• Sonuç bulunamadı

GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES

N/A
N/A
Protected

Academic year: 2021

Share "GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES "

Copied!
10
0
0

Tam metin

(1)

E. Ata, Y. Kemer, A. Atasoy

GENERALIZED QUATERNIONS SERRET-FRENET AND BISHOP FRAMES

Erhan ATA*, Yasemin KEMER, Ali ATASOY

DumlupÕnar University, Faculty of Science and Arts, Department of Mathematics, KÜTAHYA, eata@dpu.edu.tr

ABSTRACT

Serret-Frenet and Parallel-Transport frame are produced with the help of the generalized quaternions again by the method in [4].

Keywords: Generalized quaternion, Serret-Frenet frame, Bishop frame.

GENELLEùTøRøLMøù KUATERNøYONLARIN SERRET-FRENET VE BISHOP ÇATILARI

ÖZET

Serret-Frenet ve Paralel taúÕma çatÕlarÕ, genelleútirilmiú kuaterniyonlar yardÕmÕyla yine [4]te verilen metot ile oluúturulmuútur.

1. INTRODUCTION

The Frenet-Serret formulas describe the kinematic properties of a particle which moves along a continuous, differentiable curve in Euclidean space Թ³ or Minkowski space ԹΌ³. These formulas have a common area of usage in mathematics, physics (especially in relative theory), medicine, computer graphics and such fields.

It is known by especially mathematicians and physicists that any unit (split) quaternion corresponds to rotation in Euclidean and Minkowski spaces. For detailed information it is referred to [1], [2] and [3]. The rotations are expressed by quaternions that is because the geodesic curves in unit (split) quaternion space S³ can not be expressed by using Euler angles [4].

2. PRELIMINARIES

Our first goal is to define moving coordinate frames that are attached to a curve in 3D space.

2.1. Frenet-Serret frames:

The Frenet-Serret frame (see, [5], [6] and [7]) is defined as follows: Let (t)D)& be any thrice-differentiable space curve with non-vanishing second derivative. We can choose this local coordinate system to be the Frenet-Serret frame consisting of the tangent (t)T)&

, the binormal (t)B)&

, and the principal normal (t)N))&

vectors at a point on the curve given by

(2)

E. Ata, Y. Kemer, A. Atasoy

'(t) '(t) ''(t)

(t)= , (t)= , (t)= (t) (t).

'(t) '(t) ''(t)

T D B D D N B T

D D D

u u

u ))& ))& ))&

)& )& ))& )& )&

)& ))& ))&

(2.1) The Frenet-Serret frame (also known as the Frenet frame) obeys the following differential equation in the parameter t:

'(t) 0 ( ) 0 (t)

'(t) v(t) ( ) 0 ( ) (t)

0 ( ) 0

'(t) (t)

T t T

N t t N

B t B

N

N W

W

ª º ª ºª º

« » « »« »

« » « »« »

« » «¬  »¼« »

« » « »

¬ ¼ ¬ ¼

)& )&

))& ))&

)& )&

(2.2)

where v t

D'

t is scalar magnitude of the curve derivative (often reparametrized to be unity, so that t becomes the arc-length s), the intrinsic geometry of the curve is embodied in the scalar curvature N( )t and the torsion W( )t . In principle these quantities can be calculated in terms of the parametrized or numerical local values of ( )D)&t and its first three derivatives as follows:

3

'( ) ''( ) ( )

'( )

t t

t

t

D D

N

D ))& u))&

))&

2

'( ) ''( ) '''( ) ( )

'( ) ''( )

t t t

t

t t

D D D

W D D

u ˜

u ))& ))& )))&

))& ))&

(2.3) If a non-vanishing curvature and torsion are given as smooth function of t, the system of equations can be integrated theoretically to find the unique numerical values of the corresponding space curve ( ).D)& t

2.2. Parallel Transport Frames:

Intuitively, the Frenet frame's normal vector N))& always points toward the center of the osculating circle [8]. Thus, when the orientation of the osculating circle changes drastically or the second derivative of the curve becomes very small, The Frenet frame behaves erratically or may become undefined.

Parallel Transport Frames:

The Parallel Transport frame or Bishop frame is an alternative approach to defining a moving frame that is well defined even when the curve has vanishing second derivative.

We can parallel transport an orthonormal frame along a curve simply by parallel transporting each component to the frame. The parallel transport frame is based on the observation that, while ( )T t)&

for a given curve model is unique, we may choose any conventient arbitrary basis

N t N))&1( ),)))&2( )t

for the

remainder of the frame, as long as it is in the normal plane perpendicular to ( )T t)&

at each point. If the derivatives of

))&N t N1( ),)))&2( )t

depend only on ( )T t)&

and not on each other, we can make N t))&1( )

and N t)))&2( )

(3)

E. Ata, Y. Kemer, A. Atasoy vary smoothly throughout the path regardless of the curvature. We therefore have the alternative frame equations

1 2

1 1

2 2

'(t) 0 ( ) ( ) (t)

'(t) v(t) ( ) 0 0 (t)

( ) 0 0

'(t) (t)

T k t k t T

N k t N

N k t B

ª º ª ºª º

« » « »« »

« » « »« »

« » «¬ »¼« »

« » « »

¬ ¼ ¬ ¼

)& )&

)))& ))&

)))& )&

(2.4) One can show (see, [10]) that

2 2

1 2 ,

k k

N 

(2.5)

2

1

( ) arctan k ,

t k

T §¨ ·¸

© ¹ (2.6)

( ) d

t

t dt

W T

(2.7) so that k1 and k2effectively correspond to a Cartesian coordinate system for the polar coordinates N T, with T

³

Wdt.The orientation of the parallel transport frame includes the arbitrary choice of integration constant T , which disappears from 0 W (and hence the Frenet frame) due to the differentiation.

3. GENERALIZED QUATERNION FRAMES

Definition 3.1. The set HD E,

^

q a01a i1 a j2 a k a a a a3 : 0, 1, 2, 3, ,D E

`

is a vector space over Թ having basis

^

1, , ,i j k

`

with the following properties:

2 2 2

, ,

i D j E k DE ij  ji k

jk  kj Ei ki  ik Dj

Every element of the set HDEis called a generalized quaternion [9].

Definition 3.2. A generalized quaternion frame is defined as a unit-lenght generalized quaternion

01 1 2 3

q a a ia ja k and is characterized by the following properties:

Two generalized quaternions q and p obey the following multiplication rule,

0 0 1 1 2 2 3 3 0 1 1 0 2 3 3 2

0 2 2 0 3 1 1 3 0 3 3 0 1 2 2 1 .

qp a b a b a b a b a b a b a b a b i

a b a b a b a b j a b a b a b a b k

D E DE E E

D D

      

       

(3.1)

The conjugate of q is defined as

01 1 2 3

q a a ia ja k. A unit-length generalized quaternion's norm is defined as:

2 2 2 2

0 1 2 3 1.

Nq qq qq a Da Ea DEa

(4)

E. Ata, Y. Kemer, A. Atasoy Every possible rotation R (a 3×3 special generalized orthogonal matrix) can be constructed from either of two related generalized quaternions, q a01a i1 a j2 a k3 or  q a01a i1 a j2 a k3 , using the transformation law:

q w q˜ ˜ ˜R w

3 1

ij j

i j

q w q R w

ª ˜ ˜ º ˜

¬ ¼

¦

where w v i1 v j2 v k3 is a generalized pure quaternion. We compute Rijdirectly from (3.1)

2 2 2 2

0 1 2 3 1 2 0 3 0 2 1 3

2 2 2 2

0 3 1 2 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 2 0 1 2 3 0 1 2 3

2 2 2 2

2 2 2 2

2 2 2 2

a a a a a a a a a a a a

R a a a a a a a a a a a a

a a a a a a a a a a a a

D E DE E E E DE

D D D E DE DE D

D E D E DE

ª      º

«      »

« »

«      »

¬ ¼

All rows of this matrix expressed in this form are orthogonal but not orthonormal. Dividing first, second and last column by ,D E and DE , respectively we get

2 2 2 2

0 1 2 3 1 2 0 3 0 2 1 3

2 2 2 2

0 3 1 2 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 2 0 1 2 3 0 1 2 3

1 2

2 2 2

1 2

2 2 2

2 2 1 1 1

2 2

a a a a a a a a a a a a

R a a a a a a a a a a a a

a a a a a a a a a a a a

E E

D D D

D D D D

E E E

D E DE E D

ª º

    

« »

« »

« »

c «      »

« »

« »

    

« »

¬ ¼ (3.2)

All rows of this rotation matrix expressed in this form are orthonormal and create a roof. The quadratic form (3.2) for a general orthonormal frame coincides with Frenet and parallel transport frames.

Special cases:

(i) For D E , the generalized quaternion algebra 1 HDE coincides with the real quaternion algebra H. In this case the rotation matrix Rƍ becomes

2 2 2 2

0 1 2 3 1 2 0 3 0 2 1 3

2 2 2 2

0 3 1 2 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 2 0 1 2 3 0 1 2 3

2 2 2 2

2 2 2 2

2 2 2 2

a a a a a a a a a a a a

R a a a a a a a a a a a a

a a a a a a a a a a a a

D

ª      º

« »

c «      »

«      »

¬ ¼

These matrices form the three-dimensional special orthogonal group SO(3). Since the matrix Rƍ can be obtained by the unit quaternions q and qƍ, there are two unit quaternions for every rotation in Euclidean space 3.

(ii) For D 1,E  , the generalized quaternion algebra 1 HDEcoincides with the split quaternion algebra .

H c In this case the rotation matrix Rƍ becomes

(5)

E. Ata, Y. Kemer, A. Atasoy

2 2 2 2

0 1 2 3 1 2 0 3 0 2 1 3

2 2 2 2

0 3 1 2 0 1 2 3 2 3 0 1

2 2 2 2

1 3 0 2 0 1 2 3 0 1 2 3

2 2 2 2

2 2 2 2

2 2 2 2

a a a a a a a a a a a a

R a a a a a a a a a a a a

a a a a a a a a a a a a

D

ª      º

« »

c «       »

«        »

¬ ¼

These matrices form the three-dimensional special orthogonal group SO(1,2). Similarly the matrix Rƍ can be obtained by the unit split quaternions q and -q, there are two unit timelike quaternions for every rotation in Minkowski 3-space 13.

The equations obtained as a result of this coincidence are quaternion valued linear equations. If we derive the rows equation of (3.2) respectively, then we obtain following results;

> @> @

0 1 2 3 0

1

3 2 1 0

2

2 3 0 1 3

1

2 2

1 1

a a a a da

dT a a a a da A q

da

a a a a da

E E

D D

D D

ª   º ª º

« » « »

« » « » c

« » « »

« » « »

«  »¬ ¼

¬ ¼

)&

> @> @

3 2 1 0 0

1

0 1 2 3

2

3

1 0 3 2

2 1 2

1 1

a a a a da

d N a a a a da B q

da

a a a a da

D D

E E

E E

ª º

«  » ª º

« » « »

«   » « » c

« » « »

« » « »

« » ¬ ¼

« »

¬ ¼

))&

(3.3)

> @> @

2 3 0 1

0

1

1 0 3 2

2

3

0 1 2 3

1 1

1 1

2 2 .

1 1 1

a a a a da

d B a a a a da C q

da

a a a a da

D D

E E

DE E D

ª º

« » ª º

« » « »

«  » « » c

« » « »

« » « »

«   » ¬ ¼

« »

¬ ¼

)&

3.1. Generalized Quaternion Frenet Frame Equation:

The Frenet equations themselves must take the form

> @> @

2 A qc T))&c v NN))&

(3.4) 2 B q

> @> @

c N))&c v TN)&v BW)& (3.5)

2 C q

> @> @

c ))&Bc v NW))& (3.6) where

> @

0 0 1 2 3 0

1 0 1 2 3 1

2 0 1 2 3 2

3 0 1 2 3 3

.

da b b b b a

da c c c c a

q da d d d d a

da e e e e a

ª º ª º ª º

« » « » « »

« » « » « »

c « » « » « »

« » « » « »

¬ ¼ ¬ ¼ ¬ ¼

(6)

E. Ata, Y. Kemer, A. Atasoy Therefore; with the help of (3.4),(3.5) and (3.6) we obtain the following equations:

2 2 2

0 0 3 1 1 3 2 2 3 3 3 0 0 2 1 1 2 2 2 3 2 3 0 0 1 1 1 2 1 2

2 2 2 2 2

3 1 3 0 0 1 0 1 2 0 2 3 0 3 0 1 2 3

1 2

b a a b a a b a a b a c a a c a a c a c a a d a a d a d a a d a a e a e a a e a a e a a vN a D a a Da

E E

         

§ ·

     ¨    ¸

© ¹

(3.7)

2 2

0 0 3 1 1 3 2 2 3 3 3 0 0 2 1 1 2 2 2 3 2 3

2 2

0 0 1 1 1 2 1 2 3 1 3 0 0 1 0 1 2 0 2 3 0 3

2 2 2 2

0 1 2 3 0 2 1 3

1 2

2 2 2

b a a b a a b a a b a c a a c a a c a c a a d a a d a d a a d a a e a e a a e a a e a a

v v

a a Ea a a a a a

N E W

D D D

       

       

§ · § ·

 ©¨    ¸¹ ©¨  ¸¹ (3.8)

2 2

0 0 1 1 1 2 1 2 3 1 3 0 0 1 0 1 2 0 2 3 1 3

2 2

0 0 3 1 1 3 2 2 3 3 3 0 0 2 1 1 2 2 2 3 2 3

2 2 2 2

1 3 0 2 0 1 2 3

1 1 1 1 1 1 1 1

2 1 1 1

2 2 2

b a a b a b a a b a a c a c a a c a a c a a

d a a d a a d a a d a e a a e a a e a e a a

v v

a a a a a a a a

E E E E E E E E

N W

D DE E D

      

       

§ ·

§ ·

 ¨©  ¸¹ ¨©    ¸¹ (3.9)

2 2

0 0 1 1 1 2 1 2 3 1 3 0 0 1 0 1 2 0 2 3 1 3

2 2

0 0 3 1 1 3 2 2 3 3 3 0 0 2 1 1 2 2 2 3 2 3

2 2 2 2

0 1 2 3

1 1 1 1 1 1 1 1

1 2

b a a b a b a a b a a c a c a a c a a c a a

d a a d a a d a a d a e a a e a a e a e a a

v a a a a

E E E E E E E E

W D D

E E

       

       

§ ·

 ¨    ¸

© ¹ (3.10)

Finally, we get

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0, , 0, ,

2 2

, 0, , 0,

2 2

0, , 0, ,

2 2

, 0, , 0.

2 2

v v

b b b b

v v

c c c c

v v

d d d d

v v

e e e e

WD ND

W N

D

N WD

E

N W

E D

 



 Therefore, the generalized quaternion Frenet frame equation:

> @

0 0

1 1

2 2

3 3

0 0

0 0

0 0 .

2

0 0

da a

da v a

q da a

da a

WD NE

W N

D

N WD

E

N W

E D

 

ª º

« »

« »

ª º ª º

« »

« » « »

« »

« » « »

c « » «  »« »

« »

« » « »

« »

¬ ¼ ¬ ¼

«  »

« »

¬ ¼

Special case:

(i) For D E 1we get the real quaternion Frenet frame equation

(7)

E. Ata, Y. Kemer, A. Atasoy

> @

0 0

1 1

2 2

3 3

0 0

0 0

0 0

2

0 0

da a

da v a

q da a

da a

W N

W N

N W

N W

 

ª º ª ºª º

« » « »« »

« » « »« »

c « » «  »« »

« » «¬  »¼« »

¬ ¼ ¬ ¼

for quaternion algebra H.

(ii) For D 1, E  we get the split quaternion Frenet frame equation 1

> @

0 0

1 1

2 2

3 3

0 0

0 0

0 0

2

0 0

da a

da v a

q da a

da a

W N

W N

N W

N W

 

ª º ª ºª º

« » « »« »

« » « »« »

c « » « »« »

« » «¬  »¼« »

¬ ¼ ¬ ¼

with the split quaternion algebra H c .

3.2. Parallel-Transport Generalized Quaternion Frame Equation

Similarly, it can be easily shown that a parallel transport frame system with

N t T t N t))&1( ), ( ),)& ))&2( )

(in that order) corresponded to columns of equation (3.2) is completely equivalent to the following parallel- transport generalized quaternion frame equation:

2

> @> @

B qc T))&' vk N1))&1vk N2)))&2

(3.11) 2

> @> @

A qc )))&N1' vk T1)&

(3.12) 2

> @> @

C qc )))&N2' vk T2)&

(3.13)

where

> @

0 0 1 2 3 0

1 0 1 2 3 1

2 0 1 2 3 2

3 0 1 2 3 3

.

da b b b b a

da c c c c a

q da d d d d a

da e e e e a

ª º ª º ª º

« » « » « »

« » « » « »

c « » « » « »

« » « » « »

¬ ¼ ¬ ¼ ¬ ¼

Therefore; with the help of (3.11),(3.12) and (3.13) we obtain the following equations:

2 2

0 0 3 1 1 3 2 2 3 3 3 0 0 2 1 1 2 2 2 3 2 3

2 2

0 0 1 1 1 2 1 2 3 1 3 0 0 1 0 1 2 0 2 3 0 3

2 2 2 2

1 0 1 2 3 2 0 2 1 3

1 2

2 2 2

b a a b a a b a a b a c a a c a a c a c a a d a a d a d a a d a a e a e a a e a a e a a

v v

k a a E a Ea k a a a a

D D D

       

       

§    · §  ·

¨ ¸ ¨ ¸

© ¹ © ¹ (3.14)

2 2

0 0 1 1 1 2 1 2 3 1 3 0 0 1 0 1 2 0 2 3 1 3

2 2

0 0 3 1 1 3 2 2 3 3 3 0 0 2 1 1 2 2 2 3 2 3

2 2 2 2

1 1 3 0 2 2 0 1 2 3

1 1 1 1 1 1 1 1

2 1 1 1

2 2 2

b a a b a b a a b a a c a c a a c a a c a a

d a a d a a d a a d a e a a e a a e a e a a

v v

k a a a a k a a a a

E E E E E E E E

D DE E D

      

       

§ ·

§  · ¨    ¸

¨ ¸

© ¹ © ¹ (3.15)

(8)

E. Ata, Y. Kemer, A. Atasoy

2 2 2

0 0 3 1 1 3 2 2 3 3 3 0 0 2 1 1 2 2 2 3 2 3 0 0 1 1 1 2 1 2

2 2 2 2 2

3 1 3 0 0 1 0 1 2 0 2 3 0 3 1 0 1 2 3

1 2

b a a b a a b a a b a c a a c a a c a c a a d a a d a d a a d a a e a e a a e a a e a a vk a D a a Da

E E

         

§ ·

      ¨    ¸

© ¹

(3.16)

2 2

0 0 1 1 1 2 1 2 3 1 3 0 0 1 0 1 2 0 2 3 1 3

2 2

0 0 3 1 1 3 2 2 3 3 3 0 0 2 1 1 2 2 2 3 2 3

2 2 2 2

2 0 1 2 3

1 1 1 1 1 1 1 1

1 2

b a a b a b a a b a a c a c a a c a a c a a

d a a d a a d a a d a e a a e a a e a e a a

vk a a a a

E E E E E E E E

D D

E E

       

       

§ ·

 ¨    ¸

© ¹ (3.17)

Finally, we get

0 1 2 2 3 1

2 1

0 1 2 3

0 1 1 2 3 2

1 2

0 1 2 3

0, , 0, ,

2 2

, 0, , 0,

2 2

0, , 0, ,

2 2

, 0, , 0.

2 2

v v

b b k b b k

k k

v v

c c c c

v v

d d k d d k

k k

v v

e e e e

E E

D D

D D





 

Therefore, the generalized quaternion parallel-transport frame equation:

> @

2 1

0 0

2 1

1 1

2 1 2 2

3 1 2 3

0 0

0 0

0 0 .

2

0 0

k k

da k k a

da v a

q da k k a

da k k a

E E

D D

D D

ª  º

« »

ª º ª º

«  »

« » « »« »

« » « »

c «« »» «« »»« »« »

« »

¬ ¼ «¬  »¼¬ ¼

Special case:

(i) For D E we get the real quaternion parallel-transport frame equation 1

> @

0 2 1 0

1 2 1 1

2 1 2 2

3 1 2 3

0 0

0 0

0 0 .

2

0 0

da k k a

da v k k a

q da k k a

da k k a

ª º ª  ºª º

« » «  »« »

« » « »« »

c « » « »« »

« » «¬  »¼« »

¬ ¼ ¬ ¼

for quaternion algebra H.

(ii) For D 1, E 1we get the split quaternion Frenet frame equation

> @

0 2 1 0

1 2 1 1

2 1 2 2

3 1 2 3

0 0

0 0

0 0 .

2

0 0

da k k a

da v k k a

q da k k a

da k k a

 

ª º ª ºª º

« » « »« »

« » « »« »

c « » « »« »

« » «¬  »¼« »

¬ ¼ ¬ ¼

with the split quaternion algebra H c .

(9)

E. Ata, Y. Kemer, A. Atasoy 3.3. Conclusion

While the rotations can be expressed by using the Euler angles, the rotations between the geodesic curves in the unit (split) quaternion space can not be obtained by the Euler angles. In addition, it is necessary to solve a nine-component equation for a rotation or a translation made by using the Euler angles. Whereas, instead of this, it can be made by a unit (split) quaternion.

REFERENCES

[1] Inoguchi, J., ”Timelike surfaces of constant mean curvature in Minkowski 3- space”, Tokyo J.

Math. 21(1) 141-152, 1998.

[2] Niven, I., ”The roots of a quaternion”, Amer. Math. Monthly 449(6) 386-388, 1942.

[3] Özdemir, M., Ergin A. A., ”Rotations with timelike quaternions in Minkowski 3-space”, J.

Geom. Phys. 56 322-336, 2006

[4] Hanson, A. J., ”Quaternion Frenet Frames: Making Optimal Tubes and Ribbons from Curves”, Tech. Rep. 407, Indiana Unv. Computer Science Dep., 1994.

[5] Eisenhart, L. P., ”A Treatise on the Differential Geometry of Curves and Surfaces”, Dover, New York, 1960, Originally published in 1909.

[6] Flanders, H., Differential Forms with Applications to Physical Sciences”, Academic Press, New York, 1963.

[7] Gray, A., ”Modern Differential Geometry of Curves and Surfaces”, CRC Press, Inc., Boca Raton, FL, 1993.

[8] Struik, D. J., ”Lectures on Classical Differential Geometry”, Addison-Wesley, 1961

[9] Öztürk, U., HacÕsaliho÷lu, H. H., YaylÕ, Y., Koç Öztürk, E. B. ,”Dual Quaternion Frames”, Commun. Fac. Sci. Univ. Ank. Series A1 59(2) 41–50, 2010

[10] Bishop, R. L., ”There is more than one way to frame a curve”, Amer. Math. Monthly 82(3) , 246- 251, March 1975.

(10)

E. Ata, Y. Kemer, A. Atasoy

Referanslar

Benzer Belgeler

Araştırma sonuçlarına gore okul yöneticilerinin karar verme stillerinin alt boyutları cinsiyet değişkenine incelendiğinde dikkatli, kaçıngan, erteleyici karar

Yıllık ısıtma periyodu boyunca güneş enerjisi kaynaklı ab- sorbsiyonlu sistem, soğutma ve sıcak kullanım suyu ihtiya- cının tamamına yakınını, ısıtma

Bu araştırmada, titanyum ve zirkonyum malzemeden katı modeli elde edilmiş ön kesici dişte düz ve açılı (15°) dayanak (abutment) kullanılarak alt çeneye

Alexander the Great, who took Samarkand from the Persians in 329 BC, destroyed the city due to the uprisings against him.. However,

introduced concepts of norms of commutative quaternion matrices and derived two algebraic techniques for finding solutions of least squares for the matrix equations AX ≈ B and AXC ≈

In Section 2, we adopt the idea in [5] of Huang and So to compute the roots of a quadratic polynomial using explicit formulas in terms of itscoe_cients.Then, we discuss

For CPP, time spent in seconds (s) by rats in pre- liminary test stage within the white compartment and the black compartment is presented in Figure 5 , and the time spent

Diyabet hastalığına sahip olma durumlarına göre ise katılımcıların SYBDÖ II’den aldıkları puan ortalamaları arasında ileri düzeyde (p<0,01) anlamlı

Bu bölümde boyutlu Hessenberg ve Tridiagonal tipte yeni matrisler tanımlanarak bu matrislerle sırasıyla Padovan, Perrin, Tribonacci, Jacobsthal, Jacobsthal-Lucas

One polymerase chain reaction product showing increased expression at days 2 to 14 after vascular injury was nearly identical to the mouse α1 chain of type

One polymerase chain reaction product showing increased expression at days 2 to 14 after vascular injury was nearly identical to the mouse α1 chain of type VIII collagen,

The authors proved that a curve is a helix if and only if there exists a parallel vector field lying in the osculating space of the curve and making constant angles with the tangent

In this study, Serret-Frenet Formulas for a space-quaternionic curve were obtained by considering quaternions and pseudo- quaternions in three-dimensional Lorentz Space

We build the concept of fuzzy split quaternion numbers of a natural extension of fuzzy real numbers in this study.. Then, we give some differential geometric properties of this

To this end, firstly, we define the generalized elliptical scalar product space which accepts the given ellipsoid as a sphere and determines skew symmetric matrices, and the

Mentorluk fonksiyonları açısından 6-10 yıl arasında süreli faaliyete sahip girişimcilerin, diğer düzeylere göre daha yüksek olduğu, aynı durumun algılanan

In this paper, we introduce the adapted frame of framed curves and we give the relations between the adapted frame and Frenet type frame of the framed curve in

In this example, total sales remained at the original figure, but prime costs expressed as a percentage of sales increased because of lowered menu prices and increased labor cost

In order to determine the number of moles of reactant B remaining at time t, for every mole of A that consumed, b/a moles of B must consumed; therefore, the number of moles of B

Distributions of properties of quark-jets or gluon-jets are extracted using the dijet and γ +jet event samples and the fraction of quark- and gluon-jets predicted by Pythia 6 with

Bu bağlamda, Sürdürülebilir Toprak Yönetimi Ulusal Eylem Planı (STY - UEP), FAO Türkiye Ülke Ofi si tarafından desteklenen ve T.C Tarım ve Orman Bakanlığı ile yapılan

well connected nodes and connecting paths and less saturated, cooler and darker color values to less connected, second and third order nodes and paths is a viable usage of using

Olgunun tedavi öncesi koronal yağ baskılı T2 (A) ve inravenöz kontrast madde (IVKM) enjeksiyonu sonrası elde edilen yağ baskılı T1 (B) ağırlıklı