• Sonuç bulunamadı

State-space analysis of fractional-order respiratory system models

N/A
N/A
Protected

Academic year: 2021

Share "State-space analysis of fractional-order respiratory system models"

Copied!
6
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Biomedical

Signal

Processing

and

Control

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b s p c

State-space

analysis

of

fractional-order

respiratory

system

models

Esra

Saatci

,

Ertugrul

Saatci

DepartmentofElectricalandElectronicsEngineering,IstanbulKulturUniversity,Bakirkoy,Istanbul,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received14August2019 Receivedinrevisedform 26November2019 Accepted8December2019 Availableonline21December2019 Keywords:

Fractional-orderrespiratorysystemmodels State-spaceanalysis

Stabilityanalysis Time-delaysystems

a

b

s

t

r

a

c

t

FractionalOrderModels(FOM)oftherespiratorysystemhavebeenusedinthemodel-basedanalysis

oftherespiratorysystem.Althoughtherearestudiesexploringthephysiologicalcorrectnessandfitting

accuracyofthemodels,theyarenotanalyzedintermsofinteractionsbetweenparameters,time-varying

dynamicsandmeasurablesignals.Inthisstudywepurposetousestate-spaceanalysistoyieldthe

time-varyingnatureofthesystemincorporatedbytheparameters,statesandoutput.Wetestedthemodels

forcontrollability,observabilityandstabilitycharacteristicswhileusingtheparametersfoundinthe

literature.Sufficientasymptoticstabilityboundsweredrivenbyusingstabilitytheoryofthediscrete

time-delaysystem.ResultsrevealedthatFOMswithestimatedparametersoffersystemswithdifferent

characteristics.Thus,carefulconsiderationmustbegivenwheninterpretingestimatedparametersin

FOMsduringrespiratorytests.

©2019ElsevierLtd.Allrightsreserved.

1. Introduction

FOMoftherespiratory systemhasattractedagreat interest becausefunctional and structuralproperties of the systemcan be obtained by a few physically motivated parameters. It has beenshown thatwellknownMaxwellandKelvin-Voight mod-elswithintegerorder differentialequations cannot modelthe stressrelaxationofthelungtissue[1],timevaryingratiobetween transpulmonarypressureandtotallungvolume[2]anddistributive self-similarstructureofthesystem[3]verywell.Asitisthecasefor allrespiratorysystemmodellingapproaches,respiratorysystemis excitedbythecombinedsinusoidalpressureatlowfrequenciesand FOMinfrequencydomainisfittothemeasuredimpedancedata. FrequencydomainversionoftheFOMiscalledasConstantPhase Model(CPM)[4]whichisusedfortheimpedancemodellingand systemparameterestimation.

BothFOMandCPMhavebeenevaluatedandreviewedinthe literature.Theaiminthepreviousstudiesweretoestimatethe modelparameterswithlowestfittingerror,toclassifythediseased andhealthyparametersandtoinvestigatethepowerlawproperty oftherespiratorysystem[5],[6],[7],[8],[9].In[10]authors ana-lysedFOMsintermsofstructuralrepresentationoftherespiratory mechanics,whereasapplicationsofthefractionalcalculusinthe biologicalsystemswereinvestigatedin[11].In[12]statistical

anal-∗ Correspondingauthor.Tel:+902124984229.

E-mailaddresses:esra.saatci@iku.edu.tr(E.Saatci),e.saatci@iku.edu.tr

(E.Saatci).

ysisisappliedtocalculateconfidenceintervalsoftheparameters’ estimates.Parameterswereestimatedbyleastsquaresalgorithm fromimpedancedataandparametervariationswereestimatedby sample variancesand sensitivitymatrix. First, in[12],onlyone modelwasfittotheimpedancedataandcombinederrorswere assumedtobeGaussiannoise.Moreimportantly,estimatesofthe parametersinfluencedthesensitivitiesintheproposedmethodand this madetheresultsobliviousof model-parameterassociation. Therefore,weproposeacomprehensiveanalysis,including estab-lishinganassociationbetweeninformationbearingparametersand dynamicsofthesystem,performedonthealreadyproposedand usedFOMsofrespiratorysystem.Here,ourobjectiveistoexplore FOMsincontrolsystemspointofviewandanswerthefollowing questions:

1.HowunmeasurabledynamicsinFOMsarerelatedtothe param-eters?

2.WhichoftheFOMsarecontrollableandobservableforthe esti-matedparametervaluesintheliterature?

3.Istheasymptoticstabilityanissuefortheestimatedparameter valuesinFOMs?

Toanswerthefirstquestion,weseerespiratorysystemasa complexphysicalsystemwhich consistsofmutual interconnec-tions.Thusourstartingpointistoproposeastate-spacemodelling frameworkwherestatesprescribeacertaindynamicalbehavior. Thekeyaspecthereisthat,incontrasttotheCPMs,state-space modelofFOMsneitherdependsonthefrequencyresponseofthe system,noris restrictedtoonlyparameter-systemrelationship. https://doi.org/10.1016/j.bspc.2019.101820

(2)

Table1

EstimatedParametersandValuesinFOMs[14].

Healthy FOM1 FOM2 FOM3 FOM4

R 0.22 0.22 0.06 –

L – 0.0007 0.029 0.0374

1/C 0 1.36 3.52 2.02

˛ 0 0 0.48 0.43

ˇ 0.99 0.99 0 0.79

COPD FOM1 FOM2 FOM3 FOM4

R 0.18 0.26 0.27 –

L – 0.0009 0.0021 0.015

1/C 1.73 5.20 8.9 2.94

˛ 0 0 0.87 0.59

ˇ 0.18 0.83 0 0.52

Incontrasttoearliermethods,thismethodleadstoasetof nat-uralstatevariableswhicharedirectlysuitableforaddressingthe parameter-state-systemrelationships.

Controllabilityand observability analysis[13] isproposedto answerthesecondquestion.Inthisstep,ouraimistoinvestigate whethertheparametervaluesestimatedinthepreviousstudiesin FOMsleadtosignificantandmeaningfuldynamicbehaviourin res-piratorysystems.Atthisstage,weshouldexplainthemeaningof controllableandobservablemodels.Ifthemodelisnotcontrollable and/orobservable,eitherrealizationofthemodelisredundant,i.e. somestateshavenorelationshiptotheinputoroutput,or physi-calsystemiscontroldeficient,i.e.dynamicvariablesarenotfully controlledbyphysicalactuators.

Finally, we proposed to explore the stability of FOMs by usingwell-knownasymptoticLyapunovsstabilitytheoremforthe last question. At this stage, discrete-time version of FOMs are utilized, thus the main source of inspiration is to explore the stability in discrete time-delay systems. The effort is made to addressthederivationoftheconditionsthatleadtostability in FOMs.

2. Methods

2.1. ConstantPhaseModelsofRespiratorySystem

CPMoftherespiratorysystemisexpressedasasumofresistive, inductiveandcapacitivetermsas:

ZFOM(s)=R+Ls˛+ 1

Csˇ (1)

whereRrepresentsallresistivepressurelossesintheairwaysand lungparenchyme,LandCaretheinertialeffectsoftheairflowinlow frequenciesandthecomplianceofthelungrespectively.0≤˛,ˇ≤1 arefractionalordersobtainedfromthefractional-orderdifferential equationsoftherespiratorysystemandsistheLaplacevariable.

Based on the estimated parameter values in the literature, fourmostcommonly used version of (1) canbe foundin [14]. Table1summarizestheparametervaluescalculatedbythe real-timesignalsacquiredfrombothhealthyandChronicObstructive PulmonaryDisease(COPD)patients.Theabsenceofsome param-etervalues impliesthattheestimatedvalueistoosmall,hence respectivetermcanbeeliminatedfromthemodel.Electrical anal-ogyofthesemodelscanbeallrealizedbydominoladdercircuit asshowninFig.1,wheretransferimpedanceisZ (s)=Z1(s)+Y1(s)1 andZ1(s) isthesumofresistiveandinertialfractionalimpedance andY1(s) isthefractionaladmittanceduetotheelasticeffects.

Fig.1.Electricalanalogyofconstantphasemodelrealizedbydominoladdercircuit.

Table2

MatricesofState-SpaceModels

Models FOM1 FOM2 FOM3 FOM4

x (t)



X1(t) X2(t)





X1(t) X2(t)





X1(t) X2(t)





X1(t) X2(t)



y (t) [Q (t)] [Q (t)] [Q (t)] [Q (t)] u (t) [P (t)] [P (t)] [P (t)] [P (t)] A







[0 1 0 −1 RC ] [−10 1 LC −R L ] [−10 1 LC −R L ] [−10 1 LC 0 ] B







[ 01 RC ] [ 01 LC ] [ 01 LC ] [ 01 LC ] C









0 C





0 C





0 C





0 C



D







[0] [0] [0] [0] 



ˇ ˇ





ˇ 1





1 ˛





ˇ ˛



2.2. ContinuousTimeState-SpaceModeloftheFOM

If respiratory systemis assumed to becontinuous time lin-eartimeinvariantsystem,FOMoftherespiratorysystemcanbe expressedinthestate-spaceformas[15]:

tx (t)=A







x (t)+B







u (t)

y (t)=C







x (t)+D







u (t) (2)

wherex (t) ∈Rn,y (t) Rm andu (t) Rr arethestate,output and input vectors respectively. A







∈Rn×n is the state tran-sitionmatrix, B







∈Rn×r istheinputmatrix, C







Rm×n is theoutputmatrixandD







∈Rm×r isthefeedforwardmatrix. Modelparameters,whichareassumedtobetime-invariantover the observationwindow, are expressedby a parameter vector  ∈Rp.=





1 2 ··· n



T

denotesthefractionalorder

vec-torandtx (t) isthethorderfractionalderivativeofthestate

vector x (t). Initialconditions in (2) are assumed tobe zero.If 1=2=···=n=q,thesystemiscalledasacommensurateorder system[16].Incaseofordinarylineartimeinvariantsystems, frac-tionalordersareallequaltoone.

State-spacemodelin(2)canbeobtainedfromallversionsof CPMsin(1)withparametersinTable1.Applicationofderivations giveninAppendixAleadtovectorsandmatricesA







,B







,C







andD







whicharesummarizedinTable2.

2.3. DiscreteTimeState-SpaceModelsoftheFOM

State-spaceanalysisofnon-commensurateFOMisperformed onthediscretetimestate-spacemodelof(2),becauseacquired

(3)

res-piratorysignalsareindiscreteform.Grünwald-Letnikovdefinition ofthefractionalderivationisoneoftheapproachtocircumvent aproblemofnumericalcalculationsofthefractionalderivations in(2).Thisapproachallowsustocomposediscretematricesfrom thematricesin(2)easilyand”shortmemory”issueswerealready investigatedinpreviousstudies[16].Inthisstudy,discretization stepsof FOMbyGrünwald-Letnikovdefinition ofthefractional derivation,foundin[16]isutilizedtoobtaintime-delayed state-spacemodelofthediscretetimenon-commensurateFOM:

x (k+1)=A0







x (k)+ k



j=1 Ajx (k−j)+Bd







u (k) y (k)=C







x (k)+D







u (k) (3)

wherek ∈Z+

0

isatimeindex.StatetransitionmatrixA j







canbeobtainedasfollows:

Letsdefine ¯A







whoseithrowiscalculatedby

¯A







i,∗= i t

A







In

i,∗

wheretisthediscretetimestep(weassumedt=0.01sinthe simulations)andi∈

1,2,...,n

isthestatenumber.Inisn×n identitymatrix.Ifadiagonalmatrixiscreatedbyusingnon-integer diagonalcombinations

i j

as ϒj=diag



1 j



,



2 j



,···



n j



(4) where

 j

=

 (−1)··· (−j+1) j (j1)···1 j>0 1 j=0 , then discrete statetransitionmatrixcanbeobtainedas

A0







= ¯A







+ϒ1

Aj= (−1)jϒj+1

(5) Systemdefinedin(3)–(5)isalsoalineardiscretetime-delay sys-temandinthisworkitisusedforthecontrollability,observability andstabilityanalysis.Howeverfirst,oneshoulddefinethesolution ofthesystemasasumofnaturalandforcedresponsesrespectively. Thecompletesolutionisgivenas

x (k)=Gk







x (0)+ k−1



j=0 Gk−1−j







Bd







u (j) (6)

wheretimevaryingtransitionmatrixGk







isgivenby G0







=In Gk







=A0







Gk−1







+ k−1



j=1 AjGk−1−j







(7)

Whileproofofthesolutiongivenin(6)and(7)canbefound in[16],thecomplicationsinthemodelandthesolutionshould beexplainedhere.Althoughrespiratorysignalsareprocessedin aMpoint timewindow,theupperlimit ofthesumsin(3) and (6)shouldbelimitedtothepredefinedvalue(K)duetothe com-putationalissues (K<M).Anotherimportantobservationis that transitionmatrixGk







in(7)iscomposedofpowersofdiscrete statetransitionmatrixAj







in(5).ThispropertyofGk







allows controllabilityandobservabilitytestsbecomputationallyeffective, becauseoriginalcontrollabilityandobservabilitytestsincorporate matrixpowerofstatetransitionmatrix.

2.4. ControllabilityandObservabilityAnalysis

Controllabilityandobservabilityaretwoimportantanalysisin thecontrolsystemstotesttheexistenceofthesolutionsforthe giveninputs.Asystemissaidtobecompletelystatecontrollable ifforanykiitispossibletoconstructacontrolvectoru (k) which willtransferanygivenstatex (ki) toanyfinalstatex



kf



inafinite timeintervalki≤k≤kf[17].

Theorem1. Discretetimenon-commensuratefractionalorder

sys-temiscompletelystatecontrollableifandonlyifthereexitsafinite timeKsuchthatthecompositecontrollabilitymatrix,PK







∈Rn×Kr PK







=



G0







Bd







G1







Bd







··· GK−1







Bd









isofrankn.

Asystemissaidtobecompletelyobservableonki≤k≤kfiffor everykiandsomekfeverystatex (ki) canbedeterminedfromthe knowledgeofy (k) onki≤k≤kf[17].

Theorem2. Discretetimenon-commensuratefractionalorder

sys-temiscompletelyobservableifthereexitsafinitetimeKsuchthatthe compositeobservabilitymatrix,OK







∈RKm×n OK







=



C







G0







C







G1







··· C







GK−1









T isofrankn. [∗]Tdenotesthetransposeofamatrix.

Proofsoftheoremscanbefoundin[16]and[17].Theorems1and 2wereappliedtothefractionalorderrespiratorysystemmodels andcontrollabilityandobservabilitymatrixrankswerecompared withthenumber ofstates. Sinceconstant parametervalues() givenintheliteraturewereusedinthecalculationsofthematrices, controllabilityandobservabilitymatricesaretime-invariant matri-ces(seeTable1fortheparametervalues,explanationsandrelated references).

2.4.1. Theeffectofthemaximumtimedelay(K)

Firstweshouldinvestigatetheeffectofthemaximumtimedelay ontherankofcontrollabilityandobservabilityofmatrices.Model equationsplay averyimportantrole toensurethat therankof PK







andOK







aren.FirstweobservethateventhoughA







is alowrankmatrix(asinFOM1),A0







isfullrank,whichresultsin afullranktimevaryingtransitionmatrixGk







in(7).However,it isnotsufficienttohavefullrankGk







tosatisfytheTheorems1 and2.IfbothGk







Bd







andC







Gk







resultinzerorowand columnvectorsforeverykrespectively,regardlessofthemaximum timedelay,augmentedmatricesPK







andOK







willhavearank lowerthann.

2.4.2. Theeffectofthefractionalordervector()

ThereisnodirecteffectoffractionalorderstotherankofPK







andOK







,butsincethefractionalordersinthemodel(˛andˇ) relatedtothemodelstructure,fractionalordervector()affects therankindirectly.

2.4.3. Theeffectoftheparameters()

Parametervaluesalsodonothaveadirecteffectontherank ofPK







andOK







.However,parametersensitivitiesofthe con-trollabilityand observabilitymatriceswithrespecttonumerical instabilitiesofthematricesshouldbeinvestigatedasafuturestudy. 2.5. StabilityAnalysis

Estimated parameters in biological modelsmay not lead to stable model solutions, because fitting models to theacquired

(4)

impedancedatawitha minimumfittingerrordoesnot guaran-teethestabledynamicpropertiesofthesystem.Inthiscaseany externalandinternalperturbationsinthestates(pressuresin res-piratorysystem)resultindivergedoutput(airflow).Inotherwords, dynamicpropertiesofthemodelsbecomeunreliabletoindicate physiologicalvariations.Thusweproposetoanalyzethemodels withestimatedparametersintermsofstabilitybeforeany evalua-tionofthephysiologicalmeaningofstates.Stabilityanalysisofthe discretetime-delaysystemin(3)and(5)canbedoneby consider-ingtwodifferenttypeofthestability,namely,asymptoticstability andfinitetimestability.Inthiswork,wefocusonlyonasymptotic stabilityandleavethefinitetimestabilityforthefuturework.

Definition3. Lineardiscretetimesystemin(3)and(5)is

asymp-toticallystablewith respectto

Bx,B0,Bu,K

, Bx,B0,Bu ∈R+, K ∈Z,foreachk≥1,anyinitialcondition



x (0)



<B0 andany inputsignal



u (k)



<Buif



x (k)



<Bx

where



x (k)



=



ni=1



xi(k)



2isEuclideannormofthestate vec-tor.

Basically,therequirementfortheasymptoticallystablesystem isthat[18]: K



j=0



Aj







<1 (8)

where discrete state transition matrix is defined as in (5) and



Aj







=



max



ATj







Aj







andmax(•) aretheEuclidean normandmaximumeigenvalueofthematrixrespectively. Condi-tionin(8)canbeobtainedbyconsideringthesolutionin(6)and definitionoftimevaryingtransitionmatrixin(7).Ifabove require-mentisevaluatedbydiscretestatetransitionmatrixin(5),onecan findrestrictivestabilityconditionofdiscretetimefractionalorder system.In[19]theoremgivenbelowwasprovedfortheasymptotic stabilityofcommensurateFOMgivenin(3)and(5).However,for thenon-commensurateFOM,theconditionisslightlymodified.

Theorem4. Asystemin(3)–(5)isasymptoticallystableforallstates

attimeinstantkifthefollowingconditionissatisfiedforallfractional orders:



A0







<max i (r (K,i)) wherer (K,i)=

1 i=0 i+  (K+2i)  (K+2)  (1−i) i>0 iscalleda spec-tralradiusofthematrixA0







.

ProofofTheorem3:Byusingthefactthat



A+B





A



+



B



, (8)canbewrittenas



A0







<1−







K



j=1 (−1)jϒ j+1







Iftheclosedformfortheabovesumisexisted,byusingpartialsums ofgeneralbinomialcoefficientsas



kj=0(−1)j

i j

=

k−i k

(i ∈Randk≥i,k ∈Z+∪

0

)andbyreplacingthedefinition

Fig.2.r (K,i) inFOM4.

ofϒj+1in(4),theupperbondforthematrixnormofA0







canbe writtenas:



A0







<1 −





In+diag



−1−

k+1−1 k+1

,···,−n−

k+1−n k+1





(9)

Finally,whenGammafunctionisreplacedinsteadofthe non-integerbinomialcoefficients,

K+1i K+1

=  (K+2−i)  (K+2)  (1−i) spectralradiusofthematrixisfoundasinTheorem3

Theorem3isaspecialcaseofoneofthematrixmetricsdefined in[18] (Theorems 3,4 and5)for thenon-commensurateFOM. However,theadvantageofTheorem3shouldbealsonotedthat Theorem3islessrestrictivethanthestabilityrequirementin(8). 2.5.1. Theeffectofthemaximumtimedelay(K)

Spectral radius (max i

(r (K,i))) of the matrix A0







only dependsonthefractionalorderiandmaximumtime delayK. InFig.2r (K,i) isplottedfor1≤K≤200withafixediinFOM4. SimilarfigureswereobtainedinFOM1,FOM2andFOM3.Wefound thatspectralradiusinverselychangesbyKwithadecreasingtrend. InthisstudyweassumedK=100,because(.)functionincreases tothelevelcausingthenumericalinstabilities.

2.5.2. Theeffectofthefractionalordervector()

Fractionalordersdirectlyaffectthespectralradiusofthematrix

A0







.Toexploretheeffects,considertheFig.3.Fig.3showsthe spectralradiusversusfractionalorderforK=10andK=100.From thefigure,itis observedthatspectralradiusisminimumwhen 0.2≤i≤0.4anddecreaseswhenmaximumtimedelayincreases. 2.5.3. Theeffectoftheparameters()

Itshouldbestatedthat,parametervalueshaveadirecteffect onthenormofA0







,whichisconstructedbythestatetransition matrix.However,theboundonthestability,whichiscalledasa spectralradiushasnoinfluenceontheparameters.Thisfurther meansthatonlymodelstructureandfractionalorderscanchange theupperboundsofthestabilitycriterion.

3. Results

Beforetheresults,itshouldbeemphasizedthat,inthisstudy thestate-spaceanalysisisdonebasedontheestimated param-etervalues given in theliterature.Therefore, this analysisonly

(5)

Fig.3. r (K,i) for0≤i≤1andK=10K=100.

Table3

ControllabilityandObservabilityResults

Models Controllability rank(PK







) Observability rank(OK







) FOM1 Healthy 2 1 COPD 2 1 FOM2 Healthy 2 2 COPD 2 2 FOM3 Healthy 2 2 COPD 2 2 FOM4 Healthy 2 2 COPD 2 2 Table4 StabilityResults

Models EuclideanNorm SpectralRadius Stability



A0







max

i

(r (K,i))

FOM1 Healthy 0.9795 1.0004 YES

COPD 4.4519 0.6154 NO

FOM2 Healthy 2.0865 1.0004 NO

COPD 1.2990 1 NO

FOM3 Healthy 0.7813 1 YES

COPD 1.1228 1 NO

FOM4 Healthy 0.6474 0.8161 YES

COPD 1.1856 0.6556 NO

requiresparametervalues(Table1)and modelstructuresgiven in(1).Controllability(PK







)andobservability(OK







)matrices wereconstructedwiththehelpofTheorems1and2.The control-labilityandobservabilityresultsareshowninTable3.Ascanbe seenfromthetable,resultsprovethatallmodels,exceptFOM1are bothcontrollableandobservable,becausetheranksofPK







and OK







matchtothenumberofthestatesinthemodels.

Asymptoticstabilityanalysiswereperformedaccordingtothe Theorem3.Table4shows spectralradius(max

i

(r (K,i)))ofthe matrixA0







forallmodels.NormofthematrixA0







andstability resultsarealsogiveninthesametable.

4. Discussion

InFOMsinput(control)signalisthemouthpressureand out-putsignalisthetotalairflow.HoweverstatesofFOMsdonothave

direct physiological explanations. Allelasticpressure related to thecomplianceparameter(C)andairflowrelatedtotheinertance parameter(L)aredynamicelementsinthemodels.Wecanassume thatX1(t) andX2(t) representthepressureandtheairflowrelated dynamicsinFOMsrespectivelyduetothedefinitionsinthemodels. Table 3 shows theresults of thecontrollability and observ-ability analysis.Results provethatallmodels,exceptFOM1are bothcontrollableandobservable,becausetheranksofPK







and OK







matchtothenumberofthestatesinthemodels.Firstof all,in section 2.4.3, it is stated thatcontrollability and observ-abilitydonotdependontheparametervalues,thustheyarenot linkedtothehealthyanddiseasedconditions.Physiological expla-nation for the existence of thecontrollability condition is that mouth pressure can manipulate time-varyingdynamics in res-piratory system. This furtherexplains that as irrelevant to the FOMstructure,pressureand flowsinrespiratorysystemcanbe estimatedfrommouth pressure.On theotherhand,absenceof theobservabilityconditionwasobservedinFOM1.Physiological explanation for this result is that measured airflowalone can-notaffectthetime-varyingdynamicsintherespiratory system, ifitismodelledbyFOM1.Also,itisobservedthatthelossofan inertanceparameter(L)inFOM1resultsinunobservablemodels. Thisfurthermeansthat although structuralstatic propertiesof FOM1isknown,itcannotbedynamicallyidentifiedbythe mea-suredairflowsignal.Theonlyremedyforthismodellingproblem is tochangethemodel structureby includingorexcluding the parameters.

Discrete-timeversionofFOMsistheinfinitememorytime-delay systems.ThisistheoneofthereasonsthatFOMsrepresentthe stressrelationofthelungtissue.Controllabilityandobservability analysisalsoindicatedthattheeffectofthemouthpressureand theairflowonthesystemdynamicsisnotafunctionofthememory ofthesystem.Also,parametervaluesandfractionalordersdonot altercontrollabilityandobservabilityresults.Itseemsthatmodel structureplaysanimportantroleondeterminationofthemouth pressureandairfloweffectsinFOMs.

Table4showstheresultsofthestabilityanalysis.Firstly, con-servativeandsufficientdelay-independentstabilitycriterionin(8) yieldsthat thenormof theindefinite statetransitionmatrix is responsibleforthestabilityofFOMs.Thisresultisexpectedand canbeexplainedbythebasicstabilitytheoremindiscrete-time systems.HoweverstabilitybondsfortheFOMsinTheorem3is establishedasanupperboundsforthestabilityrestriction. This meansthatTheorem3alsoboundstheparameterranges.

Fig.2revealstheinterestingrelationshipbetweenthesystem memory,whichisthemaximumtimedelayandstabilityboundof thesystem.InallFOMsstabilityboundsdecreasemoreslowlyafter K=100.Thisisbecauseofthegammafunction.(K)intheratio increasesrapidlyandatthelimitonly(i)determinestheratio. ThiscanbeseenfromFig.3whichshowsthestabilityboundsfor differentfractionalorders.Weobservedthatfractionalordersare noticeablylowerforCOPDdata.ThismaybethereasonthatCOPD patientsdataprovidednon-stablemodels.Onthecontrary,all mod-elsexcept FOM2arestable modelsfortheparametervalues of healthysubjects.Physiologicalexplanationsofthestabilityresults canbedoneaccordingly.Thelinkbetweenmodelparameter val-uesanddiseasedconditions(airwayobstruction,changeintissue elasticityandmorphologicalchangesduetothetissue heterogene-ity)werealreadyestablishedinrecentstudies[6],[7]and[8].Here, weprovedmathematicallythatlowerfractionalordershavesome consequences in thestability ofFOMs. Thisresultdevelops the associationbetweenthecapabilitiesofFOMs inthe representa-tionof therespiratory systemandthefractionalorders.In this stage,weareveryreluctanttoassumearelationshipbetween sta-bilityandpathologyintheunderlyingsystem,sinceitneedsfurther proof.

(6)

5. Conclusion

Inthisstudy,controllability,observabilityandstability analy-sisofFOMswereperformedbyusingstate-spacerepresentationof themodelsevaluatedbyreferencevaluesgivenintheliterature. Resultsshowedthatthereisanuncontrollableandunobservable modein FOM1.Furthermore,stability analysisrevealed thatall COPDpatientsdataprovidedunstablemodels.Clinical applicabil-ityoftheproposedapproachinthisstudyisdirectlylinkedtothe applicabilityofthefractionalordermodelstotherespiratory sys-tem.Thisstudyrevealedthatstraightadoptionoftheestimated parametersin theclinicalstudiesmaybemisleadingor subop-timal due to the model behaviour revealed by the state-space analysisofthefractionalorder models.Thus,careful considera-tionmustbegivenwheninterpretingthefindingsinFOMsduring therespiratorytests.Results indicatethat parametershave dif-ferenteffects onthemodels.However,thisneedsfurtherstudy whichmayrevealhowtheimprecisionsintheparametervalues affecttheaccuracyofthesystemdynamics(statesandthe out-put).Finally,resultsand outcomesofthis studyprovidedsome improvementsintheunderstandingofthemodelsinthe litera-ture.

Acknowledgements

Thisstudywas partiallysupported bytheResearch Fund of IstanbulKulturUniversity,GrandNo:IKU-BAP1801.TheStudyhas ethicalapprovalfromEthicalCommitteeofIstanbulKultur Univer-sity,(2018.01anddated1,April2018).

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

AppendixA.

Firsttransferadmittancein(1)canbewrittenas YFOM(s)= 1 ZFOM(s)= Q (s) P (s) = Csˇ 1+RCsˇ+LCs˛+ˇ (10) where P (s) and Q (s) are the mouth pressure and the airflow throughmouthrespectively.Ifadmittanceisdecomposedintotwo partsbyusingintermediatevariableW (s):

YFOM(s)= Q (s) W (s)

W (s) P (s)

wherepartsareW (s)Q (s) =CsˇandW (s)

P(s) =1+RCsˇ1+LCs˛+ˇ,secondpartis transformedintotimedomainas:

P (t)=W (t)+RCˇtW (t)+LC˛+ˇt W (t) (11) Thentwoequationsintimedomainarebuiltas:

X1(t)=W (t) X2(t)=ˇtW (t)=

ˇ tX1(t)

(12) whereX1(t) andX2(t) arestatesin(2).˛thorderfractional deriva-tiveofX2(t) canbeobtainedfrom(11)and(12)as:

tX2(t)=− 1 LCX1(t)− R CX2(t)+ 1 LCP (t) (13)

Next,firstpartistransformedintotimedomainas:

Q (t)=CˇtW (t)=CX2(t) (14)

Finally,from(12),(13)and(14)correspondingstate-space repre-sentationisderived:

 ˇ tX1(t) ˛ tX2(t)

=

0 1 −1 LC −R C



X 1(t) X2(t)



+

0 1 LC

P (t) Q (t)=



0 C





X 1(t) X2(t)



+ [0] P (t) (15) References

[1]B.Suki,A.L.Barabasi,K.R.Lutchen,Lungtissueviscoelasticity:amathematical frameworkanditsmolecularbasis,J.Appl.Physiol.76(1994)2749– 2759.

[2]J.Hildebrandt,Comparisonofmathematicalmodelsforcatlungand viscoelasticbaloonderivedbyLaplacetransformmethodsfrom pressure-volumedata,Bull.Math.Biophys.31(1969)651–667.

[3]C.Ionescu,I.Muntean,J.A.Tenreiro-Machado,R.DeKeyser,M.Abruden,A theoreticalstudyonmodelingtherespiratorytractwithladdernetworksby meansofintrinsicfractalgeometry,IEEETBio-medEng.57(2)(2010) 246–253.

[4]D.W.Kaczka,J.L.Smallwood,Constant-phasedescriptionsofcaninelung, chestwall,andtotalrespiratorysystemviscoelasticity:effectsofdistending pressure,Respir.Physiol.Neurobiol.183(2012)75–84.

[5]I.Assadi,A.Charef,D.Copot,R.DeKeyser,T.Bensouici,C.Ionescu,Evaluation ofrespiratorypropertiesbymeansoffractionalordermodels,Biomed.Signal Process.34(2017).

[6]C.Ionescu,FractionalOrderModelsoftheHumanRespiratorySystem,Ghent University,FacultyofEngineering,Ghent,Belgium,2009.

[7]C.Ionescu,P.Segers,R.DeKeyser,Mechanicalpropertiesoftherespiratory systemderivedfrommorphologicinsight,IEEETBio-medEng.56(4)(2009) 949–959.

[8]C.Ionescu,E.Derom,R.DeKeyser,Assessmentofrespiratorymechanical propertieswithconstant-phasemodelsinhealthyandCOPDlungs,Comput. Meth.Prog.Bio.97(1)(2010)78–85.

[9]D.Copot,R.DeKeyser,E.Derom,M.Ortigueira,C.Ionescu,Reducingbiasin fractionalorderimpedanceestimationforlungfunctionevaluation,Biomed. SignalProcess.39(2018)74–80.

[10]C.Ionescu,J.Kelly,Fractionalcalculusforrespiratorymechanics:Powerlaw impedance,viscoelasticity,andtissueheterogeneity,ChaosSolitonsFract.102 (2017)433–440.

[11]C.Ionescu,A.Lopes,D.Copot,J.A.T.Machado,J.H.T.Bates,Theroleof fractionalcalculusinmodelingbiologicalphenomena:areview,Commun. NonlinearSci.51(2017)141–159.

[12]H.Yuan,K.R.Lutchen,Sensitivityanalysisforevaluatingnonlinearmodelsof lungmechanics,Ann.Biomed.Eng.26(1998)230–241.

[13]K.Ogata,State-SpaceAnalysisofControlSystems,PrenticeHall,1997.

[14]C.Ionescu,R.DeKeyser,K.Desager,E.Derom,Fractional-OrderModelsforthe InputImpedanceoftheRespiratorySystem,2009,www.intechopen.com. [15]D.Baleanu,A.N.Ranjbar,S.J.R.Sadati,H.Delavari,T.Abdeljawad,V.Gejji, Lyapunov-Krasovskiistabilitytheoremforfractionalsystemswithdelay, Rom.J.Phys.56(5-6)(2011)636–643.

[16]S.Guermah,S.Djennoune,M.Bettayeb,Discrete-timeFractional-order Systems:ModelingandStabilityIssues,2012,www.intechopen. com.

[17]S.Guermah,S.Djennoune,M.Bettayeb,Controllabilityandobservabilityof lineardiscrete-timefractionalordersystems,Int.J.Appl.Math.Comput.18 (2)(2008)213–222.

[18]D.Debeljkovic,M.Aleksendric,N.Yi-Yong,Q.L.Zhang,Lyapunovand non-Lyapunovstabilityoflineardiscretetimedelaysystems,Facta Universitatis1(9)(2002)1147–1160.

[19]A.Dzielinski,D.Sierociuk,Stabilityofdiscretefractionalorderstate-space systems,in:Proceed2ndIFACWorkshoponFractionalDifferentiationandits App,Portugal,2006.

Şekil

Fig. 1. Electrical analogy of constant phase model realized by domino ladder circuit.
Fig. 2. r (K,  i ) in FOM4.
Table 4 shows the results of the stability analysis. Firstly, con- con-servative and sufficient delay-independent stability criterion in (8) yields that the norm of the indefinite state transition matrix is responsible for the stability of FOMs

Referanslar

Benzer Belgeler

Widening scope of the state activity, change of its orientation towards ensuring the rights and freedoms of the individual, necessitated the clarification of the functions of

Transformation matrix for space frames is written according to direction cosines of x, y and z axes of the members in local coordinate system with respect to its global

Aslında İstanbul’un da bugün bilmediğimiz pek çok dansı vardı; belki Anadolu için yapıldığı gibi araştırılıp.. konu üzerine eğilinirse

Kurtuluş Sa­ vaşı sadece bize özgü yerel, sınırlı, dar an­ lamlı bir savaş değildi, kurulacak yeni dünyanın ilk yapı taşıydı, böyle olduğu için de

Bugün gerçekten yeni bir günse, göreve yeni başlayan bir Demirel’in de en büyük düşman­ larından birisi, ancak dünün düşünceleri olabilir. Yeni günlerin

Yavuz Sultan Selim ile Şah İsmail arasında yapılan Çaldıran savaşının önemli tartışma konularından bir de Şah İsmail’in eşi Taçlı Begüm’ün Os- manlıların eline

Bir üniversite hastanesinde psikiyatri kliniğin- de yatarak tedavi gören 42 hasta yak›n›n›n, ruhsal bozukluğu olmayan ve diğer kliniklerde tedavi gören 42

Osman Pazvando~lu Camii'nin içinde, çevrede' bulunmu~~ olan, üzerlerinde güzel metinlerin ve zarif süslemelerin yerald~~~~ mezar ta~lar~~ ve ayr~ca bir zamanlar okullar~