• Sonuç bulunamadı

Design and study of a metamaterial based sensor for the application of liquid chemicals detection

N/A
N/A
Protected

Academic year: 2023

Share "Design and study of a metamaterial based sensor for the application of liquid chemicals detection"

Copied!
14
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

j mater res technol.2020;9(5):10291–10304

https://www.journals.elsevier.com/journal-of-materials-research-and-technology Availableonlineatwww.sciencedirect.com

Original Article

Design and study of a metamaterial based sensor for the application of liquid chemicals detection

Yadgar I. Abdulkarim

a,b

, Lianwen Deng

a

, Heng Luo

a,∗

, Shengxiang Huang

a

, Muharrem Karaaslan

c

, Olcay Altıntas¸

c

, Mehmet Bakır

d

, Fahmi F. Muhammadsharif

e

, Halgurd N.Awl

f

, Cumali Sabah

g

, Khalid Saeed Lateef Al-badri

h

aSchoolofPhysicsandElectronics,CentralSouthUniversity,Changsha,Hunan410083,China

bPhysicsDepartment,CollegeofScience,UniversityofSulaimani,Sulaimani,46001,Iraq

cDepartmentofElectricalandElectronics,IskenderunTechnicalUniversity,Hatay,31100,Turkey

dDepartmentofComputerEngineeringBozokUniversity,Yozgat,66200,Turkey

eDepartmentofPhysics,FacultyofScienceandHealth,KoyaUniversity,44023Koya,Iraq

fDepartmentofCommunicationEngineering,SulimaniPolytechnicUniversity,Sulaimani,46001,Iraq

gDepartmentofElectricalandElectronicsEngineering,MiddleEastTechnicalUniversity,Kalkanli,Guzelyurt,99738,Turkey

hPhysicsDepartment,UniversityofSamarra,Samarra,34010,Iraq

a r t i c l e i n f o

Articlehistory:

Received2June2020 Accepted9July2020 Availableonline29July2020

Keywords:

Metamaterial Resonator

Dielectriccharacteristic Liquiddetection

a bs t r a c t

Thedetectionofchemicalsampleshavingclosedielectricresponseisabigchallengeas thedetectionprincipleisdrivenbythevariationsinthedielectricparametersoftheinves- tigatedsamples.Inthecurrentwork,anewmetamaterial-basedsensorisdesignedand fabricatedinordertobeusedforthedetectionofliquidchemicalsinthefrequencyrange from8to12GHz.Severaldesignsweretestedusinggeneticalgorithm,whichisembedded intheCSTmicrowavestudio,inordertooptimizethedesireddimensionsoftheresonator.

Thesimulationandexperimentalresultsshowedthattheproposedsensorisworkingwell todetectvariousliquids,including(i)cleanandwastetransformeroils,(ii)corn,cottonand oliveoils,(iii)brandedandunbrandeddieselsand(iv)anilinedopedethyl-alcoholandben- zenedopedcarbontetrachloride.Thiswasmadepossiblethroughtheoccurrenceofashift intheresonantfrequencyofabout250MHz,200MHz,250MHz,150MHzand50MHzforthe aforementionedsamples,respectively.Thesensingmechanismwasinterpretedthrough thesurfacecurrentandelectricfielddistributions.Webelievethattheproposedsensoris viabletobeusedinvariousapplicationsincludingliquidchemicalsdetectionandindustrial applications.

©2020TheAuthor(s).PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:luohengcsu@csu.edu.cn(H.Luo).

https://doi.org/10.1016/j.jmrt.2020.07.034

2238-7854/©2020The Author(s).Published byElsevier B.V.Thisis anopen accessarticleunderthe CC BY-NC-NDlicense (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

mostcommonly used topologyof MTMs due toits practi- calshapeandadaptabilityforvariousapplications.Different interestingdesignsand architecturescanbemadepossible withthehelp ofsimulation toolssuchasfiniteintegration technique(FIT)andfiniteelementmethods(FEM)toimprove thesensitivityofMTMsensors.TheprincipleofMTMsensors forthe detectionofmaterialsisbasedonthe shiftinreso- nantfrequency.Thisisresultedfromcapacitancechangesdue tothestrongcouplingeffecttakingplacewhenthesample, withaspecificdielectricconstant,isinsertedintothesensing area[14].AmicrostripSRRbasedchemicalsensorwaspre- sentedin2012aimingatidentifyingmethanolandethanol solventsatoperatingfrequencyof1.9GHz[15].AnotherSRR basedsensorprintedonFR4substratewasreportedtoshow thepossibleapplicationofMTMsensorthatisbyemploying aWR90waveguidebetween8GHzand12GHz[16].Further- more,anopenSRRcoupledwithamicrofluidicchannelwas proposedforthesensingapplicationofisopropanol,methanol andglucoseD[17].AnotherSRRbasedMTMsensorwasstud- iedbyVelezetal.,inwhichmicrofluidicchannelswereused todefinetherealtimeshiftsinresonantfrequency,thereby detectingethanolanddeionizedwater[18].Inordertoprevent errorscausedfrompositioningandrealizingafullyintegrated microfluidicsensor,Awangetal.designedanotherMTMsen- sor,bywhicha60MHzshiftintheresonantfrequencywas realized[19]andSadeqietal.proposedaflexibleMTMsen- sorin2017[20]. MTMinspiredmicrofluidicsensorcanalso berealizedbycombiningthedesiredMTMabsorbers[21–24].

MTMabsorberbasedchemicalsensorsaregenerallyprinted onaFR4material,whichcanbeusedtodefineingredientsof chemicalsbasedontheprincipleofvariationsinthedielectric constant[25,26].

Researchersproposedvariousapproachestoincreasethe quality factor of these sensors by means of printing the sensorsonlowlossdielectricsubstrates[27,28],designingdif- ferentshapesofresonators[29–32]. However,thereisyeta greattendencyindevelopinguniquemetamaterialsensorsfor wideapplications[33,34].Wehavepreviouslyreporteddiffer- entMTMsbasedsensorsintegratedwithtransmissionlines inordertodetectthebrandedandunbrandeddiesels[35,36].

Tothebestofourknowledge,thereisnoreportedsensorin literaturewhichhasbeenspecificallydevelopedtodetectliq- uidchemicalshavingalmostsimilardielectricresponses.The mainissueariseshereisthatduetotheclosedielectricval- uesofbrandedandunbrandedchemicals,itwouldbequite difficultforthe conventionaland lowsensitiveMTMbased sensorstothem.Thisisbecausetheworkingprincipleofthe sensorsisbasedonvariationsinthedielectricparametersof thesamplesundertest.

inordertochoosetheoptimumdimensionforthesensor.As such,thesensoriswelltunedtoshowanypossibleshiftsin theresonantfrequencydespitetheexistenceoftrivialchanges inthe dielectricconstant ofthe samples.Furthermore,the proposedstructureischeapandstableinoperationwhichis compatibletobeoperatedoverawiderangeoffrequencies from1to20GHz.Webelievethattheproposedsensorisviable tobeusedinvariousapplicationsincludingliquidchemicals detectionandindustrialapplications.

2. Structure design and simulation

Theproposed MTMsensorispresentedinFig.1.Full-wave finite integration technique (FIT) based on high-frequency electromagneticsolver,CSTmicrowavestudiowas usedfor thenumericalanalysis.TheMTMsensoriscomposedofthree mainlayers.Thebottomlayer,havingathicknessof10mm, isthesensorreservoirusedtoholdthesamplesundertest.

ThemiddlelayerisFlameRetardant4(FR-4)dielectricsub- strate,whichwaschosenduetoitslowloss,highmechanical strengthandlowcost.Itsrelativepermittivityis4.3withloss tangentof0.02andthicknessof1.6mm.Thetoplayermade ofresonatorswasdepositedonthefrontandbacksideofthe FR-4substrate.Theresonatorsaremadeofcoppermetalwith conductivityof5.8×107S/mandthicknessof35␮m.Fig.1(a) showsthedimensionoftheunitcellwhichiscompatiblefor X-bandwaveguideanditisinconsistencewiththeexperimen- talanalysis.Theoverallsizeofthestructureis22.86×10.16 mm2.ThesensorwasdesignedtobeoperatedintheX-band regionduetoeasyaccessandproductionofasensitivestruc- turehavingcompatiblesampleholderintheX-bandrangeof frequency.Takinginto considerationthedielectric constant ofthesensiblematerialsandthefrequencyrangeinwhicha possibleresonantshiftingishappened,severaldesignswere investigatedthroughparametricstudyandtheuseofgenetic algorithminordertooptimizethedesireddimensionsofthe resonator inthe X-bandregion. Table1showsthe featured dimensionsoftheresonatorusedinthecurrentstudy.TheCST microwavestudioincludesanoptimizationtechniquewhich isbasedongeneticalgorithm(GA)approach.TheGAwasuti- lizedtooptimizetherequireddimensionsoftheresonator.

Geneticalgorithmisastochasticsearchmethodworkingon theprinciplesofnaturalgeneticsystems.Itperformsasearch toprovidethebestpossiblesolutionforfitnessfunctionofan optimizationproblem[40,41].

Inthesimulation process,differentboundaryconditions are allowed to be applied aiming at achieving the waveg- uidemeasurementsfortheproposedstructurewitheffective

(3)

j mater res technol.2020;9(5):10291–10304

10293

Fig.1–Theproposedmetamaterial-basedliquidsensor:(a)designdimensionsand(b)perspectiveview.

Table1–Thedimensionparametersoftheproposed resonator.

Parameters Value(mm)

L1 6

L2 3.1

r 4

g1 0.5

g2 0.5

w 0.5

dimensions.Takingtheboundaryconditionsintoconsidera- tion,includingfreespace,periodicdistribution,PEC/PMCand PEC,areacceptableduetothemetallicnatureoftheside-wall waveguide. Assuch, forthe measurementofS-parameters byusingWR-90waveguidealongwithacompatiblesample holder,theboundaryconditionofperfectelectricalconduc- tor(PEC)wasassignedatthex-andy-directions,whilethe z-axiswasassumedtobeopen(addedspace)alongsidethe propagationdirection,asshowninFig.2.

Inordertounderstandthesensorprincipleanditsgovern- ingelectricalmechanism,anequivalentcircuitdiagram for theproposed structurewaspresentedbyusingresistor (R), inductor(L)andcapacitor(C),asshowninFig.3(b).Theres- onatorcanberepresentedbyatotalresistance(Rt)inductance

Fig.2–MTMbasedliquidsensordesign:boundary conditionsandaddedportofeachsideoftheproposed structureinthesimulationprogram.

(Lt)andcapacitance(Ct).Theresonatorhastwosimilargaps denotedbyCg.Hence,theproposedresonatorcanbehavelike anRLCmodel.Thecapacitanceofthesensorlayer(Cs)placed onthebacksideofthestructurecanbeattenuatedwithliquid sampleshavingdifferentelectricalproperties.

(4)

Fig.3–a)Designoftheinductiveandcapacitivepartsoftheproposedstructureand(b)equivalentcircuitdiagramofthe proposedmetamaterial-basedsenor.

Fig.4–Reflectionspectraandtransmissionspectraforthe metamaterial-basedsensorwithoutchemicalsliquids.

Theequationbelowshowsthevalueofcapacitanceofthe sensorlayer,

Cs=(4A−g)Cpul (1)

Where,gandAarethevalueofsplitgapandaveragedimen- sionoftheresonator.Cpuliscapacitanceperunitlengthwhich canbecalculatedas[42],

Cpul=εr

c0Z0 (2)

Where,Z0isthecharacteristicimpedanceofthelineandC0is thevelocityofthelightinfreespace.Hence,thetotalcapaci- tance(Ct)oftheoverallstructurecanberepresentedby,

Ct=Co+Cg+Cs (3)

WhereCoisthecapacitanceeffectofthesurroundingspace, Cgisthesplit/gapcapacitorsandCSisthecapacitanceeffect ofthesampleplacedinsidethe sensorlayer. CSvaluecan

varyfordifferentsamplesduetodifferencesinthecomplex permittivitycharacteristicswhichcanbeexpressedby

εsample= εsample"sample (4)

Hence,the impedanceofthe splitring resonatorcanbe definedas,

Zr=Rt+jωLt+ 1 jωCt

(5)

Where, Zr, Rt, j and ␻ are respectively denoting the total impedance,totalresistanceofthesplitringresonator,imagi- naryunitandangularfrequency.

Theresonancefrequencyoftheproposedstructurecanbe calculatedbyusingthisequation

f0= 1 2√

LtCt (6)

WhereLtthetotalinductancevalueofthestructure.Itisclear that theresonance frequencyofresonator isinversely pro- portional tothe overall inductanceand capacitanceof the proposed resonator. Therefore, thesetwoparameter playa majorroleindefiningthesensorsensitivity.Itcanbenoted that the fundamental operationof the sensor structure is relatedtotheinteractionbetweenthesensorlayerand the resonator.

3. Numerical and experimental studies of the proposed sensor for various liquids

Inthissection,anumericalinvestigationisperformedonthe proposedresonatortobeusedforsensingvariousliquidsin theX-bandfrequencyrangeusingtheFiniteIntegrationTech- nique(FIT)basedhigh-frequencyelectromagneticsolverCST microwavestudio.Theimportantpartsoftheproposedstruc- turearetheresonatorswhichareplacedatthefrontandback sideoftheFR4dielectricsubstrate.Thesensorlayerwasdes- ignatedasareservoirof10mmthicktobefilledbytheliquids, wherethemagneticfieldofthetransmittedelectromagnetic wave isperpendicularlyexposedtoit inthez direction.In the numerical study and experimentaltesting,two waveg- uideports,namelyport1andport2wereconnectedtothe

(5)

j mater res technol.2020;9(5):10291–10304

10295

Fig.5–SimulatedphysicalparametersoftheproposedMTMbasedsensor:(a)effectivepermeability,(b)effective permittivity,(c)refractiveindexand(d)impedance.

frontandbacksideoftheproposedstructureformonitoring thetransmission coefficient(S21).Thesizeofthe structure isdetermined forX-bandwaveguidedimensionsatthefre- quencyrangeof8−12GHz.Thevalueofreflectioncoefficient (S11)andtransmissioncoefficient(S21)hasbeencarriedout whenthereareno liquidsinthesensorlayer,asshown in Fig.4.Itcanbeseenfromthefigurethatthereflectionand transmissioncoefficientspresentedamaximaandminimaat approximately9.95GHzwhichcorrespondstotheX-bandfre- quencyrange.Thisresultdemonstratingthat theproposed metamaterialsbasedsensorstructurecanbeeffectivelyuti- lizedtodistinguishvariousliquidswhentheyareplacedin thesensorlayerandthesensorisoperatedintheX-bandfre- quency.Assuch,differentlubricantsamples,withelectrically sensiblecharacteristics,havebeenchosentobeinvestigated bothnumericallyandexperimentallyinthedesiredfrequency range.

TorevealtheMTMpropertyoftheproposedsensor,thereal andimaginarypartsofeffectivepermeability(␮),permittivity (␧),refractiveindex(n)andimpedance(z)ofthesensorwere extracted,asshowninFig.5(a–d).

Theseparametersweredeterminedbasedonthefollowing equations[43]:

=nz (7)

ε= n

z (8)

Wheretheimpedance(z)andrefractiveindex(n)terminEqs.

(7)and(8)areobtainedfromtheEqs.(9)and(10),asfollows:

z= ±



(1+S11)2−S221

(1−S11)2−S221 (9)

n= 1 k0d



[ln (eink0d)]’’−i[ln (eink0d)]



(10)

Where S21 and S11 inEq.(9)denotesthe transmissionand reflectioncoefficientsoftheMTMbasedsensor.Theexponen- tialterminEq.(10)isrepresentedbyeink0d= 1−SS21

11z−1 z+1

,where [ln (eink0d)]representstherealcomponent, [ln (eink0d)]denotes theimaginarycomponentofthecomplexnumber,k0denotes thewave-numberanddrepresentsthemaximumlengthof theunitcell.Here,thecompleteresonatorisconsideredasa singleunitcell.

OnecannoticefromFig.5thatnegativevaluesforperme- abilityandpermittivityareobtainedinthefrequencyrange from8GHzto10.50GHz,whichdefinesthepresenceofMTM behaviorbytheproposedsensor.

However,beyondthefrequencylimitof10.50GHz,thevalue ofpermeabilitygrowshighersuchthat␮>1.Thishighper- meabilitycharacteristicoftheproposedMTMbasedsensoris usedtorealizethecompactness.

Inordertounderstandtheoperatingmechanismofthepro- posedmetamaterialsensor,surfacecurrentandelectricfield

(6)

Fig.6–Simulatedresultfortheproposedsensorstructure:(a)electricfielddistributionand(b)surfacecurrentdistribution.

distributionswereinvestigated,asshowninFig.6.Thedistri- butionswereobtainedattheresonancefrequencyof10GHz forthecaseofemptysensorlayer.OncecannoticefromFig.6 (a)thattheelectricfiledintensityismostlyconcentratedat theresonatorintheupperandlowerpartsoftheresonator, especiallyatthecapacitivepartsoftheresonator.Hence,the proposedstructureisabletosenseanysmallchangesinthe electricalcharacteristicsofthesampleplacedinthesensor layer.

The simulated surface current distribution atthe reso- nancefrequencyof10GHzisshowninFig.6(b).Noteworthy, the surface current is highly localized at the upper and lower arcs of the resonator in the clockwise and anti- clockwisedirections,respectively.Furthermore,paralleland anti-parallelcurrentsaredistributedattheleftandrightarms oftheresonator,therebycontrollingtheelectricandmagnetic response,respectively.Thesimulatedsurfacecurrentdistri- butionfortheproposedstructureisanobviousindicationfor thepresenceofaresonancephenomenonduetotheelectric dipole.

Inordertoshowtheoperatingprincipleandcharacteriza- tionoftheproposeddevice,thesensorlayerisassumedto befilledwithair.Fig.7showstheimpactofvaryingdesign parametersoftheresonatorontheresonantfrequency.The resonantfrequencyofthe proposedsensor wasseen tobe

mainlydependentonthewidth(w),radius(r),andlength(L)of theresonator.Resultsshowedthatwhenthewidth(w)ofthe resonatorwasincreasedfrom0.1mmto0.9mm,theresonant frequencywasdecreasedfrom9.55GHzto9.28GHz,asshown inFig.7(a).Thegeneraltrendofthisvariationwasfoundtobe inverselyproportional.

Noticeably, the mostinfluential parameter on the reso- nant frequencywasseentobetheradiusoftheresonator.

When the radius was increased from 3.6 mm to 4.4 mm, the resonant frequency wasgradually decreased from 9.75 GHz to 8.75 GHz,as shownin Fig. 7(b). However,the least influential parameter was the length (L1)of the resonator.

Fig. 7(c)shows thatwhen the lengthisincreasedfrom 5.2 mmto6.8mm,theresonantfrequencyishardlydecreased.

This can be ascribed to the fact that the surface current and electric field are weakly distributed along the arm length(L1)oftheresonator,whichisinagreementwiththe observations made in Fig. 6. Theresonant frequency shift can beexplainedbased onthe generalresonance formula, 1/2√

LC. Since capacitance is directly proportional to the permittivity of the sample, any increase in the dielectric parameter ofthesampleisresultedintheincreasedeffec- tivecapacitanceoftheresonator.Hence,enlargedcapacitance isled todecreasein theresonant frequencyofthe system [15].

(7)

j mater res technol.2020;9(5):10291–10304

10297

Fig.7–Effectofthevariationof(a)width(w),(b)Radius(r)and(c)Length(L1)oftheresonatoronthetransmissionspectrum peaksoftheproposedMTMbasedsensor.

Weconcludethatthedimensionalaspectsoftheresonator arethemainfactorsaffectingtheoverallperformanceofthe proposed metamaterials-based sensor. Hence, their values needtobeaimfullytuned.

Followingthesimulationresults,experimentalinvestiga- tions were also carried out, whereby the proposed sensor structure was fabricated by using the LPKF ProtoMAT E33 prototypingmachineComputerizedNumericalControl(CNC) withFR4dielectricsubstrateonthetopofsensorlayer.The sensorlayerhasathicknessof10mm,whilethecoppermate- rialresonatorhasbeenplacedonbothfrontandbacksideof theFR4substrate.Thesimulationandexperimentalmeasure- mentsweretakeninthesamecondition.

The fabricated sensor structure is depicted in Fig. 8(a).

ExperimentalstudieswerearrangedintheX-bandwaveguide infrontofthesampleholder.Thetwowaveguide,WR90and sampleholderareillustratedinFig.8(b).Thesampleholder depthwas10mm,whichwasfilledwiththeliquidsamples.It wasplacedatthefrontsideofthewaveguide,wheretheface ofthesampleholderwastiedbyacaptainbandanditsback wascoatedbyathincopperband.

After fabricating the proposed sensor, the designed structurewascoupledtothewaveguideadaptorandthemea- surementwasrecordedbyusingAgilentPNA-Lseriesvector networkanalyzer(VNA)inthefrequencyrangefrom10MHz to43.5GHz,asshowninFig.8(c).TheVNAwascalibratedby usingaspecialcalibrationkitwithopencircuit,shortcircuit and50-Ohmloadconnectorsforthetwoports.Beforetaking themeasurements,thefrequencyintheVNAwasassigned

in the X-bandbetween 8−12 GHz.It isexpected thatcali- brationerrorsalongwiththecabledefectsandmanufacturer imperfectionarereasonsfortheoccurrenceofpracticalmis- match.

Furthermore,theelectricalpropertiesofeachliquidsam- pleswerestudiedbyusinganopenendedcoaxialprobe.The dielectricconstantanddielectriclossfactorweremeasured byimmerging85070Edielectricprobekitthatisbyconnect- ingittoavectornetworkanalyzer(VNA),asshowninFig.9.

Thedielectricprobewascalibratedbyusingairandpurewater withknownelectromagneticpropertiesinthesamefrequency rangeadaptedforthestudyandatroomtemperature(25).For thispurpose,aspecialshortcircuitkitwasusedviaaproper softwareprograminsidetheVNA.Then,thedielectricchar- acteristicsoftheliquid sampleshavebeen obtainedinthe desiredfrequencyrange.

Followingtheexperimentalsetup,wemeasuredthetrans- mission coefficient(S21)withthepresenceofliquidsample holder,waveguide,adaptorandsensorstructure,asshownin Fig.8.First, thesampletobestudiedwasinjectedinto the sampleholderandthenthetransmissioncoefficient(S21)was measuredinthedesiredfrequencyrangefrom8−12GHz.The samemeasurementprocedurewasrepeatedforeachsample.

Thetransmissioncoefficient(S21)wascalculatednumer- ically in the CST Microwave studio software byimporting the dielectric properties of each selected samplesinto the program, whilethe sensingcharacteristics ofthe proposed structurewasmeasuredbyplacingthesamplesintothesen- sorlayer.

(8)

Fig.8–(a)Frontviewofthefabricatedmetamaterialbasedsensor,(b)backview,(c)experimentalsetupwithwaveguide configurationand(d)Sampleholder-captainbandwithmanufacturedsample.

Fig.9–Experimentalsetuptodeterminetherelative permittivitymeasurementofthesamplesusing85070E dielectricprobekit.

3.1. Studyonthedetectionoftransformeroilcondition

Inthis part,numericaland experimentalstudieswere per- formedtoinvestigatethetransformeroilconditionthrough analyzingthechangesthatmightbehappenedintheX-band frequencyrange.Theuseoftransformeroilcanperformat leastfourfunctionsinatransformer.Theoilservesasaninsu- lator,coolsthetransformerandextinguishesotherdischarges.

Inaddition,gasesarisingfromtheoxidationofoil,moisture andgasesfromthebreakdownofcelluloseinsulation,aswell asgasesandmoisturefromtheatmosphere,dissolveintheoil.

Carefulmonitoringofthegasesdissolvedintheoil,aswellas otherpropertiesoftheoil,providesthemostaccurateinfor-

mation onthe conditionofthetransformer.Therefore, this part ofthework wasmainlyfocusedonthedetermination ofthetransformeroilcondition,eithertobecleanorwaste oil.Thedielectricconstantanddielectricloseresultsofthe cleanandwastetransformeroilsat8−12GHzareshownin Fig.10.Itwasfoundthatthedielectricconstantisabout2.84 and2.73forthecleanandwastetransformeroils,respectively.

Thedielectriclossvalueofthecleanandwastetransformer oilswereobtainedtobeabout0.151and0.16,respectively.

Inadditiontothedifferencesnoticedinthedielectricprop- ertiesoftheclean andwaste samples,whichcanberelied onfordifferentiatingthesamples,theproposedsensorwas utilized to address the wave transmission behavior of the device upon the presence ofthe samples. Simulation and experimentalinvestigationsonthecleanandwasteoilusing theproposedmetamaterialssensorat8−12GHzareshown inFig. 11. Onecannotice thatthe proposed sensoriswell capableofdistinguishingthetwosamplesbasedonthetrans- missioninformationfetchedatthehighresonancefrequency ofabout11.3GHz.Bothsimulationandexperimentalresults haveclearlyshowedthisshiftinthetransmissioncoefficient suchthatthewasteoilsampleprovidedlargerabsolutevalues ofthetransmissioncoefficientattheresonantfrequency.

3.2. Studyonthedetectionofherbaloilsamples

Eachtypeofoilcanhaveauniquequalitybasedonitsingredi- entsandphysicalconditions.Weanticipatethattheelectrical propertiesoftheoilscanbeusedasaviabletoolforqual- itycontrolinvestigationsandunderstanding theirscoresin health benefits.Inthis section,we measuredthe dielectric properties ofcorn,oliveand cottonoilsbyusing dielectric probekitatX-band,asshowninFig.9.Thedielectricpermit-

(9)

j mater res technol.2020;9(5):10291–10304

10299

Fig.10–Measuredresultsforthecleanandwasteoilsamples:(a)thedielectricconstantand(b)dielectriclossfactorin X-bandfrequency.

Fig.11–(a)Simulationand(b)experimentaltransmissionbehaviorwiththepresenceofthecleanandwastetransformer oilsatfrequency8–12GHz.

Fig.12–(a)Thedielectricconstantand(b)dielectriclossfactormeasurementresultsforthecorn,cottonandoliveoilsat X-band.

tivityanddielectriclossfactorwererecordedandresultsare showninFig.12(a)and(b),respectively.Thevalueofdielec- tricconstant forcotton,corn andoliveoilare 3.2,3.08and 2.55,respectively.Thedielectriclossfactorwasmeasuredto be0.202,0.205and0.226fortheolive,cornandcottonoils, respectively.Itishoweverthatthesevaluesareclosetoeach

otherat8GHz,yettheproposedmetamaterialstructurehas preciselydetectedthesamples.

It is seen from Fig. 13 that results of simulation and experimentaltransmissioncoefficientsfortheoilsamplesin X-bandfrequencyregimearerelativelydifferent.Thiscanbe ascribed tothe errors arise due to calibration, instrument

(10)

Fig.13–(a)Simulationand(b)experimentalresultsforthecorn,cottonandoliveoilsatfrequency8–12GHz.

Fig.14–(a)Thedielectricconstantand(b)dielectriclossfactorforthebrandedandunbrandeddieselsamplesin8–12GHz.

Fig.15–Sensingresultsforthebrandedandunbrandeddieselsamplesin8–12GHz(a)Simulatedresultand(b) Experimentalresult.

and mismatched fabrication. Inthe numerical studies,the obtainedresult forthe transmissioncoefficient ofolive oil wasminimumatabout11GHz,whilethiswasat11.20GHz and 11.25GHz forthe corn oiland cottonoil,respectively.

Besides,thetransmissioncoefficientwasatdifferentvalues foreachoftheoilsampleswhentheyaremeasuredexperi- mentallyandestimatednumerically.Theseresultsimplying that the proposed structure can precisely detect various typesofliquids despitethe closed valueoftheir dielectric behavior.

3.3. Studyofbrandedandunbrandeddiesel

InSouthAsiancountries,fueladulterationisaglobaldanger associatedwiththeengineperformancedecline,environmen- tal pollution and governmental tax loss. There have been severalworksperformedinliteratureforthefueladulteration detection using fiber grating technology, density measure- ment method,gaschromatographyand dielectricprobe kit method[44–47].Thedetectionofthebrandedandunbranded dieseliscrucialforthegovernmentcustom,thehealthofthe

(11)

j mater res technol.2020;9(5):10291–10304

10301

Fig.16–Numericalandexperimentalsensingresultsfor(a)anilineandethyl-alcoholsamplesand(b)forthebenzeneand carbon-tetrachloridesamplesin8–12GHz.

Table2–Sensitivitycomparisonoftheproposedsensortothosereportedinliterature.

Reference Material DielectricConstant FrequencyRange

(GHz)

Resonant FrequencyShift (MHz)

[34] wastetransformeroil 2.5forcleantransformeroil and2.51

8−12 61

[35] Cleanoilandwasteoil 2.74forcleanoiland2.87 wasteoil

1−8 63

[36] Brandedandunbrandeddiesel 2.71forbrandeddieseland2.48 forunbrandeddiesel

80−12 60

[38] Clearanddirtytransformeroil 3forcleartransformeroiland 2.75fordirtytransformeroil

8−12 70

[39] Cleanandwastetransformer

oil

2.7forcleantransformeroil and2.81forwastetransformer oil

4−5 40

[47] Oliveoil,cottonoil 2.54foroliveoiland2.88for 40%cottonoilwith60%olive oil

8−12 150

Thiswork Cleananddirtytransformeroil 2.84forcleantransformeroil and2.73forwastetransformer oil

8−12 250

Thiswork Brandedandunbrandeddiesel 2.71forbrandeddieseland2.48 forunbrandeddiesel

8−12 250

Thiswork Oliveoilandcottonoil. 3.2foroliveoiland2.55for cottonoil

8−12 200

useranddieselmotorengineishighlydependingonthepurity offuel.Thedisadvantagesofthementionedmethodsforfuel adulterationarelargesizeandbeingexpensive.Inthiswork, weproposeahighlysensitiveandcosteffectivetechnique, whichisbasedonmetamaterialssensorinordertodistinguish thebrandedandunbrandeddiesels.

Theelectricalpropertiesofthe brandedand unbranded diesel were first measured by using the dielectric probe kit and the test results for the dielectric constant are showninFig.14.ThemeasurementwasobtainedintheX- band frequency regime. It was seen from the results that the dielectric constant value of the branded diesel sam- plestarts from 2.71 at8GHz and ends to2.43 at 12 GHz.

Thedielectric constant valuesofthe unbranded diesel are 2.48 at 8 GHz and 2.15 at 12 GHz. The tangent value of the branded diesel sample starts from 0.48 at 8 GHz and endsto0.7at12GHz.Thetangentvalueoftheunbranded

diesel wasfoundtobe0.53 at8GHz andequals0.64at12 GHz.

It is worth noting that the proposed sensor can be effectively utilized to detect various qualitiesof diesel, as shown in Fig. 15. From the simulated resultsfor instance, theunbrandeddieselsamplepresentedathigherresonance frequencyaround11.12GHzhavedeepertransmissioncoef- ficient comparedto that ofthe brandedone inFig. 15 (a).

Thevalueofthetransmissioncoefficientisabout−32dBand

−38.75dBforthebrandedandunbrandeddieselrespectively.

In order to support the simulated results we investigated theexperimentalstudyasshowninFig.15(b)thevalueof transmission coefficient isabout 28.75 dB and 35.5 dB for thebrandedand unbrandeddieselrespectively.Noticedthe numericalandexperimentalstudyisagoodagreementwith eachotherandbothresultsshowedthemetamaterialsbased sensorcaneasilydetectdifferentkindsfordiesel.

(12)

11.5GHz.Theresultedfrequencyshiftwasseentobeabout 200MHz.Theexperimentalstudyhasbeendemonstratedto comparethe simulatedresultsasdepicted inFig.16(a)the resonanceshiftwasmonitoredtobearound120MHz,both numericalandexperimentalresultsaregoodagreement.Fur- thermoretheminimumtransmissioncoefficientwasrecorded forthebenzeneandcarbontetrachloridesamplesanditwas happened atabout 10.75 GHz and 10.70 GHz, respectively.

Thiswasalsoaccompaniedwithafrequencyshiftof50MHz Accordingtotheseresults,theproposedmetamaterialbased sensorcaneasilydetectchemicalliquidsbyusingmicrowave techniquewithoutanychemicalanalysis.Thestructurecan beusedfordifferentindustrialandelectrochemicalsensing applications.

Theproposed metamaterials-basedsensor compared to other works published in literatures in term of frequency range,dielectricconstant,sensitivityandyearsofpublished, theresultsare showninTable2.Thequalityfactor canbe usedtoshowtangibleresults.Thebestqualityfactorhasbeen observedduringbenzenesimulationandexperimentalstudy, asshowninFig.16b.Thequalityfactorwasfoundtobeashigh as300.Comparably,thisvalueishigherthanthosereported inliterature[39–47].

4. Conclusion

Aresonatorwassuccessfullydesignedandfabricatedinorder tobeusedforthedetectionofliquidchemicalsintheX-band frequencyregion. Itwas concludedthatthe proposed sen- sorhaseasilydifferentiatedthe cleantransformeroilfrom thewasteonebymeansofa250MHzshiftintheresonant frequencydespiteclosevaluesofthe dielectricconstant of about2.84and2.73forthecleanandwastetransformeroils, respectively.Itwasfoundthatthedielectricconstantforcot- ton,cornandoliveoilsis3.2,3.08and2.55,respectively,while theresonantfrequencyshiftwasnoticedtobeabout200MHz.

Furthermore,themeasuredvalueofdielectricconstantforthe brandedandunbrandeddieselswasfoundtobe2.71and2.48, respectively.Concluding,theproposedsensoriswelladapted todetectliquidchemicals,forinstancetheshiftinresonant frequencybetweenthebrandedandunbrandeddieselswas about250MHz,whilethatfortheanilinedopedethyl-alcohol andbenzenedopedcarbon-tetrachloridewas150MHzand50 MHz,respectively.Theexperimentalresultswereseentobein agoodagreementwiththesimulationones.Thesensorstruc- turewassuccessfullydesignedforthereal-time,fast,lowcost, durable,and accuratedetectionofthe samples.Webelieve

2018zzts355).

Conflicts of interest

Theauthorsdeclarenoconflictofinterest.

CRediT authorship contribution statement

YadgarI.Abdulkarim:Conceptualization,Methodology,Soft- ware,Formalanalysis, Investigation,Data curation,Writing - original draft,Visualization, Project administration. Lian- wen Deng: Projectadministration, Fundingacquisition.Pin Zhang: Supervision. Heng Luo:Writing -review & editing.

Shengxiang Huang: Writing - review & editing. Muhar- rem Karaaslan: Conceptualization, Validation, Supervision, Resources,Projectadministration.OlcayAltıntas¸:Methodol- ogy,Validation.MehmetBakır:Methodology,Writing-original draft.FahmiF.Muhammadsharif:Validation,Resources,Visu- alization,Writing-review&editing.HalgurdN.Awl:Software, Formalanalysis,Datacuration,Visualization.CumaliSabah:

Validation.KhalidSaeedLateefAl-badri:Writing-review&

editing.

Acknowledgments

TheauthorwouldliketothanksforCentralSouthUniversity and IskenderunTechnical Universityforthe technicalsup- ports.

references

[1]ShelbyRA,SmithDR,SchultzS.Experimentalverificationof anegativeindexofrefraction.Science2001;292:77–9, http://dx.doi.org/10.1126/science.1058847.

[2]WithayachumnankulW,JaruwongrungseeK,FumeauxC, AbbottD.Metamaterial-inspiredmultichannelthin-film sensor.IEEESensJ2012;12:1455–8.

[3]AristovAI,ManousidakiM,DanilovA,TerzakiK,FotakisC, FarsariM,etal.3Dplasmaticcrystalmetamaterialsfor ultra-sensitivebiosensing.SciRep2016;6:1–8.

[4]AfapourZOV,AjatiYAH,AjatiMOH.Graphene-based mid-infraredbiosensor.JOptSocAmB2017;34:2586–92.

[5]BakirM.Electromagnetic-basedmicrofluidicsensor applications.JElectrochemSoc2017;164:B488–94.

[6]JohnsonMC,BruntonSL,KundtzNB,KutzJN.Sidelobe cancelingforreconfigurableholographicmetamaterial antenna.IEEETransAntennasPropag2015;63(4):1881–6.

(13)

j mater res technol.2020;9(5):10291–10304

10303

[7]NasimuddinN,ChenZN,QingX.Bandwidthenhancement ofasingle-feedcircularlypolarizedantennausinga metasurface:metamaterial-basedwidebandCPrectangular microstripantenna.IEEEAntennasPropagMag

2016;58(2):39–46.

[8]Ba ˘gmancıM,KaraaslanM,Altıntas¸O,Karada ˘gF,TetikE, BakırM.Widebandmetamaterialabsorberbasedoncrrs withlumpedelementsformicrowaveenergyharvesting.J MicrowPowerElectromagnEnergy2018;52(1):45–59.

[9]BakırM,KaraaslanM,UnalE,AkgolO,SabahC.Microwave metamaterialabsorberforsensingapplications.

Opto-ElectronRev2017;25(4):318–25.

[10]BakırM,KaraaslanM,Altıntas¸O,BagmancıM,AkdoganV, Temurtas¸F.TunableenergyharvestingonUHFbands especiallyforGSMfrequencies.IntJMicrowWirelTechnol 2018;10(1):67–76.

[11]Ba ˘gmancıM,KaraaslanM,UnalE,ÖzaktürkM,AkgolO, Karada ˘gF,etal.Widebandfractal-basedperfectenergy absorberandpowerharvester.IntJRfMicrowComputEng 2019;29(7):e21597.

[12]QiMQ,TangWX,MaHF,PanBC,TaoZ,SunYZ,etal.

Suppressingside-loberadiationsofhornantennabyloading metamateriallens.SciRep2015;5:9113.

[13]MukherjeeS,SuZ,UdpaL,UdpaS,TamburrinoA.

Enhancementofmicrowaveimagingusingametamaterial Lens.IEEESensJ2019;19(13):4962–71.

[14]SalimA,LimS.Reviewofrecentmetamaterialmicrofluidic sensors.Sensors(Basel)2018;18(1):232,

http://dx.doi.org/10.3390/s18010232.

[15]WithayachumnankulW,JaruwongrungseeK,TuantranontA, FumeauxC,AbbottD.Metamaterial-basedmicrofluidic sensorfordielectriccharacterization.SensActuatorsAPhys 2013;189:233–7,http://dx.doi.org/10.1016/j.sna.2012.10.027.

[16]KimHK,YooM,LimS.Novelethanolchemicalsensorusing microfluidicmetamaterial.In:ProceedingsoftheIEEE InternationalSymposiumonAntennasandPropagation&

USNNationalRadioScienceMeeting.2015.p.1358–9.

[17]ByfordJA,ParkKY,ChahalP.Metamaterialinspiredperiodic structureusedformicrofluidicsensing.In:Proceedingsof theElectronicComponentsTechnologyConference;San Diego.2015.p.1997–2002.

[18]VelezP,SuL,GrenierK,Mata-ContrerasJ,DubucD,MartinF.

Microwavemicrofluidicsensorbasedonamicrostrip splitter/combinerconfigurationandsplitringResonators (SRRs)fordielectriccharacterizationofliquids.IEEESensJ 2017;17:6589–98,http://dx.doi.org/10.1109/JSEN.2017.2747764.

[19]AwangRA,Tovar-LopezFJ,BaumT,SriramS,RoweWST.

Meta-atommicrofluidicsensorformeasurementof dielectricpropertiesofliquids.JApplPhys2017;121, http://dx.doi.org/10.1063/1.4978012.

[20]SadeqiA,SonkusaleS.Low-costmetamaterial-on-paper chemicalsensor.TransducersIntConfSolid-StateSens ActuatorsMicrosyst2017;25:1437–40,

http://dx.doi.org/10.1109/TRANSDUCERS.2017.7994329.

[21]NguyenTT,LimS.Wideincidenceangle-insensitive metamaterialabsorberforbothTEandTMpolarization usingeight-circular-sector.SciRep2017;7:1–11, http://dx.doi.org/10.1038/s41598-017-03591-2.

[22]LeeD,JeongH,LimS.Electronicallyswitchablebroadband metamaterialabsorber.SciRep2017;7:1–10,

http://dx.doi.org/10.1038/s41598-017-05330-z.

[23]KimHK,LeeD,LimS.Afluidicallytunablemetasurface absorberforflexiblelarge-scalewirelessethanolsensor applications.Sensors2016;16:1246,

http://dx.doi.org/10.3390/s16081246.

[24]BakirM,KaraaslanM,AkgolO,AltintasO,UnalE,SabahC.

Sensoryapplicationsofresonatorbasedmetamaterial absorber.Optik2018;168:741–6.

[25]AbdulkarimYI,DengL,KaraaslanM,UnalE.Determination oftheliquidchemicalsdependingontheelectrical

characteristicsbyusingmetamaterialabsorberbasedsensor.

ChemPhysLett2019;732:136655.

[26]AbdulkarimYI,DengL,AltintasO,UnalE,KaraaslanM.

Metamaterialabsorbersensordesignbyincorporating swastikashapedresonatortodeterminationoftheliquid chemicalsdependingonelectricalcharacteristics.PhysicaE LowDimensSystNanostruct2019:113593.

[27]WangWudeng,ZhengLi,XiongLi,QiJianguang,LiBaoying.

HighQ-factormultipleFanoresonancesforhigh-sensitivity sensinginall-dielectricmetamaterials.OSAContinuum 2019;2:2818–25.

[28]XieQ,DongGX,WangBX,HuangWQ.High-qfano resonanceinterahertzfrequencybasedonanasymmetric metamaterialresonator.NanoscaleResLett2018;13(1):294, http://dx.doi.org/10.1186/s11671-018-2677-0.

[29]BakirM,DelihaciogluK,KaraaslanM,DincerF,SabahC.

U-shapedfrequencyselectivesurfacesforsingle-and dual-bandapplicationstogetherwithabsorberandsensor configurations.IETMicrowAntennasPropag

2016;10(3):293–300.

[30]ChumaEL,IanoY,FontgallandG,RogerLLB,LoschiH.

PCB-integratednon-destructivemicrowavesensorforliquid dielectricspectroscopybasedonplanarmetamaterial resonator.SensActuatorsAPhys2020:112112.

[31]ChumaEL,IanoY,FontgallandG,RogerLLB.Microwave sensorforliquiddielectriccharacterizationbasedon metamaterialcomplementarysplitringresonator.IEEESens J2018;18(24):9978–83.

[32]HoqueA,TariqulIslamM,AlmutairiA,AlamT,JitSinghM, AminN.ApolarizationindependentQuasi-TEM

metamaterialabsorberforXandkubandsensing applications.Sensors2018;18(12):4209.

[33]AbdulkarimYI,DengL,KaraaslanM,UnalE.Determination oftheliquidchemicalsdependingontheelectrical

characteristicsbyusingmetamaterialabsorberbasedsensor.

ChemPhysLett2019;732:136655.

[34]Altıntas¸O,AksoyM,ÜnalE.Designofametamaterial inspiredomegashapedresonatorbasedsensorforindustrial implementations.PhysicaELowDimensSystNanostruct 2019:113734.

[35]AbdulkarimYadgarI,DengLianwen,KaraaslanMuharrem, Altınt ˛asOlcay,AwlHalgurdN,MuhammadsharifFahmiF, etal.Novelmetamaterials-basedhypersensitizedliquid sensorintegratingomega-shapedresonatorwithmicrostrip transmissionline.Sensors2020;20:943,

http://dx.doi.org/10.3390/s20030943.

[36]TameraAhmet,Karada ˘gaFaruk,ÜnalaEmin,Abdulkarim YadgarI,DengLianwen,AltintasaOlcay,etal.Metamaterial basedsensorintegratingtransmissionlinefordetectionof brandedandunbrandeddieselfuel.ChemPhysLett 2020;742:137169,

http://dx.doi.org/10.1016/j.cplett.2020.137169.

[37]Al-BadriKSL.VeryhighQ-FactorbasedonG-Shaped resonatortypemetamaterialabsorber.IbnAL-HaithamJ PureApplSci2018:159–66.

[38]BakırM,KaraaslanM,KaradagF,DalgacS,ÜnalE,AkgölO.

Metamaterialsensorfortransformeroil,andmicrofluidics.

ApplComputElectromagnSocJ2019;34(5).

[39]Altintas¸O,AksoyM,ÜnalE,KaraaslanM.Chemicalliquid andtransformeroilconditionsensorbasedon

metamaterial-inspiredlabyrinthresonator.JElectrochem Soc2019;166(6):B482–8.

[40]HameedSS,MuhammadFF,HassanR,SaeedF.Gene selectionandclassificationinmicroarraydatasetsusinga hybridapproachofPCC-BPSO/GAwithmulticlassifiers.J ComputSci2018;14(6):868–80.

(14)

[44]DeMoutusi,PathakAkhileshKumar,SinghVinodKumar.

Singlechannelphotoniccrystalfiberbasedhighsensitive petroladulterationdetectionsensor.Optik2019;183:539–46, http://dx.doi.org/10.1016/j.ijleo.2019.03.001.

comprehensivestudyonfueladulterationsensingbyusing tripleringresonatortypemetamaterial.JElectrochemSoc 2019;166(12):B1044–52,

http://dx.doi.org/10.1149/2.1491912jes.

Referanslar

Benzer Belgeler

Modern classification of entangled states of composite systems is based on the use of certain local transformations usually called SLOCC (stochastic local operations assisted

This article provides an overview of ther- apeutic vaccines in clinical, preclinical, and experimental use, their molecular and/or cellular targets, and the key role of adjuvants in

posteriora uzanan yaklasik 5 cm boyutundaki üzeri boyali, sulu boya firçasi sapi, orbita içinde anterio- superiora çekilerek bir bütün olarak çikartildi.. Cerrahi sirasinda

Gezi izlenimlerini “ Resimli Gazete”ye bildiren Bedia Celâl Hanım, sergi heyetinde yer alan Celal Esat Bey’in (Arseven) kızıydı ve bu yazılarıyla belki de Türkiye’nin

ĠĢten ayrılma niyetlerinin düĢük olduğu tespit edilen turist rehberlerinin yaĢ, günlük ortalama çalıĢma saati, aylık gelir ve mesleki memnuniyet değiĢkenleri ile

Finally, we consider the geometry of two classes of sequential warped product space-time models which are sequential generalized Robertson-Walker space-times and sequential

Bu bağlamda araştırmanın amacı üniversite öğrencilerinin sosyal kaygıları (sosyal kaçınma, değersizlik ve kritize edilme) ile stresle başa çıkma stilleri

Nükhet Demirtaşlı (Prof. Dr.) Ülkü Doğanay (Prof. Dr.) Ali Dönmez (Prof. Dr.) Çiler Dursun (Prof. Dr.) Pınar Ecevitoğlu (Yrd. Dr.) Selin Esen (Prof. Dr.) Yasemin Esen (Doç.