦Cunder17–20%humidity. 2.4. Characterizationandmeasurements

The viscosityof PVA, PVA/AITC and PVA/AITC/␤-CD-IC solu-tionsweredeterminedbyAntonPaarPhysicaMCR301rheometer equippedwithacone/plate accessory(spindletype CP40-2)at aconstantshearrateof100s−1,at25◦Candtheconductivityof solutionswasmeasuredbyInolab®Multi720-WTWatroom

tem-perature.

The morphologies of the electrospun PVA-NF, PVA/AITC-NF and PVA/AITC/␤-CD-IC-NF wereexaminedby scanningelectron microscopy (SEM, FEI—Quanta 200 FEG). Prior to taking SEM images,nanofibersamplesmountedonmetalstubswith double-sidedadhesivetapewerecoatedwith5nmAu/Pd(PECS-682)to minimizecharging.Diametersofthenanofibersweremeasured directlyfromtheSEMimages(n≥100)andaveragefiberdiameter (AFD)wascalculated.

Thecrystalline structureof PVA-NF, ␤-CD,PVA/AITC-NF and PVA/AITC/␤-CD-IC-NFwere recordedby X-raydiffraction (XRD, PANalyticalX’Pertpowderdiffractometer)applyingCuK␣ radia-tionina2range7.5–30◦.

Theprotonnuclearmagneticresonance(1H-NMR)spectrawere

recorded onBrukerDPX-400in DMSO-d6 at400MHzat 25◦C. 30mg/mLofAITC,PVA-NF,␤-CD,PVA/AITC-NFandPVA/AITC/ ␤-CD-IC-NFweredissolvedinDMSO-d6toexaminethepresenceof AITCinthesamplesandstoichiometryofPVA/AITC/␤-CD-IC-NF. Integration of the chemical shifts (ı) given in parts per mil-lion(ppm)of thesampleswascalculatedbyusingMestReNova software.

The cumulative amount of AITC released from PVA/AITC-NF and PVA/AITC/␤-CD-IC-NF were determined for 240minby headspace gaschromatography–massspectrometry (GC–MS)of AgilentTechnologies7890Agaschromatographcoupledtoan Agi-lentTechnologies5975CinertMSDwithatriple-axisdetector.The capillarycolumnusedwasHP-5MS(Hewlett-Packard,Avondale, PA)(30m×0.25mmi.d.,0.25␮mfilmthickness).Theheadspace GC–MSexperiments wereperformedwitha CTCPAL auto sam-pler.20mgofPVA/AITC-NFandPVA/AITC/␤-CD-IC-NFtakenfrom thealuminumfoilwereplacedin20mLheadspaceglassvials.The vialswereagitatedat500rpmat30◦C,50◦Cand75◦Cof incuba-tiontemperatureand20%relativehumidity.Heliumwasusedas carriergaswasataflowrateof1.2mL/min.500␮Lofvaporwas injectedtotheheadspaceGC–MSbyusingaheadspaceinjector (MSH02-00B,volume:2.5mL,scale:60mm).Thesyringe temper-aturewas50◦C.Oventemperaturewasheldat50◦Cfor1minand increasedto200◦Cattherateof20◦C/minandheldatthis tem-peraturefor3min.Thermaldesorptionwasconductedinthesplit mode(20:1).HeadspaceGC–MSanalyseswerecarriedoutinthe completeselectedionmonitoringmode(SIM).Flavor2andNIST 0.5librarieswereusedtodecideAITCpeak.Therelease experi-mentwasperformedintriplicateandtheresultswerereportedas average±standarddeviation.

The antibacterial activity of PVA/AITC-NF and PVA/AITC/ ␤-CD-IC-NF was assessed by colony counting method against Gram-negativeE.coliandGram-positiveS.aureusbacteria.200␮L oftheE.coliandS.aureusgrownovernightwereinoculatedinto 10mLofLuria–Bertani(LB)brothandnanofibersweresterilized byUVirradiationandputintotheflasks.About1mgofnanofiber samplesandcontrolswereincubatedat37◦Candstirred100rpm for24h.Samplesfromeachflaskandcontrolswereseriallydiluted, 100␮LofeachwasspreadontoLBagarandcolonieswerecounted andphotographedafter24h.Allexperimentswereperformedin triplicateandreportedasaverage±standarddeviation.

3. Resultsanddiscussion

3.1. Morphologyanalysisofnanofibers

As an aim toward producing PVA nanofibers (NF) encapsu-latingAITC,freeAITC andinclusioncomplexofAITC with␤-CD (AITC/␤-CD-IC)wasincorporatedintoPVAnanofibers (PVA/AITC-NFandPVA/AITC/␤-CD-IC-NF)byusingelectrospinningtechnique. ThemorphologicalcharacterizationofPVA-NF,PVA/AITC-NFand PVA/AITC/␤-CD-IC-NFwascarriedoutviaSEM.SEMimagesand averagefiberdiameter(AFD)alongwithfiberdistributionsofthe nanofibersaredepictedin Fig.2.In thecase ofelectrospinning of pristinePVA solution,bead-free anduniformPVA-NF having AFDof290±65nmwasobtained.Then,weincorporatedAITCand AITC/␤-CD-ICintoPVAsolutionandthenelectrospinningwas per-formedinordertoobtainfunctional nanofibers.Asclearlyseen fromSEMimages,theincorporationofAITCorAITC/␤-CD-ICdid notcauseanynotablechangeinthemorphologyoftheelectrospun nanofibers.TheAFDofPVA/AITC-NFandPVA/AITC/␤-CD-IC-NFwas veryclosetoeachotherwhichwere210±45nmand235±90nm,

(4)

Fig.2. SEMimagesandfiberdiameterdistributionswithaveragefiberdiameter(AFD)oftheelectrospunnanofibersobtainedfromsolutionsof(a)PVA,(b)PVA/AITC,(c) PVA/AITC/␤-CD-IC.

respectively.Thesenanofiberswereslightlythinnerthanthe PVA-NF. The slight variations of fiber diameters observed for the nanofibersampleswerepossiblyduetodifferencesinviscosityand conductivityofthesolutions[1,2,32].Theviscosity,conductivity andAFDvaluesofPVA,PVA/AITCandPVA/AITC/␤-CD-ICsolutions areshowninTable1.PVA/AITCandPVA/AITC/␤-CD-ICsolutions havehigherviscosityandhigher conductivitycompared toPVA solution.

3.2. Crystallinestructureofnanofibers

XRD was performed for PVA-NF, ␤-CD, PVA/AITC-NF and PVA/AITC/␤-CD-IC-NFandthediffractionpatternsaredepictedin Fig.3.AITCisaliquidcompoundatroomtemperature,sowedid notrunXRDanalysisforpureAITC.PVAisasemi-crystalline poly-merandtheXRDofPVA-NFhasshownabroaddiffractionataround 2∼19.6◦[33].XRDpatternofPVA/AITC-NFwassimilartoPVA-NF, thusPVAkeepsitssemi-crystallinestructureafterincorporationof AITC.Thecage-typepackingcrystalstructureobservedinCD gener-allytransformintochannel-typepackinginCD-IC.Theas-received ␤-CDhasacage-typepackinganditscharacteristicdiffraction pat-ternisgiveninFig.3.Thechannel-typepackingof␤-CDhassalient characteristicpeakat2∼12◦[6].Here,thepeakat2∼12◦inXRD patternofPVA/AITC/␤-CD-IC-NFwasobservedandweconcluded thattheICformationbetweenAITCand␤-CDinPVA/AITC/ ␤-CD-IC-NFwaspresent.Inaddition,thecage-typepackingof␤-CDpattern

wasabsentinthefibersampleandthismaysupporttheAITC/ ␤-CD-ICformationaswell.

3.3. AITCcontentinnanofibers

PVA/AITC-NF and PVA/AITC/␤-CD-IC-NF were tested by 1

H-NMRtodeterminethestoichiometryofAITC/␤-CD-ICandwhether

(5)

Z.Aytacetal./ColloidsandSurfacesB:Biointerfaces120(2014)125–131 129

Fig.4. 1H-NMRspectraofAITC,PVA,␤-CDandAITCcontainingPVAnanofibers.

AITC was present in PVA/AITC-NF and PVA/AITC/␤-CD-IC-NF (Fig.4).ThepeaksforAITCwereobservedataround4.2,5.3,and 5.9ppmcorrespondingtotheprotonsofAITC[34].The stoichiom-etryofAITCand␤-CD-ICinPVA/AITC/␤-CD-IC-NFwasdetermined

as0.68:1.00(AITC:␤-CD)byintegratingthepeakratioofthe charac-teristicchemicalshiftsofAITC(5.3ppm)and␤-CD(5.7ppm).Thus, initialmolarratioof2:1forAITC:␤-CDwhichwasusedtoobtain AITC/␤-CD-ICwaspreservedsubstantially.So,PVA/AITC/ ␤-CD-IC-NFstillcontainedsomeofAITCinthefibersamplewhereaswe couldnotobserveanypeakofAITCinPVA/AITC-NF.Therefore,we deducedthatextremelylowquantityofAITCexistinPVA/AITC-NF. ThepossiblereasonforthissituationisevaporationofAITC dur-ingtheelectrospinningofsolutionsinceAITCisahighlyvolatile substance.Infact,wewereabletosmellAITCheavilyduring elec-trospinningofPVA/AITC-NF.Inbrief,1H-NMRstudyshowedthat

␤-CDpreventedevaporationofAITCtosomeextentduring electro-spinningprocessandhighloadingofAITCinPVA/AITC/␤-CD-IC-NF wasachievedcomparedtoPVA/AITC-NF.

3.4. ThereleasestudyofAITCfromnanofibers

The application of AITC is somehow restricted because of its highly volatile nature, unpleasant odor and hydrophobic nature[27].Here, wehaveincorporatedAITC/␤-CD-ICintoPVA polymer solution, and PVA/AITC/␤-CD-IC-NF were obtainedvia electrospinning.Foracomparativestudy,wehavealsoproduced PVA/AITC-NFwithoutCD-IC.Therehavebeenreportsin the lit-eratureabouttheapplicationofCDinfoodpackagingmaterials tocontrolthedeliveryofactivecompounds[8,20,27,29].Here,we haveevaluatedthereleasebehaviorofAITCfromPVA/AITC-NFand PVA/AITC/␤-CD-IC-NFatthreedifferenttemperatures(30◦C,50◦C and75◦C)byusingheadspaceGC–MS(Fig.5).

ThecumulativeamountofAITCreleasedat30◦C,50◦Cand75◦C (for240min) fromPVA/AITC-NFwereminimalandsignificantly muchlowerthanthatofPVA/AITC/␤-CD-IC-NFsample.Itisevident thatverysmallamountofAITCwaspresentinthePVA/AITC-NF sampleasalsoconfirmedby1H-NMRstudieswhichwecouldnot

even detectAITC inthis sample.In thecase ofPVA/AITC/ ␤-CD-IC-NF,theamountofAITCwassignificantandthereleaseofAITC fromthenanofibersamplewasincreasedgraduallywithtimeand finally becameconstant. Hence,we have successfully produced PVA/AITC/␤-CD-IC-NFwithasustainedreleasebehaviorofAITC. Inaddition,asthetemperaturewasincreasedfrom30◦Cto75◦C, theamountofAITCreleasedwasalsoincreasedobviouslyforboth PVA/AITC-NFand PVA/AITC/␤-CD-IC-NFsamples.Thisis related withthehigherdiffusioncoefficientofmoleculesathigher tem-peratures [35]. Athigher temperatures, the motionof polymer chainsincreases,sothemovementofactivemoleculethroughthe amorphous partsof thepolymeris favored [36]. Moreover,the incrementinthereleaseofAITCfromPVA/AITC/␤-CD-IC-NFwas muchclearerthanPVA/AITC-NF.Inshort,headspaceGC-MSresults clearlyconfirmedthattheevaporationofAITCwashinderedby CD-ICandmuchhigheramountofAITCwasencapsulatedinthePVA nanofiberswhenAITCwascomplexedwith␤-CD.

3.5. Antibacterialactivityofnanofibers

AITC,themajorpungentcompoundinplants,hasbeenreported tohavestrongantimicrobialactivityinbothliquidandvaporforms. Here,wehavetestedtheantibacterialactivityofPVA/AITC-NFand PVA/AITC/␤-CD-IC-NFbycolony countingmethodagainst Gram negativeE.coliandGrampositiveS.aureusbacteria.Fig.6ashows representativeimagesofbacteriacoloniestreatedby PVA/AITC-NF and PVA/AITC/␤-CD-IC-NF; and Fig. 6b shows the effect of PVA/AITC-NFandPVA/AITC/␤-CD-IC-NFonthegrowthinhibition rateofE.coliandS.aureus.Thegrowthinhibitionrate(%)of bacte-riawascalculatedbyassumingthatplateswithoutnanofibershave 100% growth.PVA/AITC-NFand PVA/AITC/␤-CD-IC-NFexhibited 31.98% and 94.41% antibacterialactivity againstE.coli whereas

(6)

Fig.5.CumulativereleaseofAITCfromPVA/AITC-NFandPVA/AITC/␤-CD-IC-NFat30◦C,50Cand75C(n=3).Theerrorbarsinthefigurerepresentthestandarddeviation

(SD).

antibacterial activity against S. aureus was 53.55% and 99.82%, respectively.ItwasobviousPVA/AITC/␤-CD-IC-NFsample (includ-ingabout0.0107mg AITC accordingto NMR result)hasshown muchbetterantibacterialactivitywhencomparedtoPVA/AITC-NF. ThisismostlikelyduetothepresenceofhigheramountofAITCin PVA/AITC/␤-CD-IC-NFwhichwaspreservedbyCD-IC.Inthecase ofPVA/AITC-NF,someantibacterialactivityagainstE.coliandS.

aureuswasobservedsinceverylowlevelofAITCwaspresentin thissampleasitwasdetectedbyheadspaceGC–MSanalysis. More-over,theelectrospinningprocessinwhichveryhighvoltageswere appliedhasnonegativeeffectontheantibacterialpropertyofAITC encapsulatedinPVA/AITC-NFandPVA/AITC/␤-CD-IC-NF.In addi-tion,thedifferenceintheantibacterialactivityofbothnanofiber samplesagainstE.coliandS.aureusmaybecausedbythedifference

Fig.6.(a)ExemplaryimagesofcoloniesofEscherichiacoli,Staphylococcusaureus;E.coliandS.aureuscoloniestreatedbyPVA/AITC-NF;E.coliandS.aureuscoloniestreated byPVA/AITC/␤-CD-IC-NF;(b)growthinhibitionrate(%)ofE.coliandS.aureusinPVA/AITC-NFandPVA/AITC/␤-CD-IC-NF(n=3).Theerrorbarsinthefigurerepresentthe standarddeviation(SD).

(7)

Z.Aytacetal./ColloidsandSurfacesB:Biointerfaces120(2014)125–131 131 betweencellwallcompositionoftwobacteria,whichareGram

negativeandGrampositive,respectively.Gramnegativebacteria haveasemi-permeable barrierthatdeceleratespassingof com-pounds[37].

4. Conclusion

Inthisstudy,weperformedtheelectrospinningoffunctional PVAnanofibersincorporatingAITCandAITC/␤-CD-IC.SEMimages showedthatthebead-freefibermorphologyofPVAnanofibersdid notchangeaftertheincorporationofAITCandAITC/␤-CD-ICinto polymermatrix.Weobservedthattheextremelylowquantityof AITCexistinPVA/AITC-NFduetothequickevaporationofAITC duringtheelectrospinningofPVA/AITCsolutionsinceAITChasa highlyvolatilenature.On thecontrary,much higheramountof AITCwasencapsulatedinthePVA/AITC/␤-CD-IC-NFsampledue tothecyclodextrin inclusioncomplexation. Hence,PVA/AITC/ ␤-CD-IC-NFhasshownimprovedantibacterialactivityagainstE.coli and S. aureus when compared to PVA/AITC-NF without CD-IC. Inbrief,newlydevelopedPVA/AITC/␤-CD-IC-NFwithhigh load-ingefficiency,sustainedrelease behaviorandconsiderably high antibacterialactivitymayhavepotentialsforactivefoodpackaging andbiomedicalapplications.

Acknowledgments

Dr. Uyar acknowledges The Scientific and Technological Research Council of Turkey (TUBITAK) (Project no. 111M459) and EU FP7-PEOPLE-2009-RG Marie Curie-IRG (NANOWEB, PIRG06-GA-2009-256428) and The Turkish Academy of Sciences—Outstanding Young Scientists Award Program (TUBA-GEBIP) for funding the research. Z. Aytac thanks to TUBITAK (Projectno.111M459)forthePh.D.scholarship.Dr.Tekinaythanks GaziUniversityScientificResearchProjectUnitfortheirsupport. References

[1]S.Ramakrishna,AnIntroductiontoElectrospinningandNanofibers,World Sci-entificPublishingCompanyIncorporated,Singapore,2005.

[2]J.H.Wendorff,S.Agarwal,A.Greiner,Electrospinning:Materials,Processing, andApplications,JohnWiley&SonsPublishing,Weinheim,2012.

[3]A.Fernandez,S.Torres-Giner,J.M.Lagarón,FoodHydrocoll.23(2009)1427. [4]Y.P.Neo,S.Ray,J.Jin,M.Gizdavic-Nikolaidis,M.K.Nieuwoudt,D.Liu,S.Y.Quek,

FoodChem.136(2012)1013.

[5]F.Kayaci,T.Uyar,FoodChem.133(2012)641.

[6]T.Uyar,Y.Nur,J.Hacaloglu,F.Besenbacher,Nanotechnology20(2009)125703. [7]F.Kayaci,O.C.Umu,T.Tekinay,T.Uyar,J.Agric.FoodChem.61(2013)3901. [8]A.-C.Vega-Lugo,L.-T.Lim,FoodRes.Int.42(2009)933.

[9]L.Ge,Y.-s.Zhao,T.Mo,J.-r.Li,P.Li,FoodControl26(2012)188.

[10]R.Pérez-Masiá,A.López-Rubio,J.M.Lagarón,FoodHydrocoll.30(2013)182. [11]C.Kriegel,A.Arrechi,K.Kit,D.McClements,J.Weiss,Crit.Rev.FoodSci.Nutr.

48(2008)775.

[12]W.Mattanavee,O.Suwantong,S.Puthong,T.Bunaprasert,V.P.Hoven,P. Supa-phol,ACSAppl.Mater.Interfaces1(2009)1076.

[13]J.G.Merrell,S.W.McLaughlin,L.Tie,C.T.Laurencin,A.F.Chen,L.S.Nair,Clin. Exp.Pharmacol.Physiol.36(2009)1149.

[14]A.R.Unnithan,N.A.Barakat,P.Tirupathi,G.Gnanasekaran,R.Nirmala,Y.-S.Cha, C.-H.Jung,M.El-Newehy,H.Y.Kim,Carbohydr.Polym.90(2012)1786. [15]E.DelValle,ProcessBiochem.39(2004)1033.

[16]J.Szejtli,Chem.Rev.98(1998)1743. [17]A.R.Hedges,Chem.Rev.98(1998)2035.

[18]C.López-de-Dicastillo,M.a.Jordá,R.n.Catalá,R.Gavara,P.Hernandez-Munoz, J.Agric.FoodChem.59(2011)11026.

[19]C.López-de-Dicastillo,M.Gallur,R.Catalá,R.Gavara,P.Hernandez-Munoz,J. Membr.Sci.353(2010)184.

[20]M.J.Joo,C.Merkel,R.Auras,E.Almenar,Int.J.FoodMicrobiol.153(2012)297. [21]M.R.Freitas,L.A.Rolim,M.F.L.R.Soares,P.J.Rolim-Neto,M.M.d.Albuquerque,

J.L.Soares-Sobrinho,Carbohydr.Polym.89(2012)1095.

[22]S.K.Khalil,G.S.El-Feky,S.T.El-Banna,W.A.Khalil,Carbohydr.Polym.90(2012) 1244.

[23]M.D.Moya-Ortega,C.Alvarez-Lorenzo,H.k.H.Sigurdsson,A.Concheiro,T. Lofts-son,Carbohydr.Polym.80(2010)900.

[24]J.Shin,B.Harte,E.Ryser,S.Selke,J.FoodSci.75(2010)65.

[25]S.Hayashi,E.Nakamura,T.Endo,Y.Kubo,K.Takeuchi,Inflammopharmacology 15(2007)218.

[26]S.Hayashi,E.Nakamura,Y.Kubo,N.Takahashi,A.Yamaguchi,H.Matsui,S. Hagen,K.Takeuchi,J.Physiol.Pharmacol.59(2008)691.

[27]X.Li,Z.Jin,J.Wang,FoodChem.103(2007)461.

[28]Y.Ohta,K.Takatani,S.Kawakishi,Biosci.Biotechnol.Biochem.64(2000)190. [29]D.Plackett,A.GhanbariSiahkali,L.Szente,J.Appl.Polym.Sci.105(2007)2850. [30]B.Marcos,T.Aymerich,J.M.Monfort,M.Garriga,J.FoodSci.75(2010)502. [31]A.López-Rubio,E.Sanchez,Y.Sanz,J.M.Lagarón,Biomacromolecules10(2009)

2823.

[32]T.Uyar,F.Besenbacher,Polymer49(2008)5336.

[33]J.H.Park,H.W.Lee,D.K.Chae,W.Oh,J.D.Yun,Y.Deng,J.H.Yeum,ColloidPolym. Sci.287(2009)943.

[34]Y.Ohta,Y.Matsui,T.Osawa,S.Kawakishi,Biosci.Biotechnol.Biochem.68 (2004)671.

[35]C.Y.Hu,M.Chen,Z.W.Wang,Packag.Technol.Sci.25(2012)97.

[36]M.Galotto,A.Torres,A.Guarda,N.Moraga,J.Romero,FoodRes.Int.44(2011) 566.

[37]M.Ignatova,Z.Petkova,N.Manolova,N.Markova,I.Rashkov,Macromol.Biosci. 12(2012)104.

Şekil

Fig. 1. Chemical structure of (a) allyl isothiocyanate, (b) ␤-CD; schematic representation of (c) ␤-CD, (d) formation of AITC/␤-CD-IC and (e) electrospinning of nanofibers from PVA/AITC/␤-CD-IC solution.
Fig. 2. SEM images and fiber diameter distributions with average fiber diameter (AFD) of the electrospun nanofibers obtained from solutions of (a) PVA, (b) PVA/AITC, (c) PVA/AITC/␤-CD-IC.
Fig. 4. 1 H-NMR spectra of AITC, PVA, ␤-CD and AITC containing PVA nanofibers.
Fig. 5. Cumulative release of AITC from PVA/AITC-NF and PVA/AITC/␤-CD-IC-NF at 30 ◦ C, 50 ◦ C and 75 ◦ C (n = 3)

Referanslar

Benzer Belgeler

Apart from meeting the needs of learners with different learning style preferences and having the potential of improving different skills, another strength of the software is that

The objective of this study was to determine the essential oil composition of two Gundelia tournefortii varities reported in Flora of Turkey and to supply contributions to the

No Arcobacter was isolated when the de Boer method was used for minced meat samples but the same five meat samples were found positive for arcobacters when CAT-supplemented media

Bingöl ekolojik koĢullarında bir yıllık olarak yürütülen ve 8 adet nohut çeĢidinin verim ve verim komponentleri yönünden denendiği çalıĢmada ele alınan

Çizelge 2’de 1 haftalık yaştaki Japon bıldırcınların canlı ağırlıkları üzerinde interaksiyon, yetiştirme sistemi ve cinsiyet etkileri istatistik olarak

In this study, our population (F 1001) samples should be classified as a separate and new species called Veronica edremitense.. We believe that this work will

yüzyılda Bizans devleti ve Kutsal Roma imparatorluğu arasında yarattığı siyasi krizlerden çok uzak olmanın ötesinde ve Chalkokondyles’in çağdaşı Dukas gibi

To the best of our knowledge, our study is the first to provide a mathematical programming formulation along with novel simulation-optimization approach and meta- heuristic