• Sonuç bulunamadı

Fabrication of Langmuir-Blodgett thin films of calix[4]arenes and their gas sensing properties: Investigation of upper rim para substituent effect

N/A
N/A
Protected

Academic year: 2021

Share "Fabrication of Langmuir-Blodgett thin films of calix[4]arenes and their gas sensing properties: Investigation of upper rim para substituent effect"

Copied!
10
0
0

Yükleniyor.... (view fulltext now)

Tam metin

(1)

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

B:

Chemical

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m /l o c a t e / s n b

Fabrication

of

Langmuir–Blodgett

thin

films

of

calix[4]arenes

and

their

gas

sensing

properties:

Investigation

of

upper

rim

para

substituent

effect

Mustafa

Ozmen

a,∗

,

Zikriye

Ozbek

b

,

Sumeyra

Buyukcelebi

a

,

Mevlut

Bayrakci

c

,

Seref

Ertul

a

,

Mustafa

Ersoz

a

,

Rifat

Capan

d,1

aDepartmentofChemistry,UniversityofSelcuk,Konya42075,Turkey

bDepartmentofBioengineering,UniversityofCanakkaleOnsekizMart,anakkale17100,Turkey cUlukislaVocationalSchool,UniversityofNigde,Nigde51100,Turkey

dDepartmentofPhysics,UniversityofBalikesir,Balikesir10145,Turkey

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received5April2013

Receivedinrevisedform1September2013 Accepted3September2013

Available online 12 September 2013 Keywords:

Calix[4]arene Vaporsensing Langmuir–Blodgett Quartzcrystalmicrobalance

a

b

s

t

r

a

c

t

ThisstudyreportsthecharacterizationandorganicvaporsensingpropertiesofLangmuir–Blodgett(LB)

thinfilmsofcalix[4]arenederivativesthatcontaindifferentnumbersoftertbutylgroupsontheirupper

rims.Surfacepressure–areaisothermsshowthatverystablemonolayersareformedattheair–water

interface.TheLBfilmsaredepositedontodifferentsubstrates,whichallowedustocharacterizethe

filmsbycontactanglemeasurements,quartzcrystalmicrobalance(QCM),scanningelectronmicroscopy

(SEM),andatomicforcemicroscopy(AFM).Theresultsindicatethatgoodquality,uniformLBfilmscan

bepreparedwithtransferratiosofover0.95.Meanwhile,ourQCMresultsshowthatthedeposition

ofLBfilmlayersdependsheavilyonthenumberofp-tert-butylgroupsandcalix[4]arenewithfour

p-tert-butylgroupsyieldsthehighestslopewithamassvalueof1145ngperlayer.Furthermore,ourAFM

andSEMstudiesrevealadensesurfacemorphologyforallpreparedLBfilms.Thekineticresponseof

calix[4]arenescontainingp-tert-butylgroupsandwithoutp-tert-butylgroupsasanLBfilmtochloroform,

benzene,toluene,andethanolvaporswereinvestigatedasafunctionoftime.Afterattachingtert-butyl

groupsontothecalix[4]arenestructure,theresponseofLBfilmtochloroformvaporincreased.LBfilms

ofcompounds1–4yieldaresponsetoallvaporsandmoreoftenselectchloroformwithalarger,faster,

andmorereproducibleresponse.Wethusconcludethatthesecalix[4]arenescouldbeappliedtoresearch

concerningvaporsensingdevicesoperatingatroomtemperature.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

ItiswellknownthatLangmuir–Blodgett(LB)thinfilm tech-niquemakesitpossibletoprepareorganic,functional,ultrathin filmswithacontrolledthicknessatamolecularlevelandwith dif-ferentmolecularorientations[1].Theimportanceof calixarenes issimilarlywellknownandhasbeensincethepioneering stud-iesofGutsche[2,3].Inshort,calixarenesremainattractivetohost moleculesandcanbeeasilyfunctionalizedintosuitablebinding sitesfor target guest species [4]. To briefly review, calixarenes arecyclicoligomersmadeofseveralphenolicunitsboundedwith methylenebridges[5,6]andareregardedasthethirdgenerationof hostmoleculesbecauseoftheyareabletobeincludedbycations,

∗ Correspondingauthor.Tel.:+903322233893;fax:+903322412499. E-mailaddresses:musozmen@gmail.com(M.Ozmen),rcapan@balikesir.edu.tr

(R.Capan).

1 Tel.:+902666121000;fax:+902666121215.

anions,andneutralmolecules[7–11].Calix[4]arenescanbe eas-ilyfunctionalizedbothatthephenolic–OHgroups(ofthelower rim)and, afterpartialremovalof tert-butylgroups, atthepara positionsofthephenolrings(oftheupperrim)[12,13].Thevast majorityofthesemodifiedcalixarenesexistinconicalformations, eachwithacavitysuitableforreceivingdifferentionicand neu-tralspecies[14].Calixarenesareappliedinenzymemimetics,ion sensitiveelectrodesorsensors,selectivemembranes,non-linear optics,andinhigh-performanceliquidchromatographystationary phases.Applicationsofcalix[n]arenesmacrocyclichostcompounds inmaterialscienceshavebecomewidespreadandincludemass [15],ion[16]andoptical[17]sensors,non-linearoptics,molecular tectons[18]incrystal engineering,andLBfilmsforgas separa-tion[19].Becauseofthestructuralcharacteristicsandstabilityof calixarene,theLBtechnique[20]hasfrequentlybeenusedin cal-ixarenestudies.Functionalizedamphiphiliccalixareneshavebeen preparedsothattheirmonolayers,LBfilms,andself-assemblyfilms maybefurtherexamined[21].ThisisduetothefactthattheLB thinfilmtechniqueisa usefulwayofformingsequentiallayers

0925-4005/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

M.Ozmenetal./SensorsandActuatorsB190 (2014) 502–511 503

ofultrathinorganicfilms[22]andcanpreciselycontrolthe thick-nessand orderofa filmatthemolecularscale[23].Calixarene andtheirderivativescanbeusedasspecificligandsfor analyti-calchemistry,sensortechniques,medicaldiagnostics,andduring materialsynthesis[24].Differenttypesofcalixarenesensorshave beenwidelyreportedintheliterature.Opticalsensorsbasedon cal-ixareneshavebeendesignedtodetectvariousmetalions[24–30], gaseousammonia[31,32]andorganicamines[33].Piezoelectric quartzcrystalcalixarenesensorshavebeendesignedtomonitor volatileorganicpollutantsin thegasphase,aswellasin aque-oussolution[34–37].Additionally,thecalix[n]arenecavitieshave proventoworkwellassensitivematerialsinbulklayersnotonlyfor thedetectionofvolatileorganiccompounds,suchashalogenated andaromatichydrocarbons[38],aswellasinmonolayers [39], butalsofortheelectrochemicaldetectionofions[40]. Develop-mentsingassensingtechnologyhavebecomeaseriousaspectto considerbecausetheneedtocontrolairqualityhasbecomean envi-ronmentallyimportant issue.Improvingtheperformanceofthe gassensingdevicesmostlydependsonthesensitivityand selec-tivityofthesensingmaterials.Regardinggassensing,theuseof organicmaterialshasincreasedbecauseoftheirsimple,lowcost synthesis,aswellastheirwiderangeofphysicalandchemical prop-ertiesthatcanbetailoredbychangingtheircompositions.Recently, calix[n]arenesand theirderivativeshavebeenextensively stud-iedfortheirpossibleapplicationtosensorsandelectronicdevices, fortheycanbehighlyselectivemolecularreceptorsforvarious metalionsandorganiccompounds,whichallowstheirusein var-iousseparationandanalysisapplications[41,42].Thehost–guest interactionisoftena dynamicprocess inwhich adsorptionand desorptionofvapormoleculesoccurswhenasensingelementis exposed tovapors. It is wellknown thatwhen a gas molecule isadsorbedontothesurfaceofanorganicmaterial,the physico-chemicalproperties,includingthestructural,electrical,andoptical properties,ofthissensingmaterialcanchange.Itisimportantto understandthemechanismofinteractionbetweenthesensing ele-mentandtheorganicvaporsforthedesignandsynthesisofnew moleculestodetectandidentifyorganicvaporsatlow concentra-tion.Thechiefdifficultyingasidentificationcontinuestobethe fabricationofstablesensorswithahighsensitivityandselectivity towardthesubstancetobedetected.Severalmeasurement tech-niques,suchassurfaceplasmonresonance(SPR),UV–visandquartz crystalmicrobalance(QCM),areusedtodetectandmonitorvarious gasesbecauseoftheirarrayofpotentialapplications.One exam-pleisenvironmentalmonitoring,suchasdetectingthepresence andconcentrationoftoxicorotherwisedangerousgasesthatare releasedthroughspillageorleakage[43].

Inthisstudy,thepreparationofLBfilmsofcalixarenederivatives containfour(1),three(2),two(3)andno(4)p-tert-butylgroupson thecalix[4]areneupperrims(Fig.1)wasevaluatedattheair/water (A/W)interfaceusingisothermgraphs.Investigationsofthe com-positionandstructuralorganizationoffilmsonglasssubstratewere performedbycontactangle(CA),atomicforcemicroscopy(AFM) andscanningelectronmicroscopy(SEM).AQCMsystemwas imple-mentedtodemonstratethethinfilmdepositiononaquartzcrystal substrate.Thismethodwasalsoemployedtoinvestigatethepara substituenteffectsofcalix[4]arenecompounds(1–4)ofLBfilmson organicvaporssuchasbenzene,chloroform,toluene,andethanol.

2. Experimentaldetails 2.1. Materials

Highpuritywater(18.2Mcm)thathadbeenpassedthrough a Millipore Milli-Q Plus water purification system was used to preparewater subphase mixture.The glass substrateswere

purchasedfromFisherScientific.Chloroform(extrapure,Merck) wasemployedasspreadingsolvent.Benzene,tolueneandethanol were supplied from Aldrich. All materials were used without further purification. Starting calixarene compounds 5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrahydroxycalix[4]arene (1), 5,11,17-tri-tert-butyl-25,26,27,28-tetrahydroxycalix[4]arene (2), 5,17-di-tert-butyl-25,26,27,28-tetrahydroxycalix[4]arene (3), 25,26,27,28-tetrahydroxycalix[4]arene (4) weresynthesized accordingtopreviouslypublishedprocedure[6,9,11].

2.2. Synthesisofcalix[4]arenecompounds

Althoughcompound 1iscommerciallyavailable,we synthe-sized our own in our laboratory to obtain a sample of higher purity.Thep-tert-butylcalix[4]arenewasdeterbutylatedbyusing AlCl3 and phenolintoluene toproducecompound4. Toobtain

selectivedeterbutylatedcalix[4]arenederivatives2and3,firstly compound1wasinteractedwithbenzoylchlorideinthepresence ofN-methylimidazoleintolueneforcompound2.Theproductwas thendeterbutylatedwithAlCl3 intolueneatroomtemperature.

Finally,thethreeesterfunctionswerehydrolyzedwithNaOHina water/ethanolmedium.Theresultingcompound2wasobtained ina90%yieldasawhitesolid[44].Compound2waseasily syn-thesizedfromcompound1andbenzoylchlorideusingMeCNas solventandK2CO3asbase.ThesubsequentFriedel–Crafts

deter-butylationstepwascarriedoutintolueneusingAlCl3,andthetwo

benzoategroupswerethenremovedinalcoholicNaOHatreflux. Thecompound4wasthusobtainedinanalmostquantitativeyield asawhite solid[45].Allofthestructureshavebeen character-izedthrough1HNMR,FTIR(ATR),andelementalanalyses.Inthe

solution,allofthestructuresappearedinconicalconformationas provenbytheappearanceofArCH2Ar,whichdisplaysatypicalAB

typeprotonsignalat3.20–4.20ppm(J=13.1–13.3Hz). 2.3. DepositionofLBfilms

ANIMA622alternateLBtroughwithautomatedsurface bal-ancewasusedtoinvestigatethebehaviorofthemoleculesatA/W andfabricateLBfilmmultilayerontoglasssubstrates.Beforeeach experiment,barriersandtheTeflontroughoftheLBfilmsystem wererinsedwithultrapurewaterafterbeingcleanedwithethanol. ThesurfacepressurewasmeasuredbyusingaWilhelmybalance, equippedwithastripofchromatographypapersuspendingatthe A/Winterface.Thetemperatureofthewatersubphasewas con-trolledusinga LaudaEcolineRE204modeltemperaturecontrol unitandallexperimentaldataweretakenat20◦C.Calix[4]arene moleculesweredissolvedinchloroformwithaconcentrationof 1mgmL−1 and weresubsequently spread onto ultrapurewater subphaseatpH6.SolutionswerespreadbyaHamiltonmicroliter syringeontothesubphasesolutionbydistributingthedropletsover theentiretroughareaat20◦C.Atimeperiodof15minwasallowed forthesolventtoevaporatebeforetheareaenclosedbythe barri-erswasreduced.Thepressure–area(–A)isothermgraphgiven inFig.2wasdeterminedwiththeaccuracyof0.1mNm−1.(–A) graphsofcalix[4]arenemoleculeswererecordedasafunctionof surfaceareausingthecompressionspeedofbarriersatavalueof 172mm2min−1.

AsshowninFig.2,anextrapolationofthelinearpartproduces thevaluesofareapermoleculeinthecondensedstate(1.71nm2,

1.21nm2,1.19nm2 and 0.75nm2 forcompounds1, 2,3, and4,

respectively).Itisclearthattheareapermoleculedependsonthe numberofp-tert-butylgroupsormolecularweight.Itshouldbe notedthat theexpectedapproximateareapermoleculefor the calix[n]resorcinareneunit is in therange 1–2nm2 reportedfor

similarlysizedcalixareneswithdifferentsidechains[46–48].The areapermoleculevaluesfoundinthis workcloselyagree with

(3)

Fig.1. Chemicalstructuresofcalix[4]arenemoleculesusedforLangmuir–Blodgettfilms.(i)Benzylchloride,N-methylimidazole,AlCl3,NaOH;(ii)Benzylchloride,K2CO3,

AlCl3,NaOH;(iii)AlCl3,phenol,toluene,rt,1h.

thereportedvaluesof1.16nm2 [49],1.1–1.6nm2 [50],1.02nm2 [51].Areapermoleculevaluesof1.1nm2and0.75nm2arefound

fortwocalixmolecules.Thevalueof1.1nm2forcalix1molecule

suggeststhatamonolayerisformedatA/Winterface.The corre-spondingvalueforcalix2is0.75nm2,whichsuggeststhat this

calix[4]resorcinareneaggregates in the spreading solution to a greaterextentthanthatofcalix1[52].

Monolayersofcalix[4]arenemoleculesatthewater’ssurface werefound tobestable. Surface pressures of 20mNm−1 were selectedforLBfilm depositionontheglasssubstratesfor QCM measurements.Y-typeLBdepositionmodeandaverticaldipping procedurewasperformedattheselectedsurfacepressurewitha speedof10mmmin−1 forboththedownandupstrokes.LBfilm samplesweredriedfor5minaftereachupstroke.

ThedepositionefficiencyoftheLBfilmsisdenotedbythe trans-ferratio,whichistheratiooftheareaofthemonolayerremoved fromtheair–waterinterfaceduringdepositiontotheareaof sub-stratetobedeposited.isgivenby:

= AL

AS (1)

whereAListhedecreaseintheareaoccupiedbythemonolayeron

thewatersurface,whileASisthecoatedareaofthesubstrate.Using

Eq.(1),isfoundtobe0.95.

2.4. QCMmeasurements

Ablockdiagram ofourhomemadeQCM measurement sys-temisshowninFig.3.AthinlyATcutquartzcrystalsandwiched betweentwo electrodes in an overlapping keyhole design was usedforQCMmeasurements.TheseQCMcrystalswithanominal resonancefrequencyof3.5MHzwerecommercializedfromGTE SYLVANIAcompany.Allmeasurementsweretakenatroom tem-perature(20◦C)usinganoscillatingcircuitthatwedesigned.The quartzcrystalwasinsertedintotheelectroniccontrolunit,andthe frequencyofoscillationwasmonitoredasafunctionoftimeusing dedicatedsoftware.Thevaluesoffrequencychanges,which indi-catethedegreeofresponse,aremeasuredwithanaccuracyof1Hz. Aftereachdepositioncycle,theLBfilmsamplewasdriedforhalf anhourandthemasschangewasmonitoredusingthiscomputer controlledQCMmeasurementsystem.Thissystemwasusedfor

(4)

M.Ozmenetal./SensorsandActuatorsB190 (2014) 502–511 505

Fig.2.–Aisothermgraphofallcalix[4]areneLBfilms.(Forinterpretationofthe referencestocolorinthisfigurelegend,thereaderisreferredtothewebversionof thisarticle.)

theconfirmationofthereproducibilityofLBfilmmultilayersusing therelationshipbetweentheQCMfrequencychangesagainstthe depositedmass,whichshoulddependonthenumberoflayersin theLBfilm.

Aspecialgascellwasconstructedtostudythekineticresponse ofcalixLBfilmsonexposuretoorganicvaporsbymeasuringthe frequencychanges.Thesemeasurementswereperformedwitha syringe.ThevariationoftheQCMfrequencywasmonitoredasa functionoftimewhenthesamplewasperiodicallyexposedtothe organicvaporsforatleast2minandwasthenallowedtorecover aftertheinjectionofdryair.Thisprocedurewascarriedoutduring severalcyclestoobservethereproducibilityoftheLBfilmsensing element.

Allorganicvapor measurementswere taken in dry air con-dition in a small gas cell which could eliminate the effect of watervaporontheresponsepropertiesofcalix[4]areneLBfilms. In the literaturecalix[4]arene molecules are used to studythe

watervaporeffectasahumiditysensorbecausetheyare macro-cyclicmoleculesthattheycanbeeasilyfunctionalizefromtheir upperandlowerrims.Humiditysensingpropertiesofcalix[4]arene filmsincludesbothcarboxylateandsulphonategroups are sen-sitivetowatervapormolecules.Thiswatersolublecalix[4]arene filmswelledduetowateruptakeandcanbeusedasahumidity sensor[53].Anotherstudywascarriedoutforhumiditysensing behaviorusingthecalix[4]areneand 25,26,27-tribenzoyloxy-28-hydroxycalix[4]arene(THBC)thinfilms[54].Theresultssuggested that the–OH groups areprotected bybeingburied in the cav-ities ofthemolecules.Thismayexplain whythecalix[4]arenes werehighlyhydrophobic,andtheinteractionbetweenwaterand calix[4]arenewasweak.Therefore,THBCthinfilmwasmore sensi-tivetohumiditythanwascalix[4]arene.Inourstudycalix[4]arene derivativeshavenotcarboxylateandsulphonategroupswhichare sensitivetowatermolecules.Ontheotherhand,ourwetting mea-surementresultsindicatedthatourcalix[4]arenemoleculeshave morehydrophobicbehavior(around70◦)thanhydrophilic behav-ior.Asaresultofthesewebelievedthatthewatervaporeffectin ourexperimentalconditionsisminimizedandcanbenegligible. Thereforetheeffectofwatervaporontheresponsepropertiesis notmeasuredorstudiedinthiswork.

3. Resultsanddiscussion 3.1. Contactangleresults

Wemeasuredthecontactangleasanindirectconfirmationof thecoatingofthemoleculesontheglasssurface.Thecontactangle is verysensitivequantitativeindicatorof thewettabilityof the calix[4]arenefilms.Thewaterdropcontactangleonbareglass sur-facedependssignificantlyonthesurfacepretreatmentandcanvary between3◦ and15◦.Forourglasssurfaces,theequilibrium con-tactangleofMilli-Qwateroncleanedandactivatedglasssurface wasmeasuredtobe3.2◦±0.9◦,whiletheequilibriumcontactangle fortheglasscoatedwiththecalix[4]arenescontainingtetrabutyl, tributyl,anddibutylandwithoutbutylgroupswere83.7◦±2.5◦, 75.3◦±0.6◦,71.4◦±2.1◦and67.0◦±1.5◦,respectively.Thecontact anglechangesmarginallyasthecalix[4]arenecoatedsurfacesturn

(5)

Fig.4. AFM(leftside)andSEM(rightside)imagesofLangmuir–Blodgettfilmssubstrates:(a)and(f)bareglasssurface,(b)and(g)calix[4]arenecompound1,(c)and(h) calix[4]arenecompound2,(d)and(i)calix[4]arenecompound3,(e)and(j)calix[4]arenecompound4.(Forinterpretationofthereferencestocolorinthisfigurelegend,the readerisreferredtothewebversionofthisarticle.)

(6)

M.Ozmenetal./SensorsandActuatorsB190 (2014) 502–511 507

morehydrophilicduetothedecreasingtertiarygroups(see Sup-plementarydataformoreinformation).

3.2. AFMandSEManalysis

Fig.4presents thetopographicimagesof thesurfacesofan activeglasssurfaceandtheglasssurfacecoatedwithcalix[4]arene molecules.TheAFMimageoftheactiveglasssurface(Fig.4a) con-sistsofgrainystructuresincertainareas;otherwise,itisflatwith anarearoughnessof2.00nmandaroot-mean-square(rms) rough-nessof2.95nmona5×5␮mscale.Fig.4(b)–(e)showsthesurface topographiesofthecalix[4]arenemultilayerswithdecreasing ter-tiaryalkylgroupslocatedonthelowerrimontotheglasssurface, whicharesignificantlydifferentfromthetopographyinFig.4(a). This result suggests that, the formation of calix[4]arene films changedthetopographyoftheglasssurface.Theiraverage rough-nessandrootmeansquarevaluesare13.02nm,16.59nm;4.53nm, 6.11nm;3.24nm,4.09nmand2.38nm,3.05nmforLBfilmsof com-pound1,compound2,compound3andcompound4,respectively. Itcanbeseenthatthecalix[4]arenefilmsontheglasssurfaceare uniform,dense,andhomogeneouswithsomesurfaceaggregates.

TheSEMimageoftheclean glasssubstrateshows aflatand roughsurface(Fig.4f).TheSEMimageofcalix[4]areneLBfilm con-tainsfourtertiaryalkylgroups,showssomeglobularunitswithfew aggregates(Fig.4g).TheSEMimageofcalix[4]areneLBfilm con-tainsthreetertiaryalkylgroups,showsadenseform,andresembles flower-likebodies(Fig.4h).TheSEMimageofcalix[4]areneLBfilm containstwotertiarygroupsshowingaclusterformationandnot socompactstructuredfilm(Fig.4i).Fig.4jshowsthatcalix[4]arene LBfilmcontainsnotertiarygroupsaccumulatedcluster-likebodies aswellasmorecompact,homogeneousglobularunits.

3.3. QCMmeasurements

QCMmeasurementtechniqueiswidelyappliedtomonitorthe depositionqualityofthinfilmsonaquartzcrystalsubstratebecause theresonantfrequency,f,isextremelysensitivetoasmallmass changegivenby[55] f = −2f 2 0m 1q/21/2A (2) wheref0istheinitialfrequencyofthecrystal(Hz),misthemass

change(g),Aisthepiezo-electricallyactivearea(0.785cm2), qis

thedensityofquartz(2.648gcm−3),andqistheshearmodulus

ofquartz(2.947×1011gcm−1s−2).

TheQCMmeasurementscanconfirmthereproducibilityofLB filmmultilayerstransferusingtherelationshipbetweentheQCM frequencychangesagainstthedepositedmass.ForanLBfilm,f shouldbedirectlyrelatedtothelayernumberandthechangein resonantfrequencygivenby:

f =



− 2fo2m 1q/21/2A



N (3)

whereNisthenumberoflayersand,misthemassperdeposited layer.WhenEq.(3)isrearranged,themasschangecanbedescribed as: m=−f 1/2 q 1/2A 2f2 0N (4) ifthenumericalvaluesinEq.(4)arearrangedas

m=−f(2.648)1/2(2.947×10

11)1/2(0.785)

2(3582400)2N (5)

Fig.5.Frequencyshiftasanumberoflayers.(Forinterpretationofthereferencesto colorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Finally,thechangeinresonantfrequencyforourLBfilmsisgiven by m=27×10−8



f N



(6) This equation clearly indicates that a linear relationship betweenthemassofthenumberoflayersandthechangein reso-nantfrequencyforLBfilmsconfirmstheuniformtransferprocess oftheLBfilm.

Fig.5depictsthetransferofcalix[4]areneLBfilmsonaquartz crystal.Asystematicchangeinthefrequencywithanincreaseinthe numberofmonolayerisclearlyobserved.Thechangeinfrequency asafunctionofthenumberofmonolayeriscloselyassociatedwith theLBlayermasschange.Furthermore,theprocesswasshownto bereproducible.Thisisalineardependencechangethatrevealsthe uniformtransferofcalix[4]areneLBfilmsandthissuggestingthat theequalmassperunitareaisdepositedontothequartzcrystal duringthetransferofLBfilmlayers.

Thefrequencyshiftperlayer(f/N)ofcalix[4]areneLBfilms aredeterminedfromtheslopeshowninFig.5.f/Nandthemass depositedontheactiveareaofthequartzcrystalarepresentedin Table1.Similarresultsindicatethattheincreasingsurfacepressure increasestheamountofdepositedmass[56].

AsreportedinTable1,thedepositionofLBfilmlayersdepends heavilyonthenumberofp-tert-butylgroups.Thehighestslopeis givenbycompound3,whichcontainstwotert-butylgroups.The secondhighestslopeistakenfromcompound1withfourtert-butyl groups.Thereisnotanapparentrelationshipbetweenthe molec-ularweightofthemoleculesandthefrequencyshiftduetothe firstlayer.Thisresultcouldderivefromadifferentmacromolecular aggregationthatdependsontheinterplayamongtheconjugated molecules,thesolvent,andthesubstratesurface[57].

It is important tounderstand themechanism of interaction betweenthesensingelementandtheorganicvaporsforthedesign and synthesis of newmolecules to detectand identify organic Table1

FrequencyshiftperlayerofQCMresultsanddepositedmassvalues.

LBfilm f/N(Hzlayer−1) m(ng)

Compound1 29.44 795

Compound2 21.5 581

Compound3 42.41 1145

(7)

Fig.6. TheresponseofchloroformvaporstoallLBfilms.(Forinterpretationofthe referencestocolorinthisfigurelegend,thereaderisreferredtothewebversionof thisarticle.)

vapors. The host–guest interaction is often a dynamic process

whereadsorptionanddesorptionof vapormolecules willoccur

whenasensingelementisexposedtovapors.Itiswidelyknown

thatwhenagasmoleculeisadsorbedontothesurfaceofanorganic

material,thephysicochemicalproperties,includingthestructural,

electrical,optical,andmassproperties,ofthissensingmaterialcan

change.Intheliterature,therearemanystudiesonvaporsensing

propertiesofcalix[n]arenewithseveralsubstitutedgroups

con-tainingLBthinfilms.CalixareneLBfilmsconsistofananoporous

matrixformedbytheintrinsic calixarenecavities, aswellasby

thegapsbetweenthemoleculesandbetweenthesubstituentalkyl

chains.Organicvaporscanpenetratethroughtheseporesinside

thefilmmatrixandcondensethere[58].Thekineticresponseof

calix[4]arenecontainingp-tert-butylgroupasanLBfilmto chlo-roform,benzene,toluene,andethanol vaporswasexamined.In ordertodeterminethefrequencychangeoftheorganicvapor,the responseofanuncoatedQCMcrystalandaLBfilmcoatedQCM crystalwasinvestigatedinourpreviousstudyforthecalibrationof oursystem.Itisthusconcludedthattheresponseofanuncoated QCMcrystalissmallerthanthatoftheLBfilmcoatedQCMcrystal, whichisinsignificant[59].

UsingQCMmeasurementtechniquetheresonancefrequency wasrecordedasafunctionoftime.Fig.6showsthenormalized response as a function of time when the sample was periodi-callyexposedtochloroformvaporwithaconcentrationvalueof 2.78×108ppmfor2minandfollowedwithaninjectionofdryair

foranother2minperiod.Theconcentrationvaluesoforganicvapor (seeTable2)inppmarecalculatedbytheformulaasfollows[60]: c=V(22.4 L/mol)106 MV0 (7) c=22.4×V×106 MV0 (8) wherec(ppm)istheconcentrationofvapor,(gmL−1)isthe den-sityofvapor,V(mL)isthevolumeofvaporwhichisinjectedinto thegaschamber,M(gmol−1)isthevapormolecularweight,andV0

isthevolumeofthegaschamber(∼0.002L).Thevaporvolume val-uesareusedinthisstudyinthefollowingorder:20%forV=2mL, 40%forV=4mL,60%forV=6mL,80%forV=8mL,and100%for V=10mL.

ThenormalizedresponsedescribedinEq.(9)iscalculatedas thedifferencebetweentheobservedfrequencyresponse(f)and

Fig.7.Kineticmeasurementsofcompound2LBfilmwithincreasingconcentration ofvaporsasafunctionoftime.(Forinterpretationofthereferencestocolorinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)

thebaselinefrequencyresponse(fo).Theresultantquantityisthen

dividedbythebaselinefrequencyresponse. Normalizedresponse=



f−fo

fo



(9) The values of f[f=(f−fo)], which indicate the degree of

response,aremeasuredwithanaccuracyof1Hz.Itisveryclear thatallcalix[4]arene moleculesyield afastresponse to chloro-form vapor. The highest response is taken using compound 2, while compound 3 gives a response smallerthan that of com-pound2.Compound1and4givealmostthesameresponse.The mechanismsof interactionamong organicvapors in anLBfilm structurescanbeexplainedbythreesteps:theprocessesofsurface adsorption,diffusion,anddesorption.Thesurfaceadsorptioneffect betweenLBfilmstructureandvapormoleculescausessharp fre-quencychangewhenLBfilmisintroducedwithorganicvapors[61]. Afterthisinteraction,theincreaseinfrequencyslowsduetothe bulkdiffusioneffect,whichisalsocalleddynamicprocess.When thenumberofadsorbedanddesorbedmoleculesisequal,the fre-quencyshiftachievesthestablevalueuntilthedryairisflushed intothecell.Thefrequencychangeisdirectlyproportionaltothe numberofadsorbedvapormolecules.Itcanbethusconcludedthat theadsorptionofvapormoleculesiseasierontotheLBfilm struc-tureusingcompound2thanallothers.Whenthevapormolecules wereremovedfromthegascell,onlydesorptionprocessoccurs andthefrequencychangedecreasesrapidly.Inorderto investi-gateLBfilmsensingpropertiesregardingotherorganicvapors,the compound2LBfilmwasselected.QCMfrequencywasmeasured atthefirst2mininair,andfollowinganother2minperiod,organic vaporwasintroducedintothegascell.Afterthisprocedure,dryair wasinjectedintothegascelltochecktherecoveryofthesensing material.Thiskineticmeasurementwascarriedoutduring5cycles withincreasingconcentrationstoobservethereproducibilityofthe compound2LBfilm.Fig.7showsthekineticresponseofthe com-pound2LBfilmintheformoffrequencychangetoallvapors.They arealmostreversiblewithresponseandrecoverytimesreported byTable3intheorderofafewsecondswhenthegascellisflushed withdryair.ForareproducibleLBfilmgassensor,sensingmaterial shouldalwaysgivethesamepatternoftheoutputsignalwhenthe sensorisrepeatedlyexposedtoanorganicvaporatconstant inter-valsoftime.Itisclearthatcompound2yieldedarelativelystable repeatability,agoodreproducibility,andalmostuniformchanges infrequencyduetotheadsorptionanddesorptionprocesses.

(8)

M.Ozmenetal./SensorsandActuatorsB190 (2014) 502–511 509

Table2

Theconcentrationvaluesoforganicvapors.

Organicvapors (gcm−3) M(gmol−1) c(20%)×108ppm c(40%)×108ppm c(60%)×108ppm c(80%)×108ppm c(100%)×108ppm

Chloroform 1.483 119.38 2.78 5.56 8.34 11.12 13.90

Benzene 0.876 78.11 2.51 5.02 7.53 10.04 12.55

Toluene 0.870 92.14 2.11 4.22 6.33 8.44 10.55

Ethanol 0.789 46.11 3.83 7.66 11.49 15.32 19.15

These results show that the compound 2 LB film yields a

responsetoallvaporsandismoreselectivetochloroformbased

onahost–guestrecognitionmechanismwithCH2–␲interaction

[62].Theresponseofcompound2LBfilmtochloroformexposures isquitelarge,fast,andreproducible.Uponremovingthe chloro-formvapor,thecompound2LBfilmrecoverywassimilarlyfaster thanothers.

Thevalueofthevaporresponseisproportionaltothechanges infrequency oftheQCMmeasurements. Itcanbeseen thatits response to allvapors is very fastand reversible.Such behav-iorof sensorscanbeexplained bytheinteractionbetweenthe chemicalstructureofmaterialandtheorganicvapor.Thef in QCM generally increaseswith themolecular weight of organic vapors,whilethesensitivityofthefilmdependsonthe molecu-larweightandstructureoftheanalytemoleculesadsorbedonto thefilmsurface.Fortheinteractionmechanisms,itwasproposed that thefrequency response duringadsorption is eitherdue to dipole/dipoleorahydrogenbondinginteraction[63].Itis reason-abletoassumethatifthenumberofadsorbedmoleculesonan adsorbentislimitedandidenticalforvariousadsorbents,agreater molarmassofadsorbentwould leadtoalargerfrequencyshift. AsshowninFig.7,theresponseofcalix[4]areneLBfilmforthe organicvaporsatvarious concentrationvalues given inTable3 (20%,40%,60%,80%,and100%)areinthefollowingascendingorder: ethanol<toluene<benzene<chloroform.ThefinQCMgenerally increaseswithmolecularweightoforganicvapors;however,the molecularweightofbenzeneislowerthanthatoftoluenevapor. Itiswellknownthatf isdirectlyproportionaltothenumberof adsorbedvapormolecules.Thisresultcanbesummarizedthatthe numberofadsorbedbenzenevaporsishigherthantoluenevapors becausebenzenehasalowermolarvolumeandarelativelyhigh viscosityparameter,whichindicatesthatbenzenemoleculesare moremobilethanthetoluenevaporsandpenetrateeasilyintothe calix[4]areneLBfilmstructure[64].

AcomparisonoftheLBfilmofcompounds1to4,thecalixarene derivatives,especially contains tert-butyl groups, reports better resultsfororganicvapors.Thecavityofthecalixarenewithtert butylgroupsis largeenoughtoinclude organicmolecules.This situationagreeswiththeresultsofrelatedliteraturebecausethe structuralchangesinthecalixarenescaffold,suchasremovingthe para substituents affectthe molecularinteractions [65]. Gener-ally,removingtertbutylgroupsattheparapositionsignificantly decreasedthemolecularinteractionofcalixarenes.Inthisstudy, however,excellentexperimentalresultswereobservedfor com-pound2 containingthree p-tert-butylgroupsontheupper rim ofthecalix[4]arenescaffold.Thissituationprobablyresultsfrom therebeingonearylgroupofcalixareneskeleton,whichisrotated upwardtoproducethepartiallyconical conformation[66].This

Table3

ResponseandrecoverytimesofLBfilmsofcalix[4]arenemolecules.

LBfilms Responsetime(s) Recoverytime(s)

Compound1 6 10

Compound2 3 10

Compound3 3 8

Compound4 4 13

formationmayalsoaffectthegassensingefficiencyofcompound

2towardorganicvapors.

4. Conclusion

Thisstudyinvestigatedthecharacterizationandorganicvapor

sensingpropertiesofLBthinfilmsofcalix[4]arenederivatives

con-tainingdifferentnumberoftert-butylgroupsontheupperrim.They

areveryorderedattheA/WinterfaceasanLBmonolayer,whichis

transferredatseveralsubstrateswithtransferratiosofover0.95.

QCMresultsareusedtocalculatethedepositedmassvalues,which

dependingheavilyonthe numberof p-tert-butylgroups. Using

wettabilitymeasurements,thecontactanglewasdeterminedas

theaveragevalueofmeasurementsinfiveneighboringsitesoffilm,

whileLBfilmmodifiedwithpurecomponentcalix[4]areneswith

tetrabutyl,tributyl,anddibutylandwithoutbutylgroupsonupper

rimcalixareneskeletonwere83.7◦±2.5◦,75.3◦±0.6◦,71.4◦±2.1◦

and67.0◦±1.5◦,respectively.UsingAFMimageofcalix[4]areneLB

filmsthermsvaluesarecalculatedbetween2.38nmand13.02nm.

Itisthusconcludedthatthecalix[4]arenefilmsontheglass

sur-face are uniform, dense, and homogeneous withsome surface

aggregates.SEMimagesalsoshowedthatthemorphologyofLB

filmsweredifferentthanthatofbare glasssubstrate.To

inves-tigatethekineticresponse ofcalix[4]arenederivativesas anLB

filmtochloroform,benzene,toluene,andethanolvapors,the

res-onancefrequencyisrecordedasafunctionoftime.Thecompound

2yieldsthehighestresponsetochloroformvaporwithafastand

almostfullyreversibleresponseinamatterofafewseconds.When

exposedtoothervapors,compound2LBfilmismoreselectiveto

chloroformthanothervaporswithalarge,fast,andreproducible

response.Thisstudyconcludesthatp-tert-butylgroupinthe

struc-tureofcalix[4]arenemoleculecanplayasignificantroleforthe

organizationoftheLBfilmmonolayerattheA/Winterface,the

depositionofLBfilmsontothesolidsubstrates,andthedetection

oforganicvaporsforthesensorindustry.

Acknowledgments

TheauthorswouldliketothankTheResearchFoundationof

Sel-cukUniversity(BAP)forfinancialsupportofthiswork.Wearealso

thankfultoCansuOzkayaforherhelpduringisotherm

measure-ments.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,athttp://dx.doi.org/10.1016/j.snb.2013.09.008.

References

[1]Y.Acikbas,M.Evyapan,T.Ceyhan,R.Capan,O.Bekaroglu,Characterisationof Langmuir–Blodgettfilmsofnewmultinuclearcopperandzincphthalocyanines andtheirsensingpropertiestovolatileorganicvapours,Sens.Actuators,B: Chem.123(2007)1017–1024.

[2]C.D.Gutsche,in:J.F.Stoddart(Ed.),CalixarenesRevisitedinMonographin SupramolecularChemistry,TheRoyalSocietyofChemistry,Cambridge,1998.

[3]C.D.Gutsche,B.Dhawan,J.A.Levine,K.H.No,L.J.Bauer,Calixarenes9: con-formationalisomersoftheethersandestersofcalix[4]arenes,Tetrahedron39 (1983)409–426.

(9)

[4]Z.Asfari,R.Abidi,F.Arnaud-Neu,J.Vicens,Synthesisandcomplexing proper-tiesofadouble-calix[4]arenecrownether,J.InclusionPhenom.Mol.Recognit. Chem.13(1992)163–169.

[5]J.Vicens,V.Boehmer,Calixarenes:AVersatileClassofMacrocyclicCompounds, KluwerAcademic,Boston,MA,1991.

[6](a)C.D.Gutsche,M.Iqbal,D.Stewart,Calixarenes18synthesisproceduresfor para–tert-butylcalix[4]arene,J.Org.Chem.51(1986)742–745;

(b)C.D.Gutsche,B.Dhawan,K.H.No,R.Muthukrishnan,Calixarenes4the synthesis,characterizationandpropertiesofthecalixarenesfrom para-tert-butylphenol,J.Am.Chem.Soc.103(1981)3782–3792.

[7]H.Chen,Y.S.Gal,S.H.Kim,H.J.Choi,M.C.Oh,J.Lee,K.Koh,Potassiumion sensingusingaself-assembledcalix[4]crownmonolayerbysurfaceplasmon resonance,Sens.Actuators,B:Chem.133(2008)577–581.

[8]M.Bayrakci,S.Ertul,M.Yilmaz,Synthesisofdi-substitutedcalix[4]arene-based receptorsforextractionofchromateandarsenateanions,Tetrahedron65 (2009)7963–7968.

[9]M.Bayrakci,S.Ertul,M.Yilmaz,Transportationofpoorlysolubledrugmolecules fromtheorganicphasetotheaqueousphasebyusingphosphorylated cal-ixarenes,J.Chem.Eng.Data56(2011)4473–4479.

[10]M.Bayrakci,S.Ertul,M.Yilmaz,Phasesolubilitystudiesofpoorlysolubledrug moleculesbyusingo-phosphorylatedcalixarenesasdrug-solubilizingagents, J.Chem.Eng.Data57(2012)233–239.

[11]M.Bayrakci, S.Ertul,M.Yilmaz,Solubilizingeffectofthe p-phosphonate calix[n]arenestowards poorlysolubledrug molecules suchasnifedipine, niclosamideandfurosemide,J.InclusionPhenom.MacrocyclicChem.74(2012) 415–423.

[12]C.D.Gutsche,I.Alam,Calixarenes23Thecomplexationandcatalyticproperties ofwatersolublecalixarenes,Tetrahedron44(1988)4689–4694.

[13]A.Marra,M.C.Scherrmann,A.Dondoni,A.Casnati,P.Minari,R.Ungaro,Sugar calixarenes-preparationofcalix[4]arenessubstitutedatthelowerandupper rimswitho-glycosylgroups,Angew.Chem.Int.Ed.Engl.33(1994)2479–2481.

[14]A.Ikeda,S.Shinkai,Novelcavitydesignusingcalix[n]areneskeletons:toward molecularrecognitionandmetalbinding,Chem.Rev.97(1997)1713–1734.

[15]X.C.Zhou,S.C.Ng,H.S.O.Chan,S.F.Y.Li,Detectionoforganicaminesinliquid withchemicallycoatedquartzcrystalmicrobalancedevices,Sens.Actuators, B:Chem.42(1997)137–144.

[16]R.Mlika,M.Gamoudi,G.Guillaud,M.Charbonnier,M.Romand,J.Davenas,N. Jaffrezic-Renault,R.Lamartine,A.Touhami,Calix[4]arenesensitivethinfilms fordetectingsodiumsurfacestudies,Mater.Sci.Eng.,C—Mater.11(2000) 129–136.

[17]Yu.Shirshov,G.Beketov,O.Rengevych,R.Lamartine,A.Coleman,C.Bureau, Influenceofsolventmoleculesadsorptiononthincalixarenefilmsthickness andrefractiveindexmeasuredbysurfaceplasmonresonance,Funct.Mater.6 (1999)589–593.

[18]F.Hajek,M.W.Hosseini,E.Graf,A.Cian,J.Fischer,Moleculartectonics.6. Self-assemblyofconvexandconcavemoleculartectonstoformalinearmolecular arrayinthesolidstate,Angew.Chem.Int.Ed.36(1997)1760–1762.

[19]R.A.Hendel,L.H.Zhang,V.Janout,M.D.Conner,J.T.Hsu,S.L.Regen,Insightinto thepermeationselectivityofcalix[n]arene-basedLangmuir–Blodgettfilms: importanceofheadgroupassociationandthesolidphase,Langmuir14(1998) 6545–6549.

[20]G.G.Roberts,Langmuir–BlodgettFilms,PlenumPress,NewYork,1990.

[21]W.J.He,D.Vollhardt,R.Rudert,L.Zu,J.Li,Phasetransitionanddomain mor-phologyinLangmuirmonolayersofacalix[4]arenederivativecontainingno alkylchain,Langmuir19(2003)385–392.

[22]G.E.Fanucci,R.Backov,R.Fu,D.R.Talham,Multiplebilayer dipalmitoylphos-phatidylserineLBfilmsstabilizedwithtransitionmetalions,Langmuir17 (2001)1660–1665.

[23]Z.K. Wu,S.X.Wu,Y.Q. Liang,Monolayer behavior and LBfilm structure ofpoly(2-methoxy-5-(n-hexadecyloxy)-p-phenylenevinylene),Langmuir17 (2001)7267–7273.

[24]C.D.Gutsche,in:J.F.Stoddart(Ed.),MonographsinSupramolecularChemistry, Calixarenesrevisited,6,TheRoyalSocietyofChemistryPress,Cambridge,1998.

[25]Z.Asfari,V.Böhmer,J.Harrowfield,J.Vicens(Eds.),Calixarenes2001,Kluwer AcademicPublishers,Dordrecht,2001.

[26]S. Andreescu, A. Avramescu, C. Bala, V. Magearu, J.L. Marty, Detection of organophosphorus insecticides with immobilized acetylcholinesterase—comparative study of two enzyme sensors, Anal. Bioanal.Chem.374(2002)39–45.

[27]B.T.T.Lan,K.Toth,Characterizationofchromogeniccalix[4]arenederivative basedion-selectiveopticalsensors,Anal.Sci.14(1998)191–197.

[28]M.Benounis,N.Jaffrezic-Renault,H.Halouani, R.Lamartine, I. Dumazet-Bonnamour,Detection ofheavymetalsby anopticalfibersensorwith a sensitivecladdingincludinganewchromogeniccalix[4]arenemolecule,Mater. Sci.Eng.,C—Mater.Biol.Appl.2(2006)364–368.

[29]V.K.Gupta,R.Ludwig,S.Agarwal,Strontium(II)sensorbasedonamodified calix[6]areneinPVCmatrix,Anal.Sci.21(2005)293–296.

[30]A.K.Hassan,A.V.Nabok,A.K.Ray,F.Davis,C.J.M.Stirling,Complexationof metalionswithLangmuir–Blodgettfilmsofnovelcalixareneazo-derivative, ThinSolidFilms327(1998)686–689.

[31]T.Grady,T.Butler,B.D.Mac-Craith,D.Diamond,M.A.McKervey,Opticalsensor forgaseousammoniawithtuneablesensitivity,Analyst122(1997)803–806.

[32]C.J.Liu,J.T.Lin,S.H.Wang,J.C.Jiang,L.G.Lin,Chromogeniccalixarenesensors foraminedetection,Sens.Actuators,B:Chem.108(2005)521–527.

[33]M.Loughran,D.Diamond,Monitoringofvolatilebasesinfishsampleheadspace usinganacidochromicdye,FoodChem.69(2000)97–103.

[34]C.Wang,X.W.He,L.X.Chen,Apiezoelectricquartzcrystalsensorarrayself assembledcalixarenebilayersfordetectionofvolatileorganicamineingas, Talanta57(2002)1181–1188.

[35]W.Guo,J.Wang,C.Wang,J.Q.He,X.W.He,J.P.Cheng,Design,synthesis, andenantiomericrecognitionofdicyclodipeptide-bearingcalix[4]arenes:a promisingfamilyforchiralgassensorcoatings,TetrahedronLett.43(2002) 5665–5667.

[36]S.Rosler,R.Lucklum,R.Borngraber,J.Hartmann,P.Hauptmann,Sensor sys-temforthedetectionoforganicpollutantsinwaterbythicknessshearmode resonators,Sens.Actuators,B:Chem.48(1998)415–424.

[37]Z.Ozbek,R.Capan,H.Goktas,S.Sen,F.G.Ince,M.E.Ozel,F.Davis,Optical param-etersofcalix[4]arenefilmsandtheirresponsetovolatileorganicvapors,Sens. Actuators,B:Chem.158(2011)235–240.

[38]F.L.Dickert,O.Schuster,Supramolecular detectionofsolventvaporswith calixarenes-masssensitive sensors,molecularmechanicsandBETstudies, Microchim.Acta119(1995)55–62.

[39]J.H.Kim,Y.G.Kim,K.H.Lee,S.W.Kang,K.N.Koh,Sizeselectivemolecular recog-nitionofcalix[4]arenesinLangmuir–Blodgettmonolayers,Synth.Met.117 (2001)145–148.

[40]T.D.Chung,J.Park,J.Kim,H.Lim,M.J.Choi,J.R.Kim,S.K.Chang,H.Kim, Self-assembled monolayer of a redox-active calix[4]arene: Voltammetric recognitionoftheBa2+ioninaqueousmedia,Anal.Chem.73(2001)3975–3980.

[41]S.I. Ohira,E.Wanigasekara,D.M.Rudkevich, P.K.Dasgupta,Sensing parts per millionlevels ofgaseousNO2 byaopticalfiber transducerbasedon

calix[4]arenes,Talanta77(2009)1814–1820.

[42]C.J.Liu,J.T.Lin,S.H.Wang,J.C.Jiang,L.G.Lin,Chromogeniccalixarenesensors foraminedetection,Sens.Actuators,B:Chem.108(2005)521–527.

[43]M.E.H.Amrani,P.A.Payne,R.M.Dowdeswell,A.D.Hoffman,Frequencycounting interrogationtechniquesappliedtogassensorarrays,Sens.Actuators,B:Chem. 57(1999)75–82.

[44]S. Berthalon, J.B. Regnouf-de-Vains,R. Lamartine,Mono-functionalization of the tris-(p-tert-Butyl) calix[4]arene, Tetrahedron Lett. 38 (1997) 8527–8528.

[45]E.DaSiva,P.Shahgaldian,A.W.Coleman,Haemolyticpropertiesofsome water-solublepara-sulphonato-calix-[n]-arenes,Int.J.Pharm.273(2004)57–62.

[46]X.L.Wu,P.L.Luo,S.J.Zhu,S.S.Zhang,B.X.Ye,Studyonthefilmpropertiesand recognitionformetalionsofcalix[4]arenesderivativebyLangmuirmonolayer, J.Chin.Chem.Soc.58(2011)362–368.

[47]B.Lonetti,P.LoNostro,B.W.Ninham,P.Baglioni,Anioneffectsoncalixarene monolayers:ahofmeisterseriesstudy,Langmuir21(2005)2242–2249.

[48]L.H.Zhang,A.R.Esker,K.No,H.Yu,Staticanddynamicpropertiesofcalixarene monolayersattheair/waterinterface.2.Effectsofionicinteractionswith p-dioctadecanoylcalix[4]arene,Langmuir15(1999)1725–1730.

[49]Y.Ishikawa,T.Kunitake,T.Matsuda,T.Otsuka,S.Shinkai,Formationof cal-ixarenemonolayerwhichselectivelyrespondtometalions,J.Chem.Soc.Chem. Commun.11(1989)736–738.

[50]K.Yagi,S.B.Khoo,M.Sugawara,T.Sakaki,S.Shinkai,K.Odashima,Y.Umezawa, Channelmimeticsensingmembranesforalkalimetalcationsbasedonoriented monolayersofcalixareneesters,J.Electroanal.Chem.401(1996)65–79.

[51]D.Vollhardt,J.Gloede,G.Weidemann,R.Rudert,Characteristicfeaturesof amphiphilicp-functionalizedcalixarenemonolayersattheair/waterinterface, Langmuir19(2003)4228–4234.

[52]M.W.Sugden,T.H.Richardson,F.Davis,S.P.J.Higson,C.F.J.Faul,Langmuirand LBpropertiesoftwocalix[4]resorcinarenes:interactionswithvariousanalytes, ColloidsSurf.,A:Physicochem.Eng.Aspects321(2008)43–46.

[53]S.Okur,M.Kus,F.Ozel,V.Aybek,M.Yilmaz,Humidityadsorptionkineticsof calix[4]arenederivativesmeasuredusingQCMtechnique,Talanta81(2010) 248–251.

[54]P.G.Su,L.G.Lin,W.H.Tzou,Humiditysensingpropertiesofcalix[4]areneand functionalizedcalix[4]arenemeasuredusingaquartz-crystalmicrobalance, Sens.Actuators,B:Chem.181(2013)795–801.

[55]F.Yin,S.H.Park,H.K.Shin,Y.S.Kwon,Studyofhemoglobin-octadecylamineLB filmformationanddepositionbycompressibilityanalyse,QCMandAFM,Curr. Appl.Phys.6(2006)728–734.

[56]G.Sauerbrey,Verwendungvonschwingquarzenzurwagungdünnerschichten undmicrowagung,Z.Phys.Chem155(1959)206–222.

[57]P.Leclere,M.Surin,P.Viville,R.Lazzaroni,A.F.M.Kilbinger,O.Henze,W.J.Feast, M.Cavallini,F.Biscarini,A.P.H.J.Schenning,E.W.Meijer,Aboutoligothiophene self-assembly: fromaggregation insolution tosolid-state nanostructures, Chem.Mater.16(2004)4452–4466.

[58]A.V.Nabok,A.K.Hassan,A.K.Ray,Condensationoforganicvapourswithin nanoporouscalixarenethinfilms,J.Mater.Chem.10(2000)189–194.

[59]M.Evyapan,R.Capan,M.Erdogan,H.Namli,Langmuir–Blodgettthinfilm char-acterizationandvaporsensingpropertiesofboroncontainingmaterials,Sens. Lett.11(2013)476–482.

[60]X.Fan,B.Y.Du,Selectivedetectionoftracep-xylenebypolymer-coatedQCM sensors,Sens.Actuators,B:Chem.166(2012)753–760.

[61]P.Sun,Y.D.Jiang,G.Z.Xie,J.S.Yu,X.S.Du,J.Hu,Synthesisandsensitive prop-ertiesofpoly(bistriethylphosphine)–platinum–diethynylbenzenefororganic vapordetection,J.Appl.Polym.Sci.116(2010)562–567.

[62]K.D.Schiebaum,A.Gerlach,W.Gopel,W.M.Muller,F.Vogtle,A.Dominik,H.J. Roth,Surfaceandbulkinteractionsoforganicmoleculeswithcalixarenelayers, FreseniusJ.Anal.Chem.349(1994)372–379.

[63]L.G.Xu,H.Hu,Y.T.Lim,V.S.Subramanian,Organicvaporadsorptionbehavior ofpoly(3-butoxythiophene)LBfilmsonquartzcrystalmicrobalance,ThinSolid Films417(2002)90–94.

(10)

M.Ozmenetal./SensorsandActuatorsB190 (2014) 502–511 511 [64]M.Erdogan,R.Capan,F.Davis,Swellingbehaviourofcalixarenefilmexposedto

variousorganicvapoursbysurfaceplasmonresonancetechnique,Sens. Actu-ators,B:Chem.145(2010)66–70.

[65]G.G.Talanova,V.S.Talanov,M.G.Gorbunova,H.S.Hwang,R.A.Bartsch,Effect ofupperrimpara-alkylsubstituentsonextractionofalkaliandalkalineearth metalcationsbydi-ionizablecalix[4]arenes,J.Chem.Soc.,Perkin-Trans.2(12) (2002)2072–2077.

[66]H.Zhou,D.Liu,J.Gega,K.Surowiec,D.W.Purkiss,R.A.Bartsch,Effectof para-substituentsonalkalineearthmetalionextractionbyprotondi-ionizable calix[4]arene-crown-6ligandsincone,partial-coneand1,3-alternate confor-mations,Org.Biomol.Chem.5(2007)324–332.

Biographies

MustafaOzmenreceivedtheM.Sc.andPh.D.degreesinchemistryfromSelcuk University,Konya,Turkey,in2006,and2011,respectively.Hewasappointedasa researchassistantfrom2005to2011attheChemistryDepartmentofSelcuk Uni-versityinTurkey,andsincethenhewasasaresearchassistantdoctoratthesame department.Hisresearchinterestsincludeself-assembly,micro/nanopatterning techniques,synthesisofnanoparticles(magnetic,gold,silverandTiO2)andtheir

functionalization,organicthinfilmdepositionviaLangmuir–Blodgetttechniqueand thespectroscopicandopticalcharacterizationsoforganicthinfilmmaterialsand theirapplicationsasbiosensor.

ZikriyeÖzbekreceivedherM.Sc.andPh.D.degreesinphysicsfromtheUniversityof Balikesir,Turkeyin2007,and2012,respectively.Shehasappointedasanassistant professorfrom2013attheBioengineeringDepartmentofCanakkaleOnsekizMart UniversityinTurkey.HerresearchareaisfabricationofLangmuir–Blodgettthin films.

SumeyraBuyukcelebireceivedherB.Sc.degreeinchemistryfromtheUniversity ofSelcuk,Turkeyin2010.SheiscurrentlyworkingtowardtheM.Sc.degreeat UniversityofSelcuk,Turkey.

MevlutBayrakcireceivedhisB.Sc.degreeinDepartmentofChemistryfromNigde Universityin2004andM.Sc.andPh.D.degreesinchemistryfromSelcuk Univer-sity,Konya,Turkey,in2007,and2012,respectivelyunderthesupervisionofDr. ErtulandProf.Yilmaz.Hisresearchinterestsareinthedesignandsynthesisof macrocycliccompoundssuchascalixareneandcrownetherandtheiruseasdrug solubilizingagentsaswellastheirmetalcomplexes.Currently,hehasbeen work-ingasanassistantprofessorattheUlukislaVocationalSchoolofNigdeUniversityin Turkey.

SerefErtulreceivedhisB.Sc.inDepartmentofChemistryfromAtaturk Univer-sity,Erzurum,Turkeyin1989andM.Sc.degreeinDepartmentofChemistryfrom SelcukUniversityKonya,Turkeyin1991andPh.D.degreeinDepartmentof Chem-istryfromSelcukUniversityKonya,Turkeyin1997.Hehasbeenworkingasan assistantprofessorattheChemistryDepartmentofSelcukUniversityinTurkey.His researchinterestsincludedesignandsynthesisofsupramolecularstructuresbased calixarene,crownetherand/orSchiffbasesandtheiruseassensorstowardmetal cationsandtoxicanions.

MustafaErsozhasreceivedhisM.Sc.degreeatUniversityofSelcuk(Konya,Turkey) in1985.HeobtainedhisPh.D.atUniversityofGlasgowin1994.Following postdoc-toralexperienceatGKSSResearchCenter,Germany,hethenspent1yearwithinthe surfactantandcolloidresearchgroupatUniversityofHull,UnitedKingdom.Much ofhisresearchisfocusedtowardtheincorporationofself-assembledmonolayers withinultra-thinfilmsandtheirapplications,aswellaspatterningtechniquessuch asmicrocontactprinting.Heistheauthorofinexcessof120publishedpapers.He isamemberoftheTurkishAcademyofSciences(TUBA).

RifatCapanreceivedM.Sc.degreeatHacettepeUniversityPhysicsEngineering Departmentin1991,Ankara,TurkeyandhisPhDattheUniversityofSheffield(UK) in1998.HeestablishedfirstLangmuir–BlodgettThinFilmResearchGroupinTurkey. HehadaPhDscholarshipfromTurkishHighEducationCouncilbetween1993and 1998andhadOversea’sResearchStudentAward(UK)from1995to1998.Hismain interestsarepyroelectricheatsensor,gassensorforenvironmentapplications,the electricalandopticalpropertiesoforganicthinfilmmaterials.Hehasbeenworking asaprofessorsince2007attheUniversityofBalikesir.

Referanslar

Benzer Belgeler

Prusya Kralı’nın İstanbul’da ikamet eden fevkalade murahhas ortaelçisi Baron de Martens’in takririne göre, Prusya doktorlarından Pananan ve Bederman adlı doktorlar

Zâviyenin, kuruluş tarihi ve kurucusu olduğu anlaşılan Hasan Baba veled-i Yağmur hakkında ayrıntılı bir bilgi mevcut değildir.. Yağmur isminin Türkçe olduğu ve

Yukarıda ayrıntılı olarak hayatları ve edebî çalışmaları hakkında bilgi verilen müellifler alfabetik sırayla şu şekilde gösterilebilir: Abdâl, Abdullah

Bekâr kelimesi Türkçe sözlükte sadece evlenmemiş kimse olarak tanımlanmamıştır. Bu tanımının yanı sıra evli olduğu halde ailesinden ayrı, yalnız yaşayan

After establishing an analytical framework for a constructivist analysis emphasizing the interactive relationship of ideas and material circumstances in the production of

The paramount question is whether or not Turkish feminism has any particular issues which are different from the ones developed by other feminist groups

Sözleşme taraflarının açık hukuk seçimi, örtülü hukuk seçi- minin mümkün olup olmadığı, mümkünse bunun koşulları, tarafların bu olanaklardan yararlanmamaları duru-

Fakat, bu rüyalar bilimsel yöntemlerin dışında kaldığı için Rehan cinayetlerin çözülmesinde Zeliha’nın rüyalarından yararlandığını gizlemek zorun- da kalır;