• Sonuç bulunamadı

Parentucellia latifolia subsp. latifolia: A potential source for loganin iridoids by HPLC-ESI-MSn technique

N/A
N/A
Protected

Academic year: 2021

Share "Parentucellia latifolia subsp. latifolia: A potential source for loganin iridoids by HPLC-ESI-MSn technique"

Copied!
7
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Journal

of

Pharmaceutical

and

Biomedical

Analysis

jou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l oc a t e / j p b a

Parentucellia

latifolia

subsp.

latifolia:

A

potential

source

for

loganin

iridoids

by

HPLC-ESI-MS

n

technique

Eulogio

J.

Llorent-Martínez

a

,

María

Luisa

Fernández-de

Córdova

a

,

Gokhan

Zengin

b,∗

,

Mir

Babak

Bahadori

c

,

Muhammad

Zakariyyah

Aumeeruddy

d

,

Kannan

RR

Rengasamy

e

,

Mohamad

Fawzi

Mahomoodally

d,∗

aDepartmentofPhysicalandAnalyticalChemistry,UniversityofJaén,CampusLasLagunillasS/N,E-23071Jaén,Spain bDepartmentofBiology,ScienceFaculty,SelcukUniversity,Campus,Konya,Turkey

cResearchCenterforPharmaceuticalNanotechnology,TabrizUniversityofMedicalSciences,Tabriz,Iran dDepartmentofHealthSciences,FacultyofScience,UniversityofMauritius,230Réduit,Mauritius eREEFEnvironmentalConsultancy,#2KamarajStreet,S.P.Nagar,Puducherry605001,India

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22September2018 Receivedinrevisedform 14December2018 Accepted16December2018 Availableonline17December2018 Keywords: Parentucellialatifolia Antioxidants Enzymeinhibition Phenolic Flavonoid Loganin

a

b

s

t

r

a

c

t

Thisstudyattemptstocomparethepharmaceuticalpotential(antioxidantandkeyenzymeinhibitionof clinicalrelevance)oforganicandaqueousextractsofParentucellialatifolia(L.)Caruelsubsp.latifolia(L.) Caruelaswellasphytochemicalcomposition.Thephytochemicalcompoundswereevaluatedby spec-trophotometricmethods(fortotalamounts)andHPLC-ESI-DAD-MSn(forindividualcompounds).The

extractswerescreenedforantioxidantabilitiesbyinvitroassays.Inhibitioneffectswerealsoinvestigated againstasetofenzymeslinkedtomajorhealthproblems.Generally,themethanol(MeOH)andaqueous extractsdisplayedhigherscavengingabilitiesonradicalsandreductiveeffectswhencomparedwiththe ethylacetate(EtOAc)extract.Ontheotherhand,theEtOAcextractwasthemostactiveinhibitoron cholinesterases(1.81–1.88mgGALAE/g),amylase(0.70mmolACAE/g),glucosidase(2.85mmolACAE/g) andlipase(33.24mgOE/g).ThehighestTPCwasobservedintheaqueousextract(25.07mgGAE/g) whileMeOHextractpossessedthehighestlevelofTFC(44.15mgRE/g)andTPAC(3.46mgCE/g). LC-MSnmetaboliteprofilingindicatedthatloganinanditsisomers,rutin,andluteolin-O-hexosidewerethe

mostabundantcompounds.OurresultssuggestthatP.latifoliamaybevaluablesourceofphyto-agents forthemanagementofnoncommunicablediseases.

©2018ElsevierB.V.Allrightsreserved.

1. Introduction

Oxidativestressisassociated withsomeimportantdisorders

including diabetes mellitus, cancer, rheumatoid arthritis,

cere-brovascular and cardiovascular diseases, chronic inflammation,

aging,andotherdegenerativediseases.Theincreasinglevelof

reac-tiveoxygenspecies(ROS)isharmfulforhumanmacromolecules

suchasDNA,lipids,andproteins,leadingtomutationsand

carcino-genesis.Consequently,theregulationofcellularreactiveoxygen

speciesisvitaltomaintaincellularhomeostasisAtthispoint,

nat-uralantioxidantcompoundswithoutsideeffectsmayhinderthe

destructiveeffectsofthereactiveoxygenspeciesandplant

sec-ondarymetabolitesaregreatsourcesofnaturalantioxidants[1].

∗ Correspondingauthors.

E-mailaddresses:gokhanzengin@selcuk.edu.tr(G.Zengin), f.mahomoodally@uom.ac.mu(M.FawziMahomoodally).

Duringthelastyears,therehasbeenincreasinginterestinthe

explorationofherbsinthepharmaceuticalindustriesforpotent

noveldrugs.Nonetheless,oftheestimatednumberofplantspecies

globally, just a few has been chemically investigated, whereas

a muchsmallerfractionhasbeensubjectedtopharmacological

screening[2].Despitethelackofinformationontherapeuticeffects

ofsomeplants,theirmedicinalusesarebecomingmore

accept-ableascomplementaryandalternativemedicinesduetotheirlow

costandlessadverseeffects[3–5].Withthedevelopmentof

mod-ernandrapidisolationtechniques,bioassayscreeningprocedures,

andspectroscopicmethods,phytochemistryhasnowbecomean

importantbranchinpharmaceuticalstudies[2].Recently,therole

ofphytoconstituentshasbeenextendedtotherapeuticuses,

pro-vidingconsiderablehealthbenefits[6].

ThegenusParentucellia(Orobanchaceae)comprisesofannual

herbs,withsessileandgenerallyoppositeupperleavesand

flow-erswhicharearrangedinracemesorspike-like[7].Fourspecies

are distributed in Western Europe, Mediterranean,Central and

https://doi.org/10.1016/j.jpba.2018.12.025 0731-7085/©2018ElsevierB.V.Allrightsreserved.

(2)

SouthwesternAsia.Morphologically,P.latifoliasubsp.latifoliacan

beseparatedfromP.latifoliasubsp.flaviflorabyitspurplecorolla

andrelativelythickstem[7].

Fewphytochemicalstudieshavebeenperformedonthegenus

Parentucellia. For instance,Biancoet al. [8] isolated iridoid

glu-cosidesfrom Parentucelliaviscosa. Terpenoidsand malonic acid

derivativeswerealsoidentifiedinP.latifolia[9,10].Furthermore,

deUrbina,etal.[11]purifiedtheantispasmodicperacetylated

pen-stemonoside,aucubin,andcatalpolfromP.latifolia.Nonetheless,

wefoundthatthereisstilladearthofpharmacological

exploita-tionofplantsfromthisgenus.Inthiscontext,thepresentstudy

aimedtoinvestigatethebiologicalandchemicalpropertiesof

Par-entucellialatifoliasubsp.latifoliainanattempttoobtainvaluable

phytocompoundsfromthisspeciesforthemanagementofchronic

disorders. Thebioactivitieswere assessedbased onantioxidant

activity(reducing, chelating, and radical scavengingpotentials)

and enzymeinhibitory effects against enzymesassociated with

some noncommunicable diseases including neurodegenerative

disorders(acetylcholinesterase(AChE)andbutyrylcholinesterase

(BChE)),hyperpigmentation(tyrosinase),hyperglycemiaand

dia-betes (␣-amylase and ␣-glucosidase),and obesity(lipase). The

phytochemicalprofileoftheplantwasalsodeterminedtoidentify

anypossiblecorrelationwiththeobservedbiologicalactivities.

2. Materialsandmethods

2.1. Plantmaterial

Plantmaterials(n=20)werecollectedfromsamepopulation

duringfieldstudy(spring2016)inKonya,Turkey(between

Alaed-din Keykubat Campus and Yukselen villageroad, 1100m). The

taxonomicidentificationwasperformedbythebotanistDr.Murad

Aydin Sanda and one voucher specimen was deposited at the

herbariumofSelc¸ukUniversity,Konya,Turkey.

2.2. Extractionprocedures

Toprepareethylacetateandmethanolextracts,theplant

sam-ples (dried-powdered aerial parts (about 2mm)) were stirred

overnight (24h) at room temperature (10g in 200mL solvent

(EtOAcandMeOH)).Afterfiltration,theextractswereconcentrated

usingarotaryevaporatorundervacuumat40◦C.Forwaterextract,

infusionwasprepared(10gofplantswerekeptin200mLofboiled

waterfor20min).Afterthat,theinfusionwasfilteredanddriedby

usingalyophilizator.Thesampleswerestoredat+4◦Cuntilfurther

analysis.

2.3. Totalmetabolitecontentsdetermination

Similartoourpreviousstudies,thetotalamountofphenolics

(TPC)(bystandardFolin-Ciocalteumethod),flavonoids(TFC)(by

AlCl3method)andtotalphenolicacidcontent(TPAC)(byArnow

assay)weredetermined.Thefinalresultswereexpressedas

equiv-alentsofstandardcompounds(gallicacid(mgGAE/g)forTPC;rutin

(mgRE/g) forTFCand caffeicacid(mgCE/gextract)for TPAC),

respectively).Theexperimentaldetailsweresummarizedin

pre-viouspapers[12,13].

2.4. Antioxidantcapacitymeasurements

Differentspectrophotometricexperimentswereusedtoscreen

theantioxidantcapacityoftheParentucelliaextractsas

phospho-molybdenum,quenchingofradicals(DPPHandABTS),reduction

potentials(FRAPandCUPRAC),andferrousionchelating.The

find-ingswereexpressedasstandardcompoundsequivalents(mgTE/g

andmgEDTAE/g).Theproceduresofassayswerealready

summa-rizedreportedinourearlierwork[12].

2.5. Keyenzymeinhibitoryeffects

The Parentucelliaextractswere tested as sourcesof enzyme

inhibitorsonsomeenzymes,including␣-amylase,␣-glucosidase,

cholinesterases, tyrosinase and lipase. The procedures of these

assays were already summarized in our earlier work[12]. The

enzymeinhibitoreffectswereevaluatedasequivalentsoforlistat

(forlipase), acarbose (for␣-amylase and␣-glucosidase),

galan-tamine(forAChEandBChE),andkojicacid(fortyrosinase).

2.6. Chromatographicconditions

An Agilent HPLC system (Series1100 with a G1315B diode

arraydetector)wasemployedforchromatographicanalysis.Itwas

connected to an Esquire 6000, Bruker Daltonicsion trapmass

spectrometer with an electrospray interface.A reversed phase

LunaOmegaPolarC18analyticalcolumn(150×3.0mmand5␮m

particlesize(Phenomenex))anda PolarC18SecurityGuard

car-tridge (Phenomenex)of 4×3.0mm wereused foranalysis.The

HPLC-DAD-MS parameters have been previously reported [14].

10␮Lofsample(5mg/mLinMeOH)wasfilteredthrough0.45␮m

PTFEmembranefilters(AnálisisVínicos,Madrid,Spain)andthen

injected.

2.7. Quantificationofpolyphenols

Calibration curves were prepared using the following

stan-dardreagents:ferulicacid,apigenin,kaempferol,loganin,luteolin,

quercetin,rutin,andvicenin2.Quantificationwasperformedby

UVsignal,recordingchromatogramsat320and350nmfor

phe-nolicacidsandflavonoids,respectively.Whentheexactanalytical

standard wasavailable,it wasusedfor thequantification.

Oth-erwise, thecorrespondinganalytical standard wasused for the

(semi)quantificationofitsderivatives(forinstance,theaglycone

forthecorrespondingglycosides).

2.8. Statisticalanalysis

Allassaysresultswereexpressedasmeanofthreeexperiments

withstandarddeviation(S.D).ANOVAassay(withTukey’s)were

performedtoevaluatethedifferencesintheextracts.Thestatistical

analysisweredonebyusingSPSSv.17.0program.

3. Resultsanddiscussion

3.1. Phytochemicalscontent

Extraction of plantmaterial is thefirst step in

phytochemi-calstudiesandplaysa crucialrole.In theconventional method

of extraction, several techniques have been employed suchas

hydrodistillation,soxhletextractionandmaceration.Amongthese,

macerationisinexpensiveandstraightforwardtoextractphenolic

components.Thistechniquehasbeenperformedatroom

tempera-tureandhasawiderangeofapplicationincludingpharmaceutical

and foodareas.Secondly, thesolvent selectionis another

criti-cal step which frequentlyuses most commonsolvents suchas

methanol,ethanol,ethylacetateandwater[15].Takentogether,

weselectedthemacerationtechniquewiththreesolvents(ethyl

acetate,methanol,andwater)toprepareP.latifoliasubsp.latifolia

extracts.

ThetotalbioactiveamountsoftheextractsofP.latifoliawere

measuredasTPC,TFC,andTPAC(Table1).ThehighestTPCwas

(3)

Table1

TotalbioactivecompoundsofthesamplesA.

Extracts TPC(mgGAE/gextract) TFC(mgRE/gextract) TPAC(mgCE/gextract)

EtOAc 20.47±0.41c 7.14±0.13c nd

MeOH 22.63±0.30b 44.15±0.22a 3.46±0.57a

Water 25.07±0.17a 34.22±0.22b 1.31±0.19b

AValuesexpressedasmeans±S.D.ofthreeparallelmeasurements.CE:caffeicacidequivalents;GAEs:Gallicacidequivalents;REs:Rutinequivalents;TFC:Totalflavonoids

content;TPAC:Totalphenolicacidscontent;TPC:Totalphenoliccontent.nd:nondetected.Differentlettersreferstatisticallysignificantdifferencesintheextracts(p<0.05).

Fig.1.HPLC-ESI-MSnbasepeakchromatograms(BPC)ofthemethanolicextractofP.latifolia.

theMeOHandEtOAcextracts(22.63and20.47mgGAE/g,

respec-tively).However,MeOHextractcontainedthehighestlevelofTFC

(44.15mgRE/g)followedbytheaqueousextract.Withregardsto

TPAC,asimilarpatternwasobservedanditwasnotdetectedinthe

EtOAcextract.

3.2. HPLC-ESI-MSn

HPLC-ESI-MSn(withthenegativeionmode)wascarriedoutto

identifyphytochemicalsinanalyzedextracts.Theobtained

chro-matogramfortheMeOHextractofP.latifoliaisshowninFig.1and

theidentifiedcompoundscouldbeseeninTable2.

3.2.1. Iridoidandphenylethanoidglycosides

Compound2,with[M−H]−atm/z375,exhibitedMSnfragment

ionsatm/z213,169,151,and125.Thisexactfragmentationpattern

hasbeenpreviouslyreportedfortheiridoidglycoside

dihydroco-minicacid[16].

Compound6wasidentifiedasloganin(formateadduct).

Com-pound5and7presentedthesamefragmentationpattern,sothey

werecharacterizedasloganinisomers. Theseiridoid glycosides

werethemostabundantcompoundsintheanalyzedextracts.

Threephenylethanoid glycosideswerecharacterized.On one

hand,compound22,with[M−H]−atm/z651,exhibitedfragment

ionsatm/z475,457,and329,inagreementwiththe

fragmenta-tionofmartynoside[17].Ontheotherhand,compounds10and

13presentedthesamefragmentationpatternasverbascoside[18]

andweretentativelycharacterizedasisomers.

3.2.2. Flavonoids

Compound4sufferedthesequentialneutrallossesof176Da

(glucuronide)and308Da(rutinoside)toyieldquercetinatm/z301

(themassspectrum ofquercetinwasconfirmedby comparison

withananalyticalstandard).Thisfragmentationpatternisin

agree-mentwithquercetin-O-glucuronide-O-rutinoside.Compound12

wasidentifiedasrutinbycomparisonwithananalyticalstandard.

Compound25wasidentifiedasapigenin,andthreerelated

gly-cosideswerealsocharacterized(compounds8,9,and18).Inall

cases,apigeninwasobservedatm/z269,andtheattachedsugars

wereglucuronidemoieties(neutrallossesof176Da).

Compound11,with[M−H]−atm/z609,sufferedtwo

consecu-tivelossesofhexosidemoieties(162Da),yieldingtheaglyconeat

m/z285(kaempferol).Hence,itwascharacterizedas

kaempferol-O-dihexoside.

Compound23,luteolin,presentedatypicalfragmentionatm/z

243andcompound14,withanadditional162Daloss,was

charac-terizedasluteolin-O-hexoside.

Compound15presentedthedeprotonatedmolecularionatm/z

491and, after theneutral lossof 176Da, yielded theaglycone

isorhamnetinatm/z315(characteristic315→300fragmentation).

Therefore,itwascharacterizedasisorhamnetin-O-glucuronide.

Finally,compound26wastentativelycharacterizedasa

methy-latedflavonoidduetothelossof15Da(methylgroup)observed.

Compounds17,19,and20hadadditionalrutinoside,hexoside,and

glucuronidemoietiesintheirstructures,whichindicatedthatthey

wereprobablyglycosidesofcompound26.

3.2.3. Othercompounds

Compound3couldnotbefullyidentified,butitseemsa

sac-charidederivative,asitpresentedfragmentionsatm/z179,161,

143, 119, and 113, typicalof hexosides [19].Compound 16

dis-played ferulic acid at m/z 193 (fragment ions at m/z 149 and

134),soitwascharacterizedasaderivative.Similarly,compound

21 was characterized as a coumaric acid (163→119

fragmen-tation) derivative. Finally, compound 24 was characterized as

oxo-dihydroxy-octadecenoicacid[20].Thestructuresofthemain

compoundscouldbefoundinFig.2.

3.3. QuantificationbyHPLC-DAD

Calibration graphsfor each analytical standard (Section2.8)

were constructed using six concentrations (0.3–100␮g/mL in

MeOH), plotting peak area versus concentration, obtaining

R≥0.997inallcases.Quantitationlimitsvariedbetween0.3and

1.0mgL−1,andthecalibrationgraphwaslinearupto100mgL−1

forallanalyticalstandards.Boththerepeatability(sameday,n=3)

andtheintermediateprecision(3differentdays,n=9)were

eval-uated,obtainingR.S.D.lowerthan8%inallcases.Therobustness

of the method was assayed considering possible variations in

(4)

Table2

CharacterizationofthecompoundsfoundintheanalyzedextractsofParentucellialatifolia.

No. tR(min) [M-H]−m/z m/z(%basepeak) Assignedidentification

1 1.9 495 MS2[495]:477(18),379(100) MS3[495→379]:169(100) Unknown 2 4.3 375 MS2[375]:213(100),169(31),125(16) MS3[375→213]:169(100),151(18),125(47) MS4[375→213→169]:151(100),125(3) Dihydrocominicacid 3 5.5 433 MS2[433]:387(59),225(74),179(100) MS3[433→179]:161(100),143(34),119(17),113(100) Saccharidederivative 4 8.8 785 MS2[785]:609(100) MS3[785→609]:301(100) MS4[785→609→301]:255(44),179(100),151(10) Quercetin-O-glucuronide-O-rutinoside 5 9.7 435 MS2[435]:227(100) MS3[435→227]:101(100)

Loganinisomer(formateadduct)

6 11.3 435 MS2[435]:389(100),227(70)

MS3[435→389]:227(100)

MS4[435→389→227]:101(100)

Loganina(formateadduct)

7 12.8 435 MS2[435]:389(29),227(100)

MS3[435→227]:101(100)

Loganinisomer(formateadduct)

8 14.9 643 MS2[643]:467(100) MS3[643→467]:269(100) MS4[643→467→269]:225(100) Apigenin-O-glucuronidederivative 9 14.9 621 MS2[621]:445(100),269(47) MS3[621→445]:269(100) Apigenindiglucuronide 10 17.5 623 MS2[623]:461(24) MS3[623→461]:315(100),285(48),161(11),143(27),135(71) Verbascosideisomer 11 17.9 609 MS2[609]:447(90),285(100) MS3[609→447]:285(100) MS4[609→447→285]:255(82),241(100) Kaempferol-O-dihexoside 12 19.5 609 MS2[609]:301(100) MS3[609→301]:179(100),151(63) Rutina 13 20.5 623 MS2[623]:461(100) MS3[623→461]:315(49),161(54),143(8),135(100) Verbascosideisomer 14 20.8 447 MS2[447]:285(100) MS3[447→285]:243(100),175(67) Luteolin-O-hexoside 15 21.5 491 MS2[491]:315(100) MS3[491→315]:300(100) Isorhamnetin-O-glucuronide 16 23.2 399 MS2[399]:311(61),285(47),193(100) MS3[399→193]:149(47),134(100)

Ferulicacidderivative

17 24.9 607 MS2[607]:299(100),284(41) Methyl-flavonoid-O-rutinoside 18 25.4 445 MS2[445]:269(100) MS3[445→269]:225(100),151(25) Apigenin-O-glucuronide 19 25.8 461 MS2[461]:299(100) MS3[461→299]:284(100) Methyl-flavonoid-O-hexoside 20 26.2 475 MS2[475]:299(100),284(8) Methyl-flavonoid-O-glucuronide 21 28.2 783 MS2[783]:619(22),483(100) MS3[783→483]:337(46),319(79),163(100) MS4[783→483→163]:119(100)

Coumaricacidderivative

22 30.5 651 MS2[651]:651(100),505(3),475(23),457(9),193(8) MS3[651→475]:329(100),161(57) Martynoside 23 35.8 285 MS2[285]:243(84),241(100) Luteolina 24 39.2 327 MS2[327]:291(45),229(24),211(33),171(100) Oxo-dihydroxy-octadecenoicacid 25 39.9 269 MS2[269]:269(100) Apigenina 26 40.5 299 MS2[299]:284(100) Methyl-flavonoid

aIdentifiedbycomparisonwithanalyticalstandards.

(5)

Table3

QuantificationofphenoliccompoundsinP.latifolia(mg/gDE).

No. Assignedidentification Concentration(mg/gDE) Iridoidglycosides 5 Loganinisomer 7.1±0.5 6 Loganin 24±1 7 Loganinisomer 3.5±0.3 Total 34.6±1 Flavonoids 4 Quercetin-O-glucuronide-O-rutinoside 0.21±0.02 8+9 Apigenin di-glucuronide+derivative 1.1±0.1 11 Kaempferol-O-dihexoside 0.71±0.05 12 Rutin 6.2±0.1 14 Luteolin-O-hexoside 6.3±0.1 18 Apigenin-O-glucuronide 0.40±0.03 23 Luteolin 0.84±0.05 25 Apigenin 0.39±0.02 Total 15.8±0.1 Phenolicacids

16 Ferulicacidderivative 0.61±0.08

21 Coumaricacidderivative 0.06±0.01

Total 0.67±0.01

TIPCa 51±1

aTotalindividualphenoliccontent.

solutions (stored at -20◦C for at least 1 month), observing no

significantvariationsintheanalyticalsignal.

Totalindividualphenoliccontent(TIPC)(51±1mg/gDE)was

definedasthesumofallthephenolicsthatwerequantifiedby

liquidchromatography.TheresultsareshowninTable3.Iridoid

glycosidesaccountedforapproximately66%oftheTIPC,followed

byflavonoids,whichrepresentedapproximately33%ofTIPC.On

theotherhand,theamountofphenolicacidderivativeswasalmost

residual(1.3%ofTIPC).Amongtheiridoidglycosides,onlyloganin

(compound6)anditstwoisomers(compound5and7)were

char-acterized.Loganinwasthemostabundantcompoundintheextract,

accountingfor 47%of TIPC(24±1mg/g DE).Loganin is ausual

ingredientofmanytabletsorpillsduetoitsbioactivity.Its

con-centrationhasbeenreportedindifferentplants,suchasdifferent

LoniceraspeciesandCorniFructus[21–23].Inallofthem,the

lev-elsofloganinwerelowerthan10mg/g,whichmakesP.latifoliaa

potentialsourceofloganinforpharmaceuticalapplications.

The most abundant flavonoids were rutin and

luteolin-O-hexoside (compounds12 and 14), which accounted for almost

80%oftheamountofflavonoids.Ingeneral,loganinandits

iso-mers, rutin, and luteolin-O-hexoside were the most abundant

compounds: ∼92% of TIPC. Hence, theymay consideredas the

responsiblecomponentsforthebioactivityfoundintheanalyzed

extract,althoughloganinisthemostabundantcompoundofallof

them.

3.4. Antioxidantactivity

Inanefforttoreduceoxidativedamage,therehasbeenextensive

researchconductedonmanyplantextractsandsecondary

metabo-lites.Phenoliccompoundscanterminatetheoxidationdamagesof

freeradicalsinhumanbodybydonatinghydrogenatom,followed

bythestabilisation and delocalization ofthe unpairedelectron

withinitsaromaticring[24].

Inthiswork,theantioxidantcapacityofP.latifoliawas

inves-tigatedin terms of itsfree radicalscavenging, reducing power,

phosphomolybdenum,andmetalchelatingproperties.Asitcould

beseeninTable4,theaqueousextractshowedthebestscavenging

activity(37.80(inDPPH)and69.92mgTE/g(inABTS))whilethe

EtOAcextractdisplayedthelowestactivity.Similarly,theaqueous

extractexertedthehighesteffect(61.73mgTE/g)whiletheEtOAc

extractwastheleasteffective(24.94mgTE/g)inFRAPassay.The

highscavengingandFRAPactivityoftheaqueousextractismost

probablyduetoitshighestTPCasobservedinthisstudy[25].

Withregardstothereducing poweragainstCu(II)(CUPRAC

assay),theMeOHextract(89.08mgTE/g)exhibitedthebesteffect

followed by the water extract (87.62mg TE/g). EtOAc extract

depictedtheleastactivity(57.59mgTE/g).HighTFCandTPCinthe

MeOHextractmightberesponsibleforitsstrongreducingactivity.

Interestingly,theEtOAcextractdisplayedthehighesteffectin

phosphomolybdenum(1.82mmolTE/g)andmetalchelatingassays

(19.29mg EDTAE/g) and the aqueousextract showed theleast

activity.Ontheotherhand,theMeOHextract hadtheweakest

metalchelatingeffect(12.17mgEDTAE/g).Itisimportantto

high-light that theobserved biologicalactivity ofEtOAc extract was

notrelatedtotheleveloftotalbioactivecompoundssinceit

con-tained thelowest TPC,TFC, andTPAC amongthe threesolvent

extracts.Therefore,otherphytochemicalsareresponsibleforthese

activities.Inaddition,differentclassesofphenolicsandflavonoids

have different biological effects and it is possible that specific

compounds,responsiblefor thestrongactivityinthe

phospho-molybdenumand metalchelatingassay,arepresent inahigher

amountin theEtOAcextract.Thesecompoundsmayalsoactin

combination toproduce a synergisticor additiveeffectto

con-tributetotheiroverallobservedbioactivity[26].

3.5. Enzymeinhibitoryactivity

Currently,enzymeinhibitionhasbecomeanattractiveapproach

in the treatment of various noncommunicable diseases. The

enzymeinhibitoryactivityofP.latifoliaextractsaresummarized

inTable5.Inthetestedextracts,theEtOAcextracthadthe

supe-riorenzymeinhibition,displayingthehighestanticholinesterase

(1.88and1.81mgGALAE/gagainstAChEandBChE,respectively),

anti-amylase (0.70mmol ACAE/g), anti-glucosidase (2.85mmol

ACAE/g),and lipaseinhibitory activity(33.24mgOE/g).In

addi-tion,thehighesttyrosinaseinhibitionwasexhibitedbytheMeOH

extract(60.84mgKAE/gextract).Thehighcontentofflavonoids

in the MeOH extract could have contributed to its tyrosinase

inhibitoryactivitysinceastudybyWangetal.[27]founda

pos-itive correlationbetweenTFCand tyrosinase inhibition. Onthe

otherhand,theweakenzymeinhibitoryeffectsweredisplayedby

theaqueousextract.Inaddition,noBChEandlipaseinhibitionwas

observedbytheaqueousextract.

ThehighestcholinesteraseactivityexertedbytheEtOAcofP.

latifoliatendstojustifyitspotentialtherapeuticuseinthe

manage-mentofneurodegenerativediseases.Acetylcholineishydrolyzed

by AChE. So, its inhibition could increase acetylcholine level

andimprovement ofmemoryand brainfunction.Latestagesof

Alzheimer’sisrelatedwithincreasingofBChEactivity[28].Also,

thehighestlipaseinhibitiondisplayedbytheEtOAcextract

indi-catesitspotentialusetoreplacethesyntheticdrugorlistatinthe

managementofobesity.Indeed,orlistathasbeenlinkedtosome

importantadversegastrointestinaleffects[29].

Additionally,theEtOAcextractalsoexhibitedthemostpotent

anti-diabeticactivity.␣-Glucosidaseand␣-amylaseinhibitorshave

gaineda wide applicationinthecontrol ofpostprandial

hyper-glycemia which results in a decline of carbohydrate digestion

toabsorbablemonosaccharides.␣-Amylaseisresponsibleforthe

hydrolysisoflargepolysaccharidestosmallercarbohydrates,which

arethendigestedtoliberateglucosebyintestinal␣-glucosidase.

Inthisway,inhibitionoftheseenzymeswillultimatelydiminish

thepostprandialhyperglycemia.Currently,acarboseandmiglitol

aretheleadingglucosidaseinhibitors.Nonetheless,theyareoften

(6)

Table4

AntioxidantpropertiesofthesamplesA. Extracts Phosphomolybdenum (mmolTE/gextract)

DPPH(mgTE/g extract) ABTS(mgTE/g extract) CUPRAC(mgTE/g extract) FRAP(mgTE/g extract)

Metalchelatingactivity (mgEDTAE/gextract)

EtOAc 1.82±0.11a 2.50±0.71c 14.05±0.95c 57.59±0.57b 24.94±0.87c 19.29±0.19a

MeOH 1.45±0.12b 33.71±0.43b 47.43±0.82b 89.08±1.77a 50.61±1.11b 12.17±0.52b

Water 0.96±0.01c 37.80±0.84a 69.92±0.47a 87.62±2.25a 61.73±1.14a 18.35±0.05a

AValuesexpressedaremeans±S.D.ofthreeparallelmeasurements.TE:Troloxequivalent;EDTAE:EDTAequivalent.Differentlettersreferstatisticallysignificantdifferences

intheextracts(p<0.05). Table5

EnzymeinhibitoryeffectsofthesamplesA. Extracts AChEinhibition

(mgGALAE/g extract) BChEinhibition (mgGALAE/g extract) Tyrosinase inhibition(mg KAE/gextract) Amylase inhibition(mmol ACAE/gextract) Glucosidase (mmolACAE/g extract) Lipase(mgOE/g extract) EtOAc 1.88±0.09a 1.81±0.09a 48.74±1.11b 0.70±0.03a 2.85±0.30a 33.24±0.71a MeOH 1.30±0.11b 0.83±0.13b 60.84±0.85a 0.41±0.03b 1.08±0.08b 12.78±2.15b Water 0.28±0.03c na 15.54±0.93c 0.10±.0.01c 0.87±0.05c na

AValuesexpressedaremeans±S.D.ofthreeparallelmeasurements.GALAE:Galantamineequivalent;KAE:Kojicacidequivalent;ACAE:Acarboseequivalent;OE:orlistat

equivalent;na:notactive.Differentlettersreferstatisticallysignificantdifferencesintheextracts(p<0.05).

ItisimportanttonotethatalthoughtheaqueousextractofP.

latifoliashowedthehighestactivityinmostantioxidantassays,it

displayedtheweakestenzymeinhibitoryeffects.

4. Conclusion

Thisisthefirstreportontheenzymeinhibitor(onkeyenzymes

linkedtoglobalhealthproblems)andantioxidanteffectsof

Paren-tucellialatifoliasubsp.latifolia.Theextractsexhibitedsignificant

free radicalscavenging, reductive,chelating,as wellasenzyme

inhibitoreffects.Metaboliteprofilingoftheplantindicatedthat

loganinanditsisomers,rutin,andluteolin-O-hexosidewerethe

mostabundantcompounds.TheresultssuggestthatP.latifoliacan

beagreatpotentialasasourceofbioactivecompoundsfor

possi-bleusesasfunctionalfoodsandnaturalpharmaceuticals.However,

furtherworks(invivoorbioavailability)onthisspecieswouldhelp

usestablishagreaterdegreeofaccuracyonthismatter.

Acknowledgments

Authorsgratefullythankthetechnicalsupportandhumanhelp

ofCICTofUniversidaddeJaén(UJA,MINECO,JuntadeAndalucía,

FEDER).

References

[1]S.Chikara,L.D.Nagaprashantha,J.Singhal,D.Horne,S.Awasthi,S.S.Singhal, Oxidativestressanddietaryphytochemicals:roleincancerchemoprevention andtreatment,CancerLett.413(2018)122–134.

[2]K.Hostettmann,J.-L.Wolfender,C.Terreaux,Modernscreeningtechniques forplantextracts,Pharm.Biol.39(2001)18–32.

[3]C.DeMonte,B.Bizzarri,M.C.Gidaro,S.Carradori,A.Mollica,G.Luisi,A. Granese,S.Alcaro,G.Costa,N.Basilico,BioactivecompoundsofCrocussativus L.andtheirsemi-syntheticderivativesaspromisinganti-Helicobacterpylori, anti-malarialandanti-leishmanialagents,J.EnzymeInhib.Med.Chem.30(6) (2015)1027–1033.

[4]S.Nazar,M.A.Hussain,A.Khan,G.Muhammad,M.N.Tahir,Capparisdecidua Edgew(Forssk.):Acomprehensivereviewofitstraditionaluses,

phytochemistry,pharmacologyandnutrapharmaceuticalpotential,Arab.J. Chem.(2018),http://dx.doi.org/10.1016/j.arabjc.2018.02.007.

[5]A.Uysal,G.Zengin,A.Mollica,E.Gunes,M.Locatelli,T.Yilmaz,A.Aktumsek, ChemicalandbiologicalinsightsonCotoneasterintegerrimus:anew (-)-epicatechinsourceforfoodandmedicinalapplications,Phytomedicine23 (10)(2016)979–988.

[6]M.Saxena,J.Saxena,R.Nema,D.Singh,A.Gupta,Phytochemistryof medicinalplants,J.Pharmacogn.Phytochem.1(6)(2013)168–182. [7]S.S.Mehrvarz,M.A.Litehroudi,G.B.Khanik,R.S.Shavvon1,

Micromorphological,anatomicalandpalynologicalstudiesofthegenus ParentucelliaL.(Scrophulariaceae)inIran,OtSistematikBotanikDergisi18(2) (2011)57–71.

[8]A.Bianco,P.Passacantilli,G.Righi,M.Nicoletti,Iridoidglucosidesfrom Parentucelliaviscosa,Phytochemistry24(8)(1985)1843–1845.

[9]J.Urones,I.Marcos,I.Cubillo,N.M.Garrido,P.Basabe,Terpenoidcompounds fromParentucellialatifolia,Phytochemistry29(7)(1990)2223–2228. [10]J.Urones,I.Marcos,L.Cubillo,V.Monje,J.Hernandez,P.Basabe,Derivativesof

malonicacidinParentucellialatifolia,Phytochemistry28(2)(1989) 651–653.

[11]A.O.deUrbina,M.Martin,B.Fernández,L.SanRoman,L.Cubillo,Invitro antispasmodicactivityofperacetylatedpenstemonoside,aucubinand catalpol,Plant.Med.60(06)(1994)512–515.

[12]D.M.Grochowski,S.Uysal,A.Aktumsek,S.Granica,G.Zengin,R.Ceylan,M. Locatelli,M.Tomczyk,Invitroenzymeinhibitoryproperties,antioxidant activities,andphytochemicalprofileofPotentillathuringiaca,Phytochem. Lett.20(2017)365–372.

[13]S.Vladimir-Kneˇzevi ´c,B.Blaˇzekovi ´c,M.Bival ˇStefan,A.Alegro,T.K"oszegi,J. Petrik,Antioxidantactivitiesandpolyphenoliccontentsofthreeselected MicromeriaspeciesfromCroatia,Molecules16(2)(2011)1454–1470. [14]E.J.Llorent-Martínez,G.Zengin,D.Lobine,L.Molina-García,A.Mollica,M.F.

Mahomoodally,Phytochemicalcharacterization,invitroandinsilico approachesforthreeHypericumspecies,NewJ.Chem.42(7)(2018) 5204–5214.

[15]J.Azmir,I.S.M.Zaidul,M.M.Rahman,K.M.Sharif,A.Mohamed,F.Sahena, M.H.A.Jahurul,K.Ghafoor,N.A.N.Norulaini,A.K.M.Omar,Techniquesfor extractionofbioactivecompoundsfromplantmaterials:areview,J.Food Eng.117(4)(2013)426–436.

[16]L.Ren,X.Xue,F.Zhang,Y.Wang,Y.Liu,C.Li,X.Liang,Studiesofiridoid glycosidesusingliquidchromatography/electrosprayionizationtandemmass spectrometry,RapidCommun.MassSpectrom.21(18)(2007)3039–3050. [17]H.Kırmızıbekmez,P.Montoro,S.Piacente,C.Pizza,A.Dönmez, ˙I.C¸alıs¸,

IdentificationbyHPLC-PAD-MSandquantificationbyHPLC-PADof phenylethanoidglycosidesoffivePhlomisspecies,Phytochem.Anal.16(1) (2005)1–6.

[18]E.J.Llorent-Martínez,S.Gouveia,P.C.Castilho,Analysisofphenolic compoundsinleavesfromendemictreesfromMadeiraIsland.Acontribution tothechemotaxonomyofLaurisilvaforestspecies,Ind.CropsProd.64(2015) 135–151.

[19]G.Verardo,I.Duse,A.Callea,Analysisofunderivatizedoligosaccharidesby liquidchromatography/electrosprayionizationtandemmassspectrometry withpost-columnadditionofformicacid,RapidCommun.MassSpectrom.23 (11)(2009)1607–1618.

[20]L.VanHoyweghen,K.DeBosscher,G.Haegeman,D.Deforce,A.Heyerick,In VitroinhibitionofthetranscriptionfactorNF-␬Bandcyclooxygenaseby Bambooextracts,Phytother.Res.28(2)(2014)224–230.

[21]H.Cai,G.Cao,B.Cai,Rapidsimultaneousidentificationanddeterminationof themultiplecompoundsincrudeFructusCornianditsprocessedproductsby HPLC–MS/MSwithmultiplereactionmonitoringmode,Pharm.Biol.51(3) (2013)273–278.

[22]C.Y.Chen,L.W.Qi,H.J.Li,P.Li,L.Yi,H.L.Ma,D.Tang,Simultaneous determinationofiridoids,phenolicacids,flavonoids,andsaponinsinFlos LoniceraeandFlosLoniceraeJaponicaebyHPLC-DAD-ELSDcoupledwith principalcomponentanalysis,J.Sep.Sci.30(18)(2007)3181–3192. [23]H.-J.Li,P.Li,W.-C.Ye,DeterminationoffivemajoriridoidglucosidesinFlos

Loniceraebyhigh-performanceliquidchromatographycoupledwith evaporativelightscatteringdetection,J.Chromotogr.A1008(2)(2003) 167–172.

[24]T.B.Dey,S.Chakraborty,K.K.Jain,A.Sharma,R.C.Kuhad,Antioxidant phenolicsandtheirmicrobialproductionbysubmergedandsolidstate fermentationprocess:areview,TrendsFoodSci.Technol.53(2016)60–74.

(7)

[25]Y.Jiao,P.A.Kilmartin,M.Fan,S.Y.Quek,Assessmentofphenoliccontributors toantioxidantactivityofnewkiwifruitcultivarsusingcyclicvoltammetry combinedwithHPLC,FoodChem.268(2018)77–85.

[26]G.Zengin,A.Diuzheva,J.Jek"o,Z.Cziáky,G.Bulut,A.Dogan,M.Z.

Haznedaroglu,K.R.Rengasamy,D.Lobine,M.B.Bahadori,HPLC–MS/MS-based metabolicprofilingandpharmacologicalpropertiesofextractsandinfusion obtainedfromAmelanchierparvifloravar.dentata,Ind.CropsProd.124(2018) 699–706.

[27]C.-Y.Wang,C.-C.Ng,H.-T.Lin,Y.-T.Shyu,Freeradical-scavengingand tyrosinase-inhibitingactivitiesofextractsfromsorghumdistilleryresidue,J. Biosci.Bioeng.111(5)(2011)554–556.

[28]G.Zengin,G.Bulut,A.Mollica,C.M.N.Picot-Allain,M.F.Mahomoodally, InvitroandinsilicoevaluationofCentaureasaligna(K.Koch)Wagenitz—An endemicfolkmedicinalplant,Comput.Biol.Chem.73(2018)120–126. [29]B.S.Drew,A.F.Dixon,J.B.Dixon,Obesitymanagement:updateonorlistat,

Vasc.HealthRiskManag.3(6)(2007)817.

[30]M.A.Ibrahim,N.A.Koorbanally,M.S.Islam,Antioxidativeactivityand inhibitionofkeyenzymeslinkedtotype-2diabetes(␣-glucosidaseand ␣-amylase)byKhayasenegalensis,ActaPharm.64(3)(2014)311–324.

Şekil

Fig. 1. HPLC-ESI-MS n base peak chromatograms (BPC) of the methanolic extract of P. latifolia.
Fig. 2. Major components identified in P. latifolia by LC-MS n technique.

Referanslar

Benzer Belgeler

In this study, we developed and validated an accurate, fast, sensitive, and robust liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for determination of

This dose-dependent effect compares well with glibenclamide and especially at the dose of 400 mg/kg body weight the extract produced a more significant reduction in blood

low burden (under 64 clients for each cell), some sub-carriers are latent in light of the fact that all assigned sub-carriers are not important to accomplish

Doğa konularını işleyen sanatçının son yıllarda İs­ tanbul Sokakları ve Şirket-i Hayriye vapurlu yapıtları büyük ilgi görmüş, Denizcilik Bankası Deniz

[r]

[r]

討論後,報主管機關核定發布。 第一項之財務報告應至少包括下列各項報表: 一、 資產負債表。 二、 收支餘絀表。 三、 淨值變動表。

Mezkûr açmazın giderilmesi noktasında yakın tarihlerde yayımlanan Thomas Bauer’in Müphemlik Kültürü ve İslâm: Farklı Bir İslâm Tarihi Okuması (2019) isimli