• Sonuç bulunamadı

A mechanistic approach to investigate drilling of UD-CFRP laminates with PCD drills

N/A
N/A
Protected

Academic year: 2021

Share "A mechanistic approach to investigate drilling of UD-CFRP laminates with PCD drills"

Copied!
4
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

A

mechanistic

approach

to

investigate

drilling

of

UD-CFRP

laminates

with

PCD

drills

Y.

Karpat

a,

*

,

O.

Bahtiyar

b

,

B.

Deg˘er

b

,

Bilgin

Kaftanog˘lu

(1)

c aBilkentUniversity,DepartmentofIndustrialEngineering,Bilkent,Ankara,Turkey

b

TurkishAerospaceIndustries(TAI),Kazan,Ankara,Turkey

c

AtılımUniversity,DepartmentofManufacturingEngineering,I˙ncek,Ankara,Turkey

1. Introduction

Inthenewgenerationofaircrafts,thepercentageofcarbonfiber reinforcedplastics(CFRP)hasreachedupto40%duetotheirability toresistcorrosionand withstandhigh loadswhilereducingthe weightofthestructuralparts.Drilling,themostcommonmachining operationinaircraftmanufacturingisthesubjectofthispaper.

CFRPsareknowntobedifficulttomachineduetotheabrasive natureandlow thermalconductivity.CFRPdrilling has beenthe subjectofmanystudiesintheliterature,mostofwhichconsiderthe influenceof drilling conditions on delamination [1,2]. A ‘‘critical thrustforce’’ concept (afterwhichdelamination starts)has been introducedbyKo¨nigetal.[3].Manydifferentmathematicalmodels havebeenproposedtopredictthecriticalthrustforceasafunctionof toolgeometryandFRPmaterialproperties[4,5].Ithasbeenshown that feed and tool geometryare the two most importantinput parametersaffectingthequalityofdrilledholes,andfeedanddrilling thrustforcearecloselyrelated.Ithasbeenrecommendedtosetfeed low.Theinfluenceofdrillingspeedontheholequalityisshowntobe minimal;therefore,highdrillingspeedsarerecommendedforbetter productivity[6].Rapidtool wearis commonwhile drillingCFRP laminates,whichleadstoincreaseddrillingforces.Increasedthrust forcesresultindelaminationattheexitofthedrilledholes.Lowfeed, whichisrecommendedtodecreasethrustforcesattheholeexit, increasesthetotalcontacttimebetweentoolandCFRPandtherefore results in faster tool wear [7]. In order to increase productivity, especially when drilling uni-directional CFRPs, diamond coated

tungstencarbideandpolycrystallinediamond(PCD)drillshavealso been used.PCD toolmaterial combineshighabrasionresistance, thermalconductivity,hardness,andimpacttoughness,anditcanalso beusedindrillingofmetalcompositestacks[8].Thecuttingedge radiusofPCDdrillsissharperthanitisondiamondcoatedcarbide drills thanks to their small grain size, which is an important considerationforholequality.Inaddition,theycanbereconditioned whentheyareworn.However,thereareonlyalimitednumberof studiesonCFRPdrillingwithPCDdrillsintheliterature.

Itmustbenoted thatthematerialpropertiesand hencechip formation mechanism ofmetals and fiber reinforcedplasticsare different.CFRPmaterialpropertiessuchasitsthickness,carbonfiber diameter,typeofresin,volumetric ratioofcarbonfiber,elasticity modulus,strength,curingconditions,etc.areknowntoaffectmaterial propertiesand,in turn,its drilling characteristics. Therefore,drill geometriesmaybecustomizeddependingontheCFRPmaterialand laminateproperties.ModelingofCFRPdrillingisthereforenecessary tounderstandthemechanicsoftheprocessandtoimprove/optimize drilldesignsforbetterholemakingperformance[9].

Thisstudyconductsanexperimentalinvestigationofdrilling CFRPswithPCDtools.Thethrustforceandtorquemeasurements are used to identify cutting force and edge coefficients while drillingCFRPs.Theseidentifiedcuttingandedgecoefficientsare thenvalidatedwithadditionaldrillingexperimentsperformedon singledirectionCFRPlaminates.

2. Experimentalprocedure

Afive-axismachiningcenterwasusedindrillingexperiments whichwereperformedunderwetconditionswithemulsiontype coolant. Analuminumbackingplatewith8mmdiameterholes

CIRPAnnals-ManufacturingTechnology63(2014)81–84

ARTICLE INFO Keywords:

Machining Drilling

Fiberreinforcedplastic

ABSTRACT

Carbonfiberreinforcedplastics(CFRPs)possessdesirablematerialpropertiesthatsatisfytheaerospace industry’shighstrengthtoweightratioobjective.Therefore,CFRPsarecommonlyusedinstructural parts,eitheraloneortogetherwithaluminumandtitaniumalloys.DrillingofCFRPshasbeenstudied extensively in the literature in recent years, with special emphasis on process parameters and delamination.Thisstudyidentifiesmechanicalpropertiesofuni-directionalCFRPsthroughdrillingtests. Drillingofuni-directionalCFRPplateswithandwithoutpilotholeshasbeenperformed,andcuttingand edgeforcecoefficientsareidentified.Apolycrystallinediamond(PCD)drillwasusedintestssincethis typeofdrilliscommonlyusedinpractice.Finally,validationtestsonmultidirectionalCFRPlaminates havebeenperformedandgoodresultshavebeenobtained.

ß2014CIRP.

*Correspondingauthor.Tel.:+903122902263. E-mailaddress:ykarpat@bilkent.edu.tr(Y.Karpat).

ContentslistsavailableatScienceDirect

CIRP

Annals

-

Manufacturing

Technology

j o u r n a lh o m e p a g e :h t t p : / / e e s . e l s e v i e r . c o m / c i r p / d e f a u l t . a s p

http://dx.doi.org/10.1016/j.cirp.2014.03.077 0007-8506/ß2014CIRP.

(2)

wasplacedundertheCFRPlaminate.Thedrillingforcesandtorque weremeasuredbyaKistler9123rotatingdynamometerandits chargeamplifier.Drillingspeediscarefullyselectedtoobtainan acceptablelevelofcuttingspeedwithoutexcitingthedynamicsof the rotational force dynamometer. Intermediate modulus UD-CFRPlaminatesof10mmthicknessareproducedfordrillingtests. UD-CFRPlaminateshave0.14mmplythicknessandtheyconsistof 72layerswithequalfiberdirectionsrepeatinginasequenceof08/ 458/908/1358withtwolayersof458and1358laminatesonthetop and bottom surfaces. The intermediate modulus carbon fiber reinforceepoxyresinunidirectionaltapeusedinthisstudyhas59% fibervolumewith2690MPatensilestrength.Thegeometryofthe doublepointanglePCDdrillusedinthisstudyisshowninFig. 1a andb.ManydifferentPCDdrilldesignsareavailablewithvarying cuttingedgelengthsandangles.

Ageneralizeddoublepointangletoolgeometryisshownin

Fig. 2.Inthisfigure;O0-Orepresentsthechiseledgeregion,OA

shows the primary drilling region, AB shows the secondary drilling regionand BCshows the tertiary drilling region. The lengthandangleofthechiseledgearerepresentedwithLand

g

, respectively.

Thetooltipanglescorrespondingtoprimaryandsecondary drillingregionsareshownwith

a

and

b

.Thedrillhaszerohelix angleand1208and308tooltipangles.Table1summarizestool geometry measurements. The tool tip measurements were performedusingKeyenceVHX1000digitalmicroscope.Uncut chipthicknesses tAB andtOAare different duetodouble point

angledesign,andtheycanbecalculatedasafunctionoffeed( f) peredge.

3. Thrustforceandtorquecharacteristicsofdrillingwith doublepointanglePCDdrills

Importantinformationabouttheinfluenceoftoolgeometryand drilling conditions can be deduced from force and torque measurementsduringdrilling.Fig. 3illustrates a drillingcycle withthedoublepointanglePCDdrillusedinthisstudy,andphases I–VIIareidentifiedonthefigure.Thepoint(I)correspondstothe chiseledgeofthedrillenteringthematerial.Thepoint(II)indicates thesituationwhentheprimarycuttingedge(OA)entersthehole. Inthisregion,whilethrustforceincreasesrapidly,theincreasein torqueissmall.Whenthesecondarydrillingzoneentersthehole (AB), the rate of increase in thrust force is lower due to chip thinningasaresultoflowerdrillangle(

b

).Peakthrustforce(III)is reached at theend of thesecondary drillingzone, andit stays almoststeadyuntilthechiseledgeofthedrillreachesthebottom ofthelaminate(IV).TheregionBCdoesnotcarryanythrustforce, butthetorquereachesitspeakvaluehere.Thrustforcedecreases rapidlywithasimilarrateobservedattheholeentryassoonasthe chiseledge(IV–V)andprimarydrillingedge(V–VI)leavethecut. Thetorque staysalmostthesamebetween IVand VI sincethe secondaryandtertiarycuttingedgesarestillincontactwiththe material. The thrust force and torque decrease continuously betweenVIandVIIuntilthedrillcompletelyleavesthecut.

4. Modelingofdrillingforcesandtorques

Thetotalthrustforce(Fz)andtorqueactingonthetoolcanbe

represented with Eq. (1). The first term (Fzch) represents the

influenceofthechiseledge,thesecondterm(FzOA)representsthe

influenceontheprimarydrillingedge,andthelast term(FzAB)

representstheinfluenceofthesecondarydrillingedge.Theeffect oftheBCregiononthethrustforcesisneglected.Asimilarequation canalsobewrittenfortotaldrillingtorque(T)alsoshowninEq.

(1). X Fz¼FzchþFzOAþFzAB X T¼TOAþTABþTBC (1)

Amechanisticforcemodelingapproachhasbeenusedtomodel drilling thrust forces and torques where machining forces are related tothe uncut chiparea [10,11].Average forceand edge coefficients represent theinfluences of drills’ cuttingedge and materialpropertiesontheforces.Eq.(2)representsthe mechanis-ticforcemodeling(thrustandcuttingforceperedge)adaptedto drillingwithadoublepointangletool.Thesubscriptprepresents

Fig.1.DoubletippointanglePCDdrillgeometry.

Fig.2.DoubletippointanglePCDdrillgeometry.

Table1

Toolgeometrymeasurements. Diameter

(2.rB)(mm)

2a(8) b(8) L(mm) g(8) rA(mm) OA(mm) AB(mm)

6.4 120 30 1250 37 0.82 0.46 4.4

Fig.3.Atypicalthrustforceandtorquemeasurementduringdrillingwithdouble pointanglePCDtoolsat5000rpmand0.04mm/revfeed(datalowpassfilteredat 100Hz).

Y.Karpatetal./CIRPAnnals-ManufacturingTechnology63(2014)81–84 82

(3)

primary(OA) andsubscripts representssecondary (AB)drilling regions.Thevariables inEq.(2)areshownaboveinFig. 2.The thrustandcuttingforcescanbecalculatedforknown valuesof averageforceandedgecoefficients.

Fzp¼OA K¯zp f 2sin

a

þ ¯Kzep   ; TOA¼Fcp:¯rOA¼OA K¯cp f 2sin

a

þ ¯Kcep   Fzs¼AB K¯zs f 2sin

b

þ ¯Kzes   ; TAB¼Fcs:¯rAB¼AB K¯cs f 2sin

b

þ ¯Kces   TBC¼FBC:rBC¼BCð ¯KpÞ (2) Drillingtests canbeused tocalculatetheaverage values of thrustandcuttingforce(Kzp,Kcp,Kzs,Kcs)andedge(Kzep,Kcep,Kzes,

KcesKp)coefficientsinreversefashion.Characteristicthrustforces

and torques at drillingpoints (asshown I toIV in Fig. 3)are identifiedfromthemeasurementsandshowninFig. 4.

Theprimaryedgethrustforceiscalculatedbysubtractingthe chiseledgeforcefromthethrustforcemeasurements(Fzp=FII–FI

asshowninFigs. 3and4).Similarly,thesecondaryedgedrilling thrustforceiscalculatedby subtractingtheprimaryedgeforce fromthepeakforce(Fzs=FIII–FII).Alinearfithasbeenobtainedfor

boththrustloadandtorqueatprimary,secondaryandtertirary drilling regions as shown in Fig. 4. The chisel edge torque is neglectedsinceitisverylow.Table2summarizesthecuttingand edge force coefficients obtained from thrust force and torque measurements. A linear curve fitting approach is also used to representtheinfluenceofchiseledge(FI)onthethrustforceasa

functionoffeed[10]whichisalsoshowninTable2.

Theedgeforcecoefficientsontheprimarydrillingregion(Kzep

andKcep)arequitelarge. Thisisexpectedsinceeffectivedrilling

cannotbeperformedinthisregionbecauseofitsclosenesstodrills’ center.Forcecoefficientfortorque(Kcs)islargerthanthatofthrust

force(Kzs)forthesecondarydrillingedge.Thisisalsoexpected,

sincemostofthetorqueiscarriedonthesecondarydrillingedge. TheedgecoefficientonthetertiaryzoneKpislargerthanthatof

secondary drilling edge coefficient (Kces) indicating a possible

plowingaction,whichmayhelpimproveboththequalityofthe holesurfaceandthestabilityoftheprocess.Averagecuttingand edgecoefficientscanbeusedtocalculatedrillingthrustforcesand torques.Asimplecomputercodeisdevelopedtocalculatedrilling timebasedondrillgeometryandfeed.Fig. 5showsthepredicted drillingthrustforceandtorquesbasedoncalculatedcuttingand edgeforcecoefficients.Theinfluenceofthelaminate’sdecreasing stiffnessasthenumberoflaminatesdecreasestowardtheendof the process is neglected. The peak force and peak torque are predicted as 170N and 0.38Nm, respectively. These are in agreementwiththevaluespresentedinFig. 4(a)and(b).

5. Cuttingforcecoefficientsasafunctionoffiberdirections

Inordertoobservetheinfluenceoffibercuttingangleduring thedrillingprocess,additionaldrillingtestsareperformedona singledirectionUD-CFRPlaminate.Thedefinitionoffibercutting angle(

u

)andthevariationoffibercuttingangleduringdrilling cycleasafunctiondrill’srotationareshowninFig. 6.

Thecorrespondingdrillingthrustforceandtorque measure-mentsareshowninFig.7.Thevariationofthrustforceandtorque measurements have been enlarged in the same figure. The averagethrustforceandtorqueareingoodagreementwiththe predictions for multi direction laminate shown in Fig. 5. Experimenting on single direction CFRP laminates allow for obtainingcuttingforcecoefficientsasafunctionoffibercutting angle[12,13].Thesameapproachisusedheretorepresentthe relationship between thefiber cutting angle andforce coeffi-cients. Additionaldrillingexperimentsare performedonpilot holes of2.48mmdiameterwheretheinfluencesof chiseland primaryedgesareremovedfromthrustforceandmeasurements. Highfeeddrillingtestswerealsoperformedwherethelargest feed of 0.15mm/rev was used which is larger than the ply thickness(0.13mm)ofthelaminate.Average thrustforceand

Fig.4.(a)Thrustforceand(b)torquemeasurementswithlinearfitequations.

Fig.5.Drillingthrustforceandtorquepredictionsat5000rpmand50mm/revfeed.

Table2

Identifiedaveragecuttingandedgecoefficients. ChiseledgeforceFz_ch=1254f+1.71(N)

Kzp(N/mm2) Kzep(N/mm) Kzs(N/mm2) Kzes(N/mm)

67 18 427 4.2

Kcp(N/mm2) Kcep(N/mm) Kcs(N/mm2) Kces(N/mm) Kp(N/mm)

1317 22 810 2.38 7

Fig.6.Definitionoffibercuttingangle,andvariationoffibercuttingangleduring onerotationofthedrill.

(4)

torquemeasurementsobtainedonapilotholearegiveninFig.8

withlinearfitequations.

Kcs¼689þ345:sinð2

u

þ180Þ N=mm2;Kces¼2:88 N=mm

Kzs¼143þ72:sinð2

u

þ180Þ N=mm2;Kzes¼3:58 N=mm

(3)

Theaveragevaluesofthesinewaveiscalculatedfromslopeand interceptvaluesgiveninFig.8usingEq.(2).Theamplitudeofthe sine wave is calculated from single direction laminate force fluctuationsasshowninFig. 7.Fig. 9(a)showsthevariationofKcs

asafunctionoffibercuttingangle.Thereisalmostathreetimes

differenceinforcecoefficientsbetween458and1358fibercutting angles.Theadverseeffectofhighlevelsofforcecoefficients(from 908to1358fibercuttingangle)ontheholeexitqualityisshownin

Fig. 9(b).Whilethesecondarydrillingedgecutting(Kcs)andedge

forcecoefficients (Kces,Kzes)are incloseagreements withthose

listedinTable2,cuttingforcecoefficientcorrespondingtothrust forceKzsiscalculatedtobelower.Thrustforcemeasurementsin

Fig. 8revealthatrateofincreaseinthrustforcedecreasewith increasingfeed.Thismaybeexplainedwiththebrittlefracturingof thefibersasaresultoflargethrustforces.

6. Conclusions

A mechanistic model for drilling of multidirectional CFRP laminatesusingdoublepointanglePCDdrillsisproposed.Cutting andedgeforcecoefficientsarecalculatedbasedonthrustforceand torquemeasurements.Thevariationofcuttingforcecoefficientsas afunctionoffibercuttingangleisalsocalculatedforthesecondary drillingregion. Itallowscalculationofthrustforcesandtorques accordingtolaminateconfiguration.Theproposedmodelenables investigatingtheinfluenceofdrillgeometryanddrilling param-etersonprocessoutputssuchasthrustforcesandtorquesatthe holeexit.Thismodel,combinedwithexperimentaldelamination analysis, can be used to optimize drilling conditions and drill geometry.Chiseledgelengthandangle,primaryandsecondary edge lengths and angles can be considered as drill geometry parametersforthePCDdrillusedinthisstudy.

Acknowledgement

Theauthorswouldliketoacknowledgefinancialsupportfrom the Scientific and Technological Research Council of Turkey (Tubitak-Teydeb3090513).

References

[1]TetiR(2002)Machiningofcompositematerials.CIRPAnnManufactTechnol 51:611–634.

[2]DandekarCR,ShinYC(2012)Modelingofmachiningofcompositematerials:a review.IntJMachToolManufact57:102–121.

[3]Ko¨nigW,WulfCh,GraßPH(1985)Willerscheidmachiningoffibrereinforced plastics.CIRPAnnManufactTechnol34(2):537–548.

[4]HochengH,TsaoCC(2006)Effectsofspecialdrillbitsondrilling-induced delamination of composite materials. Int J Mach Tool Manufact 46(12– 13):1403–1416.

[5]Lachaud F,Piquet R, Collombet F, SurcinL (2001) Drillingofcomposite structures.ComposStruct52:511–516.

[6]RawatS,AttiaH(2009)Characterizationofthedryhighspeeddrillingprocess ofwovencompositesusingmachinabilitymapsapproach.CIRPAnnManufact Technol58:105–108.

[7]KarpatY,Deg˘erB,BahtiyarO(2012)DrillingthickfabricwovenCFRP lami-nateswithdoublepointangledrills.JMaterProcessTechnol212(10):2117– 2127.

[8]ParkK,BealA,KimD, KwonP,LantripJ(2011)Toolwearindrilling of composite/titaniumstacksusingcarbideandpolycrystallinediamondtools. Wear271(11–12):2826–2835.

[9]SchulzeV,BeckeC,PabstR(2011)Specificmachiningforcesandresultant forcevectorsformachiningofreinforcedplastics.CIRPAnnManufactTechnol 60(1):69–72.

[10]PirtiniM,LazogluI(2005)Forcesandholequalityindrilling.IntJMachTool Manufact45(11):1271–1281.

[11]LangellaA,NeleL,MaioA(2005)Atorqueandthrustforceprediction modelfordrillingofcompositematerials.ComposA:ApplSciManufact 36:83–93.

[12]KarpatY,Deg˘erB,BahtiyarO(2012)Mechanisticforcemodelingformillingof unidirectionalcarbon fiberreinforcedpolymerlaminates. IntJMachTool Manufact56:79–93.

[13]KarpatY,PolatN(2013)Mechanisticforcemodelingformillingofcarbonfiber reinforcedpolymers with double helixtools.CIRP Ann ManufactTechnol 62:95–98.

Fig.7.DrillingofsingledirectionCFRPlaminateat7500rpmand50mm/revfeed andvariationofthrustforcesandtorquesasafunctionofdrillrotation.

y = 3x + 0,05 y = 280x + 28 -5 5 15 25 35 45 55 65 75 0 0,1 0,2 0,3 0,4 0,5 0,6 0 0,05 0,1 0,15 0,2 Th ru st F o rce (N ) To rq u e (N m ) Feed (mm/rev) T Fz

Fig.8.Averagepeakthrustforceandtorquemeasurementsasafunctionoffeed whiledrillingwithpilotholeof2.48mmdiameter.Forceandedgecoefficientsfor thesecondarydrillingedgecanbecalculatedasafunctionoffibercuttingangleas inEq.(3).

Fig.9. (a)Cuttingforcecoefficientasafunction offibercuttingangleinthe secondarydrillingregion;(b)holeexitqualityasafunctionoffibercuttingangleat 5000rpmand20mm/revfeed.

Y.Karpatetal./CIRPAnnals-ManufacturingTechnology63(2014)81–84 84

Şekil

Fig. 2. Double tip point angle PCD drill geometry.
Fig. 5. Drilling thrust force and torque predictions at 5000 rpm and 50 m m/rev feed.
Fig. 9. (a) Cutting force coefficient as a function of fiber cutting angle in the secondary drilling region; (b) hole exit quality as a function of fiber cutting angle at 5000 rpm and 20 m m/rev feed.

Referanslar

Benzer Belgeler

Çakıcı (1989), Gazipaşa yöresinde hıyar yetiştiriciliği yapılan seralardan yaprak örnekleri almış ve analizler sonucunda; yaprak örneklerinin tümünün azot (N),

Bu bağlamda, Ahioğlu (2004) alanyazındaki çalışmaları ve yargı kararlarını incelediği çocuk istismarı ile ilgili çalışmasında; duygusal istismara göre cinsel ve

We can approximate the mode-matching wavelength, , simply by matching the individual effective refractive index, , of the polymer waveguide mode with the effective refractive index

The German philosopher Immanuel Kant’s rendition of cosmopolitanism and the sublime have been quite popular separately in various discussions on politics and

A more general version of this problem is known as the parallel (identical, non-dedicated) machine scheduling problem with a single server, P2S1/ / C max.. Both Glass

Results showed that TFT’s fabricated with as-deposited films do not show gate field control over the channel layer but after a thermal treatment performed at temperatures higher

Etki büyüklüğü değeri artı olanlar birinci grubun yani lisans mezunu olan öğretmenlerin öğretim programlarının kazanımlar öğesine yönelik olarak lisansüstü

Sonuç olarak sağlık çalışanlarının özellikle ileri yaşta oluşabilecek deliryum tablosu karşısında alert olmaları, çoklu ilaç kullanımından kaçınmaları,