• Sonuç bulunamadı

Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption

N/A
N/A
Protected

Academic year: 2021

Share "Surface modification of electrospun cellulose acetate nanofibers via RAFT polymerization for DNA adsorption"

Copied!
8
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Carbohydrate

Polymers

jo u r n al h om ep age :w w w . e l s e v i e r . c o m / l o c a t e / c a r b p o l

Surface

modification

of

electrospun

cellulose

acetate

nanofibers

via

RAFT

polymerization

for

DNA

adsorption

Serkan

Demirci

a,c,∗

,

Asli

Celebioglu

a,b

,

Tamer

Uyar

a,b,∗∗ aUNAM-NationalNanotechnologyResearchCenter,BilkentUniversity,06800Ankara,Turkey bInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,06800Ankara,Turkey cDepartmentofChemistry,FacultyofArtsandSciences,AmasyaUniversity,05100Amasya,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received13January2014

Receivedinrevisedform22June2014 Accepted23June2014

Availableonline11July2014 Keywords: Electrospinning Celluloseacetate Nanofiber Surfacemodification RAFTpolymerization DNAadsorption

a

b

s

t

r

a

c

t

Wereport on afacile and robust method by whichsurface of electrospuncellulose acetate (CA) nanofiberscanbechemicallymodifiedwithcationicpolymerbrushesforDNAadsorption.Thesurface ofCAnanofiberswasfunctionalizedbygrowingpoly[(ar-vinylbenzyl)trimethylammoniumchloride)] [poly(VBTAC)]brushesthroughamulti-stepchemicalsequencethatensuresretentionofmechanically robustnanofibers.Initially,thesurfaceoftheCAnanofiberswasmodifiedwithRAFTchaintransferagent. Poly(VBTAC)brusheswerethenpreparedviaRAFT-mediatedpolymerizationfromthenanofibersurface. DNAadsorptioncapacityofCAnanofibrouswebsurfacefunctionalizedwithcationicpoly(VBTAC)brushes wasdemonstrated.Thereusabilityofthesewebswasinvestigatedbymeasuringtheadsorptioncapacity fortargetDNAinacyclicmanner.Inbrief,CAnanofiberssurface-modifiedwithcationicpolymerbrushes canbesuitableasmembranematerialsforfiltration,purification,and/orseparationprocessesforDNA.

©2014ElsevierLtd.Allrightsreserved.

1. Introduction

Electrospinningtechniquehasrecentlyreceivedgreatattention sincethisversatiletechniqueenablestheproductionof multifunc-tionalnanofiber/nanowebsfromawiderangevarietyofmaterials includingpolymers,blends,alloys,composites,ceramics,metals etc. (Agarwal, Greiner, & Wendorff, 2013; Sahay et al., 2012; Wendorff,Agarwal,&Greiner,2012).Theelectrospunnanofibers andtheirnanowebshavedistinctcharacteristicsuchasveryhigh surfaceareatovolumeratio,nanoscaleporousmorphologyand thediversesurfacefunctionalitiesarealsopossible(Agarwaletal., 2013; Kayaci, Ozgit-Akgun, Biyikli, & Uyar, 2013; Lu & Hsieh, 2010;Muller,Rambo,Porto,Schreiner,&Barra,2013;Sahayetal., 2012;Uyar,Havelund,Hacaloglu,Besenbacher,&Kingshott,2010; Wendorffetal.,2012).Thesepropertiesofelectrospunnanofibers

∗ Correspondingauthorat:UNAM-NationalNanotechnologyResearchCenter, BilkentUniversity,06800Ankara,Turkey.Tel.:+903582421614;

fax:+903582421616.

∗∗ Correspondingauthorat:UNAM-NationalNanotechnologyResearchCenter, BilkentUniversity,06800Ankara,Turkey.Tel.:+903122903571;

fax:+903122664365.

E-mailaddresses:srkndemirci@gmail.com,serkan.demirci@amasya.edu.tr

(S.Demirci),uyar@unam.bilkent.edu.tr,tamer@unam.bilkent.edu.tr,

tameruyar@gmail.com(T.Uyar).

makethemgoodcandidatesasaffinitymembranesforfiltration, purificationandseparationprocesses(Ma,Kotaki,&Ramakrishna, 2005;Zhu,Yang,&Sun,2011).Surfacemodificationofelectrospun nanofiberswithspecificfunctionalgroupsisofgreatinterestdue totheirpotentialapplicationinfiltration/separation,detectionand controlleddrugrelease(Chigome,Darko,&Torto,2011;Fu,Xu,Yao, Li,&Kang,2009a;Kampalanonwat&Supaphol,2010;Mahanta& Valiyaveettil,2011;Wangetal.,2012;Yao,Xu,Lin,&Fu,2010). Par-ticularly,polymerfunctionalizednanofibersthatcanbeobtained vialivingradicalpolymerization(LRP)techniquesmayhaveahigh adsorptioncapacityandstrongbindingspecificityduetotheirfree activegroupsonnanofibersurfaces(Chigomeetal.,2011;Yaoetal., 2010).

LRP reveal advantages because they can control the archi-tecture,molecularweightand molecularweight distributionin comparisonwiththeconventionalradicalpolymerization,dueto minimalterminationreactionsresultinginpolymerchainswith “living”endgroups(Coessen,Pintauer,&Matyjaszewski,2001;Fu etal.,2009a,2009b;Matyjaszewski,2012;Pyun&Matyjaszewski, 2001).SeveralLRPtechniqueshavebeenreportedforpreparation polymerfunctionalizedsurfaces,suchasnitroxide-mediated rad-icalpolymerization(Bian&Cunningham,2006;Cimen&Caykara, 2012),atomtransferradicalpolymerization(Bai,Zhang,Cheng,& Zhu,2012;Bian&Cunningham,2006;Turan,Demirci,&Caykara, 2010), reversible addition-fragmentation chain transfer (RAFT) http://dx.doi.org/10.1016/j.carbpol.2014.06.086

(2)

S.Demircietal./CarbohydratePolymers113(2014)200–207 201

polymerization(Demirci&Caykara,2012;Gurbuz,Demirci,Yavuz, &Caykara,2011;Jiang&Xu,2013)andsingle-electron transfer-livingradicalpolymerization(Demirci,Kinali-Demirci,&Caykara, 2013;Percecetal.,2006).LRPprovidesexcellentcontroloverthe molecularweightandpolydispersityofgraftpolymers(Braunecker &Matyjaszewski,2007;Dietrichetal.,2010).AmongallLRP tech-niques,RAFTpolymerizationisthemostimportantone,duetoits compatibilitywithawiderangeofmonomersandreaction condi-tions(Chen,Liu,Chen,Gong,&Gao,2011;Moadetal.,2010).The stabilityandchemicalversatilityinherentinRAFTagentsmakes RAFT-based procedures highly attractive for the preparation of well-definedpolymerswithspecificpolymerarchitectures(Smith, Holley,&McCormick,2011).

Theelectrospunnanofibrouswebshaveshowngreatpotential to be used as affinity membranes for separate/capture macro-molecules,microorganism,enzymes,heavymetalionsandwaste compounds(Che,Huang,&Xu,2011;Lu&Hsieh,2009;Maetal., 2005;Wangetal.,2011;Zhangetal.,2010).Forexample,Zhang etal.(2010)presentedanewaffinitymembranewhichwassurface modified electrospunpolyacrylonitrilenanofibers forbromelain adsorption.Cheetal.(2011)reportedthatglycosylatednanofibrous membraneshowedstrongselectivity,highadsorptioncapacityand reversiblebindingcapabilitytothespecificproteinconcanavalin A. DNA is thegenetic material of living organisms, and deter-mination ofDNA plays animportant role in many applications rangingfrommedical,forensic,agricultureandfoodsciences(Tao, Lin,Huang,Ren,&Qu,2012).Differentsolidsupportshavebeen usedforadsorptionofDNAduetotheeaseofhandling,andless chemicalrequirements. Wanetal.(2013)reportedthata novel electrochemicalDNAsensorbasedonsurfaceinitiatedenzymatic polymerization. ThisDNA sensor had picomolar sensitivity and broaddetectionrange.EfficientmethodformultipleDNAdetection byexploringsilvernanoclustersandgrapheneoxidenanohybrid materialswasdevelopedbyTaoetal.(2012).Inourpreviousstudy, wealso showedthat cationicpolymer brushescanbeused for quantitativeDNAadsorption(Demirci &Caykara,2013).But,all ofthesematerials,especiallypolymercoatedsolidsurfaceshave lowadsorptioncapacity,becauseofthelowsurfacearea(Baser, Demirel,&Caykara,2011;Rahman&Alaissari,2011).

Herein, poly[(ar-vinylbenzyl)trimethylammonium chloride] [poly(VBTAC)] grafted cellulose acetate (poly(VBTAC)-g-CA) nanofiberweresuccessfullyproducedbycombinationof electro-spinning and RAFT polymerizationwith the goalof fabricating affinitymembraneforDNAadsorption.Morphologicalandsurface characteristics of the poly(VBTAC)-g-CA nanofibers were car-riedoutbyscanningelectronmicroscope(SEM),Attenuatedtotal reflectance-Fouriertransforminfrared(ATR-FTIR)spectroscopy, X-rayphotoelectronspectroscopy(XPS)andcontactangle measure-ments.Furthermore,DNAadsorptionofpoly(VBTAC)-g-CA nanofi-brouswebfromthebuffersolutionwasinvestigated.The reusabil-ity of poly(VBTAC)-g-CA nanofibrous web was also tested by measuringtheadsorptioncapacityfortargetDNAafterfivecycles.

2. Materialsandmethods 2.1. Materials

Cellulose acetate (CA, Mw∼30,000, 39.8wt.% acetyl),

(ar-vinylbenzyl)trimethylammonium chloride (VBTAC, 99%), 4,4 -azobis(4-cyanopentanoic acid) (ACPA, ≥98%), benzyl chloride (99%), sulfur (≥99.5%), potassium ferricyanide(III) (99%), N,N’-dicyclohexylcarbodiimide (DCC, 99%), 4-dimethylaminopyridine (DMAP, ≥99%), acetic acid (99.7%), sodium acetate (≥99%), diethylether(≥99%),dichloromethane(DCM,98.5%),ethylacetate (99.8%), methanol (99.8%) were purchased commercially from

Sigma–Aldrich.ACPAwasrecrystallizedfrommethanol.Thewater wasusedfromaMilliporeMilli-Qultrapurewatersystem. Double-strandedDNA(Cy3-labeledDNA)of50basepairfromBioVentures Inc.wassupplied.

2.2. Electrospinning

Thehomogenouselectrospinningsolutionwaspreparedby dis-solvingCAin DCM/methanol (4/1(v/v))binarysolvent mixture at12%(w/v)polymerconcentration.ThenclearCAsolutionwas placedina3mLsyringefittedwithametallicneedleof0.6mm innerdiameter.Thesyringewasfixedhorizontallyonthesyringe pump(KDScientific).Theelectrodeofthehigh-voltagepower sup-ply(Matsusada Precision,AUSeries)wasclamped tothemetal needletip,andthecylindricalaluminumcollectorwasgrounded. Theparametersoftheelectrospinningwereadjustedas;feedrate ofsolutions=1mL/h,theappliedvoltage=15kV,andthe tip-to-collectordistance=10cm.Electrospunnanofibersweredeposited onagroundedstationarycylindricalmetalcollectorcoveredwitha pieceofaluminumfoil.Theelectrospinningapparatuswasenclosed inaPlexiglasbox,andelectrospinningwascarriedoutat25◦Cat 25%relativehumidity.Thecollectednanofibersweredriedatroom temperatureunderthefumehoodovernight.

2.3. RAFTpolymerizationofVBTAC

4-Cyanopentanoicaciddithiobenzoate(CPAD)wassynthesized accordingtotheliterature procedure(Mayadunneet al.,1999). CPAD(1.14g,4.095mmol),DCC(0.844g,4.095mmol),DMAP(0.5g, 4.095mmol), and 10mL of benzene were added to a round bottomedflaskandstirredforfewminutesundernitrogen atmo-sphere.TheCAnanofiberswereadded,andthemixturewasstirred overnightatroomtemperature.Theproductwaswashedwith ben-zene,2-propanolandwaterseveraltimesanddried.

TheRAFT-mediatedpolymerizationofVBTAC(29.4mmol)was carriedoutinbuffer(28mL,pH=5.0,0.27mol/Laceticacid,and 0.73mol/Lsodiumacetate),initiatorACPA(0.025mmol),freeRAFT agentCPAD(0.125mmol),andRAFTchaintransferagent immo-bilizedCAnanofiberat 0◦C in around-bottom flask.To ensure smoothstirringandpreventdamagetothenanofibers,weisolated themagneticstirringbaratthecenterofdevicefromtheslidesby a1cmhighglassO-ring.Thesolutionwasdilutedto30mLvolume withthebuffersolutionanddegassedbypurgingwithnitrogen for20min.Thepolymerizationreactionwasstirredvigorouslyat 70◦Cfor120min.Thepoly(VBTAC)-g-CAnanofiberswere recov-eredfromthereactionmixtureandrepeatedlywashedwithbuffer and watertoremovetheunreactedchemicals,anddriedunder vacuumat30◦C.

2.4. Measurementsandcharacterization

Attenuatedtotalreflectance-Fouriertransforminfrared (ATR-FTIR)spectraoftheCAandpoly(VBTAC)-g-CAwereobtainedusing a ThermoNicolet6700spectrometerwitha Smart Orbit atten-uated total reflection attachment.The spectra were taken at a resolution4cm−1after128scanaccumulationforanacceptable signal/noise ratio. The X-ray photoelectron spectra of samples wererecordedbyusingX-rayphotoelectronspectrometer(XPS) (ThermoScientific).XPSwasusedbymeansofafloodguncharge neutralizer systemequippedwitha monochromated Al K-␣ X-raysource(h



=1486.6eV).Chargingneutralizingequipmentwas usedtocompensatesamplecharging,andthebindingscalewas referencedtothealiphaticcomponentofC1sspectraat285.0eV. The morphologies of the electrospun CA and poly(VBTAC)-g-CAnanofiberswereinvestigatedwithafield emissionscanning electronmicroscope(FE-SEM)(FEI,Quanta200FEG).Sampleswere

(3)

Scheme1. (a)SchematicrepresentationofelectrospinningofCAnanofibers.(b)Sequenceofsurfacemodificationstepsemployedinthisstudytofunctionalizeelectrospun CAnanofiberswithpoly(VBTAC).(c)DNAadsorptiononpoly(VBTAC)-g-CAnanofibers.

sputteredwith5nmAu/Pd(PECS-682)andaround100fiber diam-etersweremeasuredfromtheSEMimagestocalculatetheaverage fiberdiameterofeachsample.Thewatercontactangle measure-mentswereconductedatroomtemperatureusingagoniometer (DSA100, Krüss)equippedwitha microlitersyringe.Deionized water(5␮L,18Mcmresistivity)wasusedasthewettingliquid. Evidenceofthenonspecificadsorptionwasobtainedbymeansof opticalfluorescencemicroscopy.Fluorescencemicroscopyimages wererecordedbyusinganOlympusBX51microscopewitha40× objective.

2.5. DNAadsorptionstudy

DNAsolutionwaspreparedinanaqueoussolutionofphosphate buffer saline (PBS). The adsorption of DNA onto poly(VBTAC)-g-CA nanofibers was performed in a 3.0mL volume. 10mg of poly(VBTAC)-g-CA nanofibers was added to 2.0mL DNA (20.0␮g/mL)containingbuffersolution(i.e.adsorptionmedium). Attheendoftheincubationtime, poly(VBTAC)-g-CAnanofibers wereseparatedquickly.TheDNAconcentrationwasdetermined bymeasuringtheabsorbanceat260nminaUV–vis spectropho-tometerusingastandardcalibrationcurve.Alloftheabsorbance values were measured at least three times and averaged. The amountofDNAadsorbedontothepoly(VBTAC)-g-CAnanofibers (␮gDNA/mgdrynanofibers)wascalculatedfromtheinitialand finalDNAconcentrationsintheclearphase.Anaverageresultof minimumthreereproducibledatawasconsideredallowingerrors in ±0.05␮g/mg poly(VBTAC)-g-CA nanofibers. In order to test thereusabilityofpoly(VBTAC)-g-CAnanofibersforDNA adsorp-tion,fivecyclesofadsorption/desorptionwerecarriedoutusing buffersolution(potassiumhydrogenphthalate/hydrochloricacid, pH=3.0).Aftereachadsorption/desorptioncycle,DNA concentra-tionwasdeterminedbyUV–visspectrophotometer.Inordertouse thepoly(VBTAC)-g-CAnanofibersforthenextexperiment,itwas washedwithbuffersolutionanddistilledwater,sequentially.

3. Resultsanddiscussion

3.1. Formationpoly(VBTAC)graftedCAnanofibers

An illustration of immobilization of RAFT agent onto CA nanofibersandsubsequentRAFTpolymerizationtoformcationic poly(VBTAC)brushesandDNAadsorptionisshowninScheme1. Thepoly(VBTAC)-g-CA nanofiberswere preparedvia three-step processinvolving;(i)electrospinning ofCAnanofibers,(ii) cou-plingofRAFTagenttotheelectrospunCAnanofibersurfacevia esterificationreactionof non-acetylated-OH groupsof CAwith CPAD,(iii)surfaceinitiatedRAFTpolymerizationofVBTAC.Fig.1 showstheFTIRspectraofuntreatedCAnanofibersandCPAD immo-bilizedCA(CPAD-CA)nanofibers.Thecharacteristicbandofthe 39.8%acetylCAwasobservedat1737,1220and1034cm−1dueto theC O,asymmetricandsymmetricC Ostretching,respectively (Celebioglu,Demirci,&Uyar,2014).ThebandareaoftheC Ogroup increasedwithesterificationreaction.ATR-FTIRspectrumof CA-CPADnanofibersalsoshowedabsorbancebandat2246cm−1forthe C Nand1040cm−1fortheC Sstretching.CPAD-CAnanofibers havehigherabsorbancethanCAnanofibers.Thecharacteristicband ofCAwasobservedat1739cm−1 duetotheC Ostretching.On theotherhand,thebandsofpoly(VBTAC)appearedat1481cm−1 forthescissor CH2 vibration,at1403cm−1 asymmetric CH3

deformationvibrationandat1610cm−1 C C stretchesofthe aromatic ring (Demirci & Caykara,2012). The spectrum of the poly(VBTAC)-g-CAnanofiberswascharacterizedbythepresence oftheabsorptionbandstypicalofthepurecomponents.,withthe intensityroughlyproportionaltograftingratio.

Thechemicalcompositionofthepoly(VBTAC)-g-CAnanofibers wasdeterminedbyXPS(Table1,Fig.2).ThecorelevelXPS spec-traofCPADoverlayerconsistofN1sandC1speakscurvefitted intothecomponentswithbindingenergiesatabout400.1eV(N C) forN1sand289.1eV(C O),287.9eV(O C O),286.0eV(C N), 285.4eV(C S),and285.0eV(C C/C H)forC1s(Table1,Fig.2).

(4)

S.Demircietal./CarbohydratePolymers113(2014)200–207 203

Table1

AtomicconcentrationandbindingenergiesgivenhighresolutionXPSfornanofibersa.

Nanofibers O1s N1s C1s S2p N+ C N O C O O C O C N C S C C/C H S C S C CA Energy(eV) 532.7 – – 289.1 287.6 – – 285.0 – – Conc.(%) 38.01 – 61.99 – CA-CPAD Energy(eV) 532.6 – 400.1b 289.1 287.9 286.0 285.4 285.0 162.5 161.4 Conc.(%) 31.83 1.16 64.45 5.56 Poly(VBTAC)-g-CA Energy(eV) 532.7 402.1 399.9 289.0 287.8 286.1 285.3 285.0 162.6 161.3 Conc.(%) 14.27 6.01 78.66 1.06

aBindingenergiesarecalibratedtoaliphaticcarbonat285.0eV. bBindingenergyattributabletotheC Nspecies.

TheimmobilizationofCPADontoCAnanofiberwasalsoconfirmed fromtheappearanceofaS2ppeakcurvefittedintotwo compo-nentswithbindingenergiesatabout162.5eV(C S)and161.4eV (C S).Overall,theATR-FTIRandXPSstudiesconfirmedthe suc-cessfulcouplingoftheRAFT agent(CPAD)onto electrospunCA nanofiberssurface.ThecorelevelXPSspectraofnanofibers con-sistofN1sandC1speakscurvefittedintothecomponentswith bindingenergiesatabout402.1eV(C N+)and399.9eV(C N)forN

1sand289.0eV(C O),287.8eV(O C O),286.1eV(C N),285.3eV (C S)and285.0eV(C C/C H)forC1s.

Fig.1. FTIRspectra of CAnanofibers,CA-CPAD nanofibers,poly(VBTAC)-g-CA nanofibersandpoly(VBTAC).

The static water contact angle of CPAD functionalized CA nanofiberwas62±3◦whichwaslowerthanthevalueof88±2◦ fortheCAnanofiberbeforetheimmobilization(Table2).Whenthe CAnanofibersweregraftedwithpoly(VBTAC),thestaticwater con-tactangleofthesurfacedecreasedsubstantiallytoabout39±4◦, consistentwiththehydrophilicnatureofpoly(VBTAC).

Fig. 3 shows the representative SEM images of the CA and poly(VBTAC)-g-CAnanofibers.TheSEMimagingshowedthatthe electrospun CA nanofibers were bead free and smooth mor-phology having average fiber diameter (AFD) of 810±260nm (Fig.3a).Itshouldbenotedthatsurfacemorphologiesandaverage

Fig. 2.XPS survey scan spectra of CA nanofibers, CA-CPAD nanofibers and poly(VBTAC)-g-CAnanofibers.

(5)

Fig.3.SEMimagesofCAnanofibers(a),poly(VBTAC)-g-CAnanofibers(b)andDNAadsorbedpoly(VBTAC)-g-CAnanofibers(c).

fiber diameter of poly(VBTAC)-g-CA nanofibers were different fromthe CA nanofibers.Thatis, thesmooth appearance of CA nanofiber surface was no longer present (Fig. 3b) due to the poly(VBTAC)grafting.Additionally,poly(VBTAC)-g-CAnanofibers wereslightly thicker having AFD of 1030±310nmwhen com-paredtopureCAnanofibersbecauseofthepoly(VBTAC)coating aswellaspossibleswellingofnanofibersduringgraftingprocess. Thesechangesinthesurfaceappearanceofthepoly(VBTAC)-g-CA nanofibersarethephysicalevidencesforthesuccessfulgrafting reaction.

3.2. AdsorptionofDNA

DNAmoleculesarelikelyimmobilized ontothecationic sur-faces by electrostatic interaction between negatively charged

Table2

Staticwatercontactangleandphotographsof5␮Lwaterdropletsfornanofibers.

Nanofibers Contactangle(◦) Image

CA 88±2

CA-CPAD 62±3

PVBTAC-g-CA 39±4

DNAandpositivelychargedpolymersurface.AdsorptionofDNA onto the CA and poly(VBTAC)-g-CA nanofibrous web was pro-videdfluorescence microscopy. Asit can beseen in Fig. 4,the redspotsindicatedthepresenceofDNAmolecules.The adsorp-tion kinetics of DNA was performed at 20◦C. The pristine CA nanofibrous web was used as a reference material. The result shown in Fig.5a indicatesthat there is nosignificanteffect of incubationtimeontheadsorptionofDNAontothe poly(VBTAC)-g-CA nanofibers. The adsorbedamount of DNA almost reaches a plateauafter 90min. This behavior can be explained due to the rapid and strong electrostatic attraction between cationic poly(VBTAC)-g-CAnanofibersandanionicDNAmolecules,andvery highsurfaceareatovolumeratioofnanofibrousweb,sothe equi-libriumconcentrationofadsorbedDNAis reachedveryquickly. The maximumDNA adsorption capacity was 2.4␮g/mgfor the pristineCAweband26.6␮g/mgfor thepoly(VBTAC)-g-CAweb. These resultsindicated that thegrafting of poly(VBTAC)onCA nanofibersprovidedasignificantincreaseintheDNAadsorption capacity.Fig.3cshowstheSEMimagesofthepoly(VBTAC)-g-CA nanofibers afterDNA adsorption in which the DNA adsorption onthe poly(VBTAC)-g-CA nanofiberswas observed microscopi-cally.

Theadsorptionisothermsrepresenttherelationshipbetween theamountadsorbedbyaunitweightofadsorbentandtheamount ofadsorbateremaininginthesolutionatequilibrium.Fig.5bshows thedependenceoftheadsorptionofDNAonthepoly(VBTAC)-g-CA nanofibrouswebontheequilibriumDNAconcentration.The ini-tialconcentrationofDNAintheadsorptionmediumwaschanged between10and100␮g/mL.TheLangmuirisothermmodelassumes amonolayeradsorptionontoasurfacecontainingafinite num-berofadsorptionsitesofuniformstrategiesofadsorptionwithno

(6)

S.Demircietal./CarbohydratePolymers113(2014)200–207 205

Fig.4. FluorescencemicroscopyimagesofCAnanofibers(a),poly(VBTAC)-g-CAnanofibers(b)andpoly(VBTAC)-g-CAnanofibersafterdesorptionprocedure(c).

transmigrationofadsorbateintheplaneofsurface,anditisgiven bythefollowingequation:

Ce qe = 1 qmKm+ Ce qm

whereCe(␮g/mL)istheequilibriumconcentrationofDNA

solu-tion, qe (␮g/mg) is the equilibrium amount of DNA adsorbed,

qm(␮g/mg)is themaximumamountofDNAadsorbedperunit

massofnanofiber, andKm (mL/mg)is aconstantrelated tothe

adsorption. Asillustrated in Fig.5b,a linearplot with correla-tioncoefficient(R2)valueof0.973wasobtainedfromLangmuir

isothermequationwhenplottingCe/qeagainstCewithaslopeand

interceptequalto1/qmand1/Kmqm,respectively.Kinetic

parame-terswerecalculatedas2.52×10−2mL/␮gforKmand23.51␮g/mg

forqm.Moreover,theLangmuirequationfitswellforDNA

immo-bilizationonthepoly(VBTAC)-g-CAwebundertheconcentration

(7)

range studied. Adsorption capacity of some solid surfaces was previouslyinvestigatedasdetailedelsewhere(Baseretal.,2011; Demirci et al., 2013; Rahman & Alaissari, 2011). Compared to solidsurfaces,poly(VBTAC)-g-CAnanofibrouswebshowedhigher adsorptioncapacity.

TheessentialfeatureoftheLangmuirisothermcanbeexpressed bymeansofadimensionlessconstantseparationfactoror equi-librium parameter (RL). RL is calculated using the following

equation: RL=1+1K

mC0

whereKmistheLangmuirconstantwhichindicatesthenatureof

adsorptionandtheshapeoftheisotherm,andC0referstotheinitial

DNAconcentration(␮g/mL).TheparameterRL>1,RL=1,0<RL<1,

RL=0indicatestheisothermshapeaccordingtounfavorable,linear,

favorableandirreversible,respectively(Demircietal.,2013;Kim, Barraza,&Velev,2009;Mallampati&Valiyaveettil,2012).TheRL

valuesofDNAadsorptiononpoly(VBTAC)-g-CAnanofiberswere giveninTableS1(Supplementarydata).TheRL valuesconfirmed

thattheadsorptionisfavorableunderconditionsusedinthisstudy. The reusability of poly(VBTAC)-g-CA nanofibrous web was investigatedbymeasuringtheadsorptioncapacityfortargetDNA ina cyclic manner.Theadsorption/desorption procedureswere repeatedfivetimestoverifythereusabilityoftheweb.Thecycles ofadsorption/desorptionprocessesareshowninFig.5c.Drastic decrease(approximately 11.5%)in theadsorption capacity was seenduringtheeachcycle,andthepoly(VBTAC)-g-CAnanofibers retainedDNA anuptake capacity of ∼46% afterfivecycles. Fig. S1(Supplementary data) shows the XPS survey spectra of the poly(VBTAC)-g-CAnanofibersafteradsorptionanddesorption pro-cedure.AscanbeseenfromFig.S1b(Supplementarydata),intensity of the P 2ppeak at 133eV decreased. However, unfortunately P 2p peak and fluorescence signal (Fig. 4c) of poly(VBTAC)-g-CAnanofibersdidnotdisappearcompletely.Ourpreviousstudy clearlydemonstratethatpoly(VBTAC)polymerbrushesarecationic behavioratdifferentpHs(Demirci&Caykara,2013).Ontheother hand,DNAisnegativelychargedduetothephosphategroupson itsbackbone,and withdecreasingpHthesenegativephosphate groupsbecomeprotonatedandDNAmoleculeturnslessnegative. Thisisduetoelectrostaticinteractionbetweenpoly(VBTAC)-g-CA nanofibersandlessnegativeDNAmolecules(pH=3.0)anditwas evidentthatourwashingproceduredidnotabletoremoveallthe adsorbedDNA.Becauseofthis,theadsorptioncapacityofDNAwas decreasedfrom23.51to12.64␮g/mgwithincreasingnumberof reuse.

4. Conclusions

In conclusion, cationic poly(VBTAC)-g-CA nanofibers were manufacturedviacombinationofelectrospinningandRAFT poly-merizationtechniqueswiththegoaloftheadsorptionofDNA.Our systematicstudiesbyusingtechniquessuchasATR-FTIRandXPS confirmedthesuccessfulgraftingofpoly(VBTAC)onelectrospun CAnanofibers.TheSEMimagingshowedthattheelectrospunCA nanofibers were bead free and smooth morphology. However, surfacemorphologiesandaveragefiberdiameterof poly(VBTAC)-g-CA nanofibers were different from the CA nanofibers. These changes in the surface appearance of the poly(VBTAC)-g-CA nanofibersarethephysicalevidencesforthesuccessfulgrafting reaction.Thestaticwatercontactangleofthenanofibersdecreased from88±2to39±4◦,consistentwiththehydrophilicnatureof poly(VBTAC).The DNA adsorption capacity was determined as 23.51␮g/mgfromtheLangmuirisothermforpoly(VBTAC)-g-CA nanofibrousweb. Wehave alsodemonstratedthereusabilityof thepoly(VBTAC)-g-CAwebbymeasuringtheadsorptioncapacity

fortargetDNAinacyclicmanner.Ourstudieshaveshownthat poly(VBTAC)-g-CAnanofiberspresentsaconvenientapproachfor DNA immobilization. The results reported in this article could open up new opportunities for fabricating surface functional-izedelectrospunnanofibers/nanowebsand theirapplicationsin biotechnologicaluses.

Acknowledgements

Dr T. Uyar acknowledges EU FP7-PEOPLE-2009-RG Marie Curie-IRG(NANOWEB,PIRG06-GA-2009-256428)andTheTurkish AcademyofSciences–OutstandingYoungScientistsAward Pro-gram(TUBA-GEBIP)forpartialfunding.A.Celebiogluacknowledges TUBITAK-BIDEBforthenationalPhDstudyscholarship.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/ j.carbpol.2014.06.086.

References

Agarwal,S.,Greiner,A.,&Wendorff,J.H.(2013).Functionalmaterialsby electro-spinningofpolymers.ProgressinPolymerScience,38(6),963–991.

Bai,L.,Zhang,L.,Cheng,Z.,&Zhu,X.(2012).Activatorsgeneratedbyelectron trans-ferforatomtransferradicalpolymerization:Recentadvancesincatalystand polymerchemistry.PolymerChemistry,3(10),2685–2697.

Baser, B., Demirel, G., & Caykara, T. (2011). DNA adsorption on poly(N,N-dimethylacrylamide)-graftedchitosanhydrogels. JournalofAppliedPolymer Science,120(3),1420–1425.

Bian,K.,&Cunningham,M.F.(2006).Surface-initiatednitroxide-mediatedradical polymerizationof2-(dimethylamino)ethylacrylateonpolymericmicrospheres. Polymer,47(16),5744–5753.

Braunecker,W.A.,&Matyjaszewski,K.(2007).Controlled/livingradical polymer-ization:Features,developments,andperspectives.ProgressinPolymerScience, 32(1),93–146.

Celebioglu,A.,Demirci,S.,&Uyar,T.(2014).Cyclodextrin-graftedelectrospun cellu-loseacetatenanofibersviaclickreactionforremovalofphenanthrene.Applied SurfaceScience,305,581–588.

Che,A.F.,Huang, X.J.,&Xu,Z.K.(2011).Polyacrylonitrile-basednanofibrous membranewithglycosylatedsurfaceforlectinaffinityadsorption.Journalof MembraneScience,366(1–2),272–277.

Chen,J.,Liu,M.,Chen,C.,Gong,H.,&Gao,C.(2011).Synthesisand characteriza-tionofsilicananoparticleswithwell-definedthermoresponsivepnipamviaa combinationofraftandclickchemistry.ACSAppliedMaterials&Interfaces,3(8), 3215–3223.

Chigome,S.,Darko,G.,&Torto,N.(2011).Electrospunnanofibersassorbentmaterial forsolidphaseextraction.Analyst,136(14),2879–2889.

Cimen,D.,&Caykara,T.(2012).BiofunctionaloligoN-isopropylacrylamidebrushes onsiliconwafersurface.JournalofMaterialsChemistry,22(26),13231–13238.

Coessen,V.,Pintauer,T.,&Matyjaszewski,K.(2001).Functionalpolymersbyatom transferradicalpolymerization.ProgressinPolymerScience,26(3),337–377.

Demirci, S., & Caykara, T. (2012). Controlled grafting of cationic poly[(ar-vinylbenzyl)trimethylammoniumchloride] onhydrogen-terminated silicon substratebysurface-initiatedRAFTpolymerization.ReactiveandFunctional Poly-mers,72(9),588–595.

Demirci,S.,&Caykara,T.(2013).RAFT-mediatedsynthesisofcationic poly[(ar-vinylbenzyl)trimethyl ammonium chloride] brushes for quantitative DNA immobilization.MaterialsScienceandEngineeringC,33(1),111–120.

Demirci,S.,Kinali-Demirci,S.,&Caykara,T.(2013).Stimuli-responsivediblock copolymer brushes viacombination of click chemistryand living radical polymerization.JournalofPolymerSciencePartA:PolymerChemistry,51(12), 2677–2685.

Dietrich,M.,Glassner,M.,Gruendling,T.,Schmid,C.,Falkenhagen,J.,& Barner-Kowollik,C.(2010).FacileconversionofRAFTpolymersintohydroxylfunctional polymers:AdetailedinvestigationofvariablemonomerandRAFTagent com-binations.PolymerChemistry,1(5),634–644.

Fu,G.D.,Xu,L.Q.,Yao,F.,Li,G.L.,&Kang,E.T.(2009).Smartnanofiberswitha pho-toresponsivesurfaceforcontrolledrelease.ACSAppliedMaterials&Interfaces, 1(11),2424–2427.

Fu,G.D.,Xu,L.Q.,Yao,F.,Zhang,K.,Wang,X.F.,Zhu,M.F.,etal.(2009).Smart nanofibersfromcombinedlivingradicalpolymerization,clickchemistry,and electrospinning.ACSAppliedMaterials&Interfaces,1(2),239–243.

Gurbuz,N., Demirci,S., Yavuz,S.,& Caykara,T.(2011). Synthesisofcationic N-[3-(dimethylamino)propyl]methacrylamide brushes on silicon wafer via surface-initiatedRAFTpolymerization.JournalofPolymerSciencePartA:Polymer Chemistry,49(2),423–431.

(8)

S.Demircietal./CarbohydratePolymers113(2014)200–207 207 Jiang,H.,&Xu,F.J.(2013).Biomolecule-functionalizedpolymerbrushes.Chemical

SocietyReviews,42(8),3394–3397.

Kampalanonwat, P., & Supaphol, P. (2010). Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Applied Materials & Interfaces, 2(12), 3619–3627.

Kayaci,F.,Ozgit-Akgun,C.,Biyikli,N.,&Uyar,T.(2013).Surface-decoratedZnO nanoparticlesandZnOnanocoatingonelectrospunpolymericnanofibersby atomiclayerdepositionforflexiblephotocatalyticnanofibrousmembranes.RSC Advances,3(19),6817–6820.

Kim,S.,Barraza,H.,&Velev,O.D.(2009).Intenseandselectivecolorationoffoams stabilizedwithfunctionalizedparticles.JournalofMaterialsChemistry,19(38), 7043–7049.

Lu,P.,&Hsieh,Y.-L.(2009).Lipaseboundcellulosenanofibrousmembranevia CibacronBlue F3GAaffinityligand.JournalofMembraneScience, 330(1–2), 288–296.

Lu,P.,&Hsieh,Y.-L.(2010).Multiwalledcarbonnanotube(MWCNT)reinforced cellulosefibersby electrospinning.ACSAppliedMaterials&Interfaces,2(8), 2413–2420.

Ma,Z.,Kotaki,M.,&Ramakrishna,S.(2005).Electrospuncellulosenanofiberas affinitymembrane.JournalofMembraneScience,265(1–2),115–127.

Mahanta,N.,&Valiyaveettil,S.(2011).Surfacemodifiedelectrospunpoly(vinyl alcohol)membranesforextractingnanoparticlesfromwater.Nanoscale,3(11), 4625–4631.

Mallampati,R.,&Valiyaveettil,S.(2012).Applicationoftomatopeelasan effi-cientadsorbentforwaterpurification-alternativebiotechnology?RSCAdvances, 2(26),9914–9920.

Matyjaszewski,K.(2012).Generalconceptandhistoryoflivingradical polymeriza-tion.InK.Matyjaszewski,&T.P.Davis(Eds.),Handbookofradicalpolymerization (pp.361–406).Hoboken:JohnWiley&Sons.

Mayadunne,R.T.A.,Rizzardo,E.,Chiefari,J.,Chong,Y.K.,Moad,G.,&Thang,S.H. (1999).Livingradicalpolymerizationwithreversibleaddition–fragmentation chaintransfer(RAFTpolymerization)usingdithiocarbamatesaschaintransfer agents.Macromolecules,32(21),6977–6980.

Moad,G.,Chen,M.,Haussler,M.,Postma,A.,Rizzardo,E.,&Thang,S.H.(2010).

FunctionalpolymersforoptoelectronicapplicationsbyRAFTpolymerization. PolymerChemistry,2(3),492–519.

Muller,D.,Rambo,C.R.,Porto,L.M.,Schreiner,W.H.,&Barra,G.M.O.(2013).

Structureandpropertiesofpolypyrrole/bacterialcellulosenanocomposites. Car-bohydratePolymers,94(1),655–662.

Percec,V.,Guliashvili,T.,Lasislaw,J.S.,Wistrand,A.,Stjerndahl,A.,Sienkowska,M.J., etal.,&Sahoo,S.(2006).Ultrafastsynthesisofultrahighmolarmasspolymersby metal-catalyzedlivingradicalpolymerizationofacrylates,methacrylates,and vinylchloridemediatedbySETat25◦C.JournaloftheAmericanChemicalSociety,

128(43),14156–14165.

Pyun,J.,&Matyjaszewski,K.(2001).Synthesisofnanocompositeorganic/inorganic hybridmaterialsusingcontrolled/livingradicalpolymerization.Chemistryof Materials,13(10),3436–3448.

Rahman,Md.M.,&Alaissari,A.(2011).Temperatureandmagneticdualresponsive microparticlesforDNAseparation.SeparationandPurificationTechnology,81(3), 286–294.

Sahay,R.,Kumar,P.S.,Sridhar,R.,Sundaramurthy,J.,Venugopal,J.,Mhaisalkar, S.G.,etal.(2012).Electrospuncompositenanofibersandtheirmultifaceted applications.JournalofMaterialsChemistry,22(26),12953–12971.

Smith,D.D.,Holley,A.C.,&McCormick,C.L.(2011).RAFT-synthesizedcopolymers andconjugatesdesignedfortherapeuticdeliveryofsiRNA.PolymerChemistry, 2(7),1428–1441.

Tao, Y., Lin, Y., Huang, Z., Ren, J., & Qu, X. (2012). DNA-templated silver nanoclusters–grapheneoxidenanohybridmaterials:Aplatformforlabel-free andsensitivefluorescenceturn-ondetectionofmultiplenucleicacidtargets. Analyst,137(11),2588–2592.

Turan,E.,Demirci,S.,&Caykara,T.(2010).Synthesisofthermoresponsive poly(N-isopropylacrylamide)brushonsiliconwafersurfaceviaatomtransferradical polymerization.ThinSolidFilms,518(21),5950–5954.

Uyar, T., Havelund, R., Hacaloglu,J., Besenbacher, F., & Kingshott, P. (2010).

Functionalelectrospunpolystyrenenanofibersincorporating␣-,␤-,and ␥-cyclodextrins:Comparisonofmolecularfilterperformance.ACSNano,4(9), 5121–5130.

Wan,Y.,Xu,H.,Su,Y.,Zhu,X.,Song,S.,&Fan,C.(2013).Asurface-initiated enzy-maticpolymerizationstrategyforelectrochemicalDNAsensors.Biosensorsand Bioelectronics,41,526–531.

Wang,S.,Zheng,F.,Huang,Y.,Fang,Y.,Shen,M.,Zhu,M.,etal.(2012).Encapsulation ofamoxicillinwithinlaponite-dopedpoly(lactic-co-glycolicacid)nanofibers: Preparation,characterization,andantibacterialactivity.ACSAppliedMaterials& Interfaces,4(11),6393–6401.

Wang,X.,Min,M.,Liu,Z.,Yang,Y.,Zhou,Z.,Zhu,M.,etal.(2011).Poly(ethyleneimine) nanofibrousaffinitymembranefabricatedviaonestepwet-electrospinning frompoly(vinylalcohol)-dopedpoly(ethyleneimine)solutionsystemandits application.JournalofMembraneScience,379(1–2),191–200.

Wendorff,J.H.,Agarwal,S.,&Greiner,A.(2012).Electrospinning:materials,processing, andapplications.Germany:JohnWiley&Sons.

Yao,F.,Xu,L.,Lin,B.,&Fu,G.D.(2010).Preparationandapplicationsoffunctional nanofibersbasedonthecombinationofelectrospinning,controlledradical poly-merizationand‘ClickChemistry’.Nanoscale,2(8),1348–1357.

Zhang,H.,Nie,H.,Yu,D.,Wu,C.,Zhang,Y.,White,C.J.B.,etal.(2010).Surface modificationofelectrospunpolyacrylonitrilenanofibertowardsdevelopingan affinitymembraneforbromelainadsorption.Desalination,256,141–147.

Zhu,J.,Yang,J.,&Sun,G.(2011).CibacronBlueF3GAfunctionalizedpoly(vinyl alcohol-co-ethylene) (PVA-co-PE)nanofibrousmembranesashigh efficient affinityadsorptionmaterials.JournalofMembraneScience,385–386,269–276.

Referanslar

Benzer Belgeler

Büyülü gerçekçilik fenomeninin tüm yönlerini kapsayan bir tanım orta- ya koyma çabası, literatürden örneklerle daha da genişletilebilecek ve ayrıntılan- dırılabilecek

This note is concerned with the problem of studying the degenerations of fibered surfaces via the degenerations of the base curve and the fibers. Lemma 3 and the discussion

Since a general expression of the Linnik densities is not easily attainable, such a mixture representation which facilitates generation of Linnik's densities seems to be of

Figure 12: X-ray radiographs showing subcritical damage development in bolt joints of the [90˚ 2 /0˚ 2 ] s laminates at 80, 90 and 95% of the average ultimate load (100%):

Buna bağlı olarak medyanın futbol haber ve programlarının diğer haberlere göre daha fazla yapmasının altında insanların bu branşa olan yoğun ilgisinden kaynaklandığı

güne göre ultrases hız değişimi değer analizi 111 Çizelge 5.7 Kimyasal katkılı harçların eskitme süreçleri

Elde edilen polimerik linoleik yağ asidi (PLina) halka açılma polimerizasyonuyla kalay (II) 2-etil hekzanoat katalizörü varlığında polimerik linoleik yağ asidinin

Yükseköğretim sürecinde kanıta dayalı eğitim, öğrencinin öğrenmesini sağlamak için eğitim sürecinin tüm öğelerine ilişkin (eğitimci, öğrenci, bölüm,